用经验格林函数确定中小地震的震源时间函数

周家玉1, 陈运泰1, 倪江川1, 王鸣1, 王培德1, 孙次昌1, 吴大铭2

周家玉1, 陈运泰1, 倪江川1, 王鸣1, 王培德1, 孙次昌1, 吴大铭2. 1993: 用经验格林函数确定中小地震的震源时间函数. 地震学报, 15(1): 22-31.
引用本文: 周家玉1, 陈运泰1, 倪江川1, 王鸣1, 王培德1, 孙次昌1, 吴大铭2. 1993: 用经验格林函数确定中小地震的震源时间函数. 地震学报, 15(1): 22-31.

用经验格林函数确定中小地震的震源时间函数

  • 摘要: 采用正则化方法,并以小地震近似地代替通常由理论计算出的格林函数,结合近场加速度资料反演了1985年4月18日云南禄劝 Ms=6.1地震4个余震的震源时间函数.结果表明,较大余震除了震源持续时间较长外,其破裂过程也较为复杂,具有明显的阶段性.而较小余震的震源时间函数则近似为一脉冲函数.根据布龙震源模式,我们估计了这4个余震地震断层的破裂速度和断层面上的平均质点运动速度,结果表明,地震断层面的破裂速度小于地震波传播的横波速度;断层面上的平均质点运动速度为几至十几 cm/s,基本保持在同一水平.
  • [1] 刘正荣、陈敬, 1986. 1985年4月18日云南省禄劝地震.地震学报,8,增刊,161——165.

    [2] 王培德,1987.近震源强地面运动研究.博士研究生毕业论文,国家地震局地球物理研究所,北京.

    [3] 吴明熙、王鸣、孙次昌、柯兆铭、王培德、陈运泰、吴大铭,1990. 1985年禄劝地震部分余震的精确定位.地震学报,12,121——129.

    [4] 周家玉, 1987. 1985年石南禄劝地震部分余震的震源时间函数.硕士研究生毕业论文,国家地震局地球物理研究所,北京.

    [5] Aki. K. and Richards, P. G.,1980. Quantitative eismoloy: Theon} and Methods, Vols. I and 2, W. H. Freeman,San Francisco.932 pp

    [6] Brune, J. N.,1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. , 75,4887——5009.

    [7] Burridge. R. and Halliday, G. S.,1971. Dynamic shear cracks with friction as models for shallow focus earthquakes. Geophy. J. R. astr. Soc.,25, 261——283.

    [8] Chen, Y. T.,Chen. X. F. and Knopoff, L——1987. Spontaneous growth and autonomous contraction of a two——dimensional earthquake fault .Tectonophysics,144, 5——17.

    [9] Kikuchi, M. and Kanamori, H.,1982. Inversion of complex waves. Bull. Seism. Soc. Amer. , 72, 491——506.

    [10] Mueller, C. S.,1985. Source pulse enhancement by deconvolution of an empirical Green's function. Geophvs. Res. Letters.12, 33——36.

    [11] Madariaga. R.,1983. Earthquake source theory: A review, In: Kanamori,H. and Boshi,E. (eds),Earthquake: Observation, Theory and Intetprntation. Soc. Ital. di Fisica, Bologna. Italy,1——44

    [12] Knopoff, L.,1981. The nature of the earthquake source, In: Husebye. E. S. and Mykkeltveit, S. ( eds. ), Identification of Seimic Sorce—— Earthquake or Underground Explosion. Reideh Dordrecht,49——69

    [13] Niewiadomski, J.,and Meyer, K.,1986. Application of the regularization method for determination of seismic source times functions. Acta Geophysica Pol. , 34. 137——144.

    [14] Stavrakakis, G. N.,Tselentis, A. G. and Drakopoules, J.,1987. Iterative deconvolution of teleseismic P waves from the Thessaloniki ( N. Greece ) earthquake of June 20. 1978. Pure Appl. Geophys.,124, 1039——1050.

