滦县地区尾波Q值及其与频率关系的研究

李松林, 樊计昌, 惠乃玲, 杨健, 孙桂香

李松林, 樊计昌, 惠乃玲, 杨健, 孙桂香. 1990: 滦县地区尾波Q值及其与频率关系的研究. 地震学报, 12(4): 357-366.
引用本文: 李松林, 樊计昌, 惠乃玲, 杨健, 孙桂香. 1990: 滦县地区尾波Q值及其与频率关系的研究. 地震学报, 12(4): 357-366.
LI SONGLIN, FAN JICHANG, HUI NAILING, YANG JIAN, SUN GUIXIANGaylc. 1990: A STUDY OF THE CODA Q-VALUE AND ITS RELATIONSHIP WITH FREQUENCY OF THE LUANXIAN DISTRICT. Acta Seismologica Sinica, 12(4): 357-366.
Citation: LI SONGLIN, FAN JICHANG, HUI NAILING, YANG JIAN, SUN GUIXIANGaylc. 1990: A STUDY OF THE CODA Q-VALUE AND ITS RELATIONSHIP WITH FREQUENCY OF THE LUANXIAN DISTRICT. Acta Seismologica Sinica, 12(4): 357-366.

滦县地区尾波Q值及其与频率关系的研究

A STUDY OF THE CODA Q-VALUE AND ITS RELATIONSHIP WITH FREQUENCY OF THE LUANXIAN DISTRICT

  • 摘要: 利用国家地震局地球物理勘探大队在滦县地震区取得的高精度的数字化地震记录资料,由尾波分析法计算了对应于7个不同频率(f=1.5,3.0,6.0,10.0,15.0,20.0,25.0Hz)的介质Qc值.发现在该频率范围内Qc随频率的变化近似服从幂函数关系Qc=afb.对流逝时间较短(40s左右)的尾波资料,求得a=46,b=0.85.对流逝时间较长(60s左右)的资料,a=72,b=0.90.b值较大,表明Qc值对于频率的强依赖关系,a值(1Hz的Qc值)较小.这些结果表明该地区为一较强的构造活动区.
    Abstract: Through processing the data of digital seismic records with high precision collected in the Luanxian Region,the Qc values of the medium corresponding to seven different frequencies (f=1.5,3.0,6.0,10.0,15.0,20.0,25.0 Hz) have been obtained by using the coda wave analysis method. It is found that the Qc value versus frequency can be approximated by the relation Qc=afb. We have obtained a= 46,b=0.85 for shorter lapse time and a= 72,b=0.90 for longer. The large values of b show the strong dependence of Qc on frequency. The value of a (for Qc at 1 Hz) is quite small. These results indicate that Luanxian is a region with strong' tectonic motion.
  • [1] Rautian, T. G., and Khalturin, V. L, 1978. The use of the coda for determination of the earthquake source spectrum. Bull Seism. Soc, Amcr., 68, 923——943.

    [2] Pulli, J. J., 1984. Attenuation of coda waves in New England. Bull. Seism. Soc. Amer., 74, 1149——1166.

    [3] 高龙生、石议斌、华正兴、李瑞玻X1986.唐山——北京地区Q因子随频率的变化.地震学报,8,354——366,

    [4] Aki, K., 1984, Short——period seismology, J. Comput Phys., 54, 3——17.

    [5] Goo, L. S., Biswas, N. N., Lee, L. C. and Aki, K., 1983. Effects of multiple scattering on code waves in three——dimensional medium. Pure rlppl. Geophys., 121, 3——15.

    [6] Aki, K. and Chouet, B., 1975. Origin of coda waves: source, attenuation and scattering effects. J. Gcophys. Res, 80, 3322——3342.

    [7] Sato, H., 1977. Energy propagation including scattrering effects, single isotropic scatterink approximation. J.Phys. Earth., 25, 27——41.

    [8] 范文、原秦喜、惠乃玲、李松林、石林坷、张晓普,1987,滦县地区的近场地震观测.华北地震科学,5,2,40——50.

    [9] Chen, P., O. Nuttli, W. ye, and Qin, J., 1984. Estimates of short period Q values and seismic moments from coda waves for earthquakes, of the Beijing and Yunan regions of China. Bull. Seism. Soc. Amen,74,1189——1207.

    [10] Jin, A. and Aki, K., 1986. Temporal change in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975. J. Geophys. Res., g1, 665——673.

    [11] 傅昌洪、朱传镇,1980.北京及其邻区Q值分布特征的研究.西北地震学报,2, 11——22,

    [12] Frankel, A. and Wennerberg, L., 1987. Energy——flux model of seismic coda: separation of scattering and intrinsic attenuation. Bull. Seism. Soc. Amen, 77, 1223——1251.

    [13] Goo, L. S. and Li, S. L., 1989, Time domain solution for multiple scattering and the coda envelopes,Pure and Appl. Geophys., 132, 123——150.

    [14] Aki, K., 1980. Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet. Int., 21, 50——60.

    [1] Rautian, T. G., and Khalturin, V. L, 1978. The use of the coda for determination of the earthquake source spectrum. Bull Seism. Soc, Amcr., 68, 923——943.

    [2] Pulli, J. J., 1984. Attenuation of coda waves in New England. Bull. Seism. Soc. Amer., 74, 1149——1166.

    [3] 高龙生、石议斌、华正兴、李瑞玻X1986.唐山——北京地区Q因子随频率的变化.地震学报,8,354——366,

    [4] Aki, K., 1984, Short——period seismology, J. Comput Phys., 54, 3——17.

    [5] Goo, L. S., Biswas, N. N., Lee, L. C. and Aki, K., 1983. Effects of multiple scattering on code waves in three——dimensional medium. Pure rlppl. Geophys., 121, 3——15.

    [6] Aki, K. and Chouet, B., 1975. Origin of coda waves: source, attenuation and scattering effects. J. Gcophys. Res, 80, 3322——3342.

    [7] Sato, H., 1977. Energy propagation including scattrering effects, single isotropic scatterink approximation. J.Phys. Earth., 25, 27——41.

    [8] 范文、原秦喜、惠乃玲、李松林、石林坷、张晓普,1987,滦县地区的近场地震观测.华北地震科学,5,2,40——50.

    [9] Chen, P., O. Nuttli, W. ye, and Qin, J., 1984. Estimates of short period Q values and seismic moments from coda waves for earthquakes, of the Beijing and Yunan regions of China. Bull. Seism. Soc. Amen,74,1189——1207.

    [10] Jin, A. and Aki, K., 1986. Temporal change in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975. J. Geophys. Res., g1, 665——673.

    [11] 傅昌洪、朱传镇,1980.北京及其邻区Q值分布特征的研究.西北地震学报,2, 11——22,

    [12] Frankel, A. and Wennerberg, L., 1987. Energy——flux model of seismic coda: separation of scattering and intrinsic attenuation. Bull. Seism. Soc. Amen, 77, 1223——1251.

    [13] Goo, L. S. and Li, S. L., 1989, Time domain solution for multiple scattering and the coda envelopes,Pure and Appl. Geophys., 132, 123——150.

    [14] Aki, K., 1980. Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet. Int., 21, 50——60.

计量
  • 文章访问数:  1426
  • HTML全文浏览量:  26
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 发布日期:  2011-09-01

目录

    /

    返回文章
    返回