    [15] Tikhonov, A. N.,1963. On the solution of ill——posed problems and the method of regularization. Dokl. Akad. Nauk SSSR.,3. 501——504 (in Russian).

    [16] Tikhonov, A. N.,Goncharsky, A. V.,Stepanov, V. V. and Yagola, A. G.,1983. Regularization Algorithms and Apriori Irformation. Nauka, Moscow (in Russian).

    [17] Weaver, H. J.,1983. Applications of Discrete and Continuous Fourier Analysis. Wiley. New York, 90——109.

    [1] 刘正荣、陈敬, 1986. 1985年4月18日云南省禄劝地震.地震学报,8,增刊,161——165.

    [2] 王培德,1987.近震源强地面运动研究.博士研究生毕业论文,国家地震局地球物理研究所,北京.

    [3] 吴明熙、王鸣、孙次昌、柯兆铭、王培德、陈运泰、吴大铭,1990. 1985年禄劝地震部分余震的精确定位.地震学报,12,121——129.

    [4] 周家玉, 1987. 1985年石南禄劝地震部分余震的震源时间函数.硕士研究生毕业论文,国家地震局地球物理研究所,北京.

    [5] Aki. K. and Richards, P. G.,1980. Quantitative eismoloy: Theon} and Methods, Vols. I and 2, W. H. Freeman,San Francisco.932 pp

    [6] Brune, J. N.,1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. , 75,4887——5009.

    [7] Burridge. R. and Halliday, G. S.,1971. Dynamic shear cracks with friction as models for shallow focus earthquakes. Geophy. J. R. astr. Soc.,25, 261——283.

    [8] Chen, Y. T.,Chen. X. F. and Knopoff, L——1987. Spontaneous growth and autonomous contraction of a two——dimensional earthquake fault .Tectonophysics,144, 5——17.

    [9] Kikuchi, M. and Kanamori, H.,1982. Inversion of complex waves. Bull. Seism. Soc. Amer. , 72, 491——506.

    [10] Mueller, C. S.,1985. Source pulse enhancement by deconvolution of an empirical Green's function. Geophvs. Res. Letters.12, 33——36.

    [11] Madariaga. R.,1983. Earthquake source theory: A review, In: Kanamori,H. and Boshi,E. (eds),Earthquake: Observation, Theory and Intetprntation. Soc. Ital. di Fisica, Bologna. Italy,1——44

    [12] Knopoff, L.,1981. The nature of the earthquake source, In: Husebye. E. S. and Mykkeltveit, S. ( eds. ), Identification of Seimic Sorce—— Earthquake or Underground Explosion. Reideh Dordrecht,49——69

    [13] Niewiadomski, J.,and Meyer, K.,1986. Application of the regularization method for determination of seismic source times functions. Acta Geophysica Pol. , 34. 137——144.

    [14] Stavrakakis, G. N.,Tselentis, A. G. and Drakopoules, J.,1987. Iterative deconvolution of teleseismic P waves from the Thessaloniki ( N. Greece ) earthquake of June 20. 1978. Pure Appl. Geophys.,124, 1039——1050.

    [15] Tikhonov, A. N.,1963. On the solution of ill——posed problems and the method of regularization. Dokl. Akad. Nauk SSSR.,3. 501——504 (in Russian).

    [16] Tikhonov, A. N.,Goncharsky, A. V.,Stepanov, V. V. and Yagola, A. G.,1983. Regularization Algorithms and Apriori Irformation. Nauka, Moscow (in Russian).

    [17] Weaver, H. J.,1983. Applications of Discrete and Continuous Fourier Analysis. Wiley. New York, 90——109.

  • 期刊类型引用(6)

    1. 文亚猛,袁道阳,张波,冯建刚. 青藏高原东北隅弧形构造区现代中小地震密集区与历史强震的关系探讨. 地震工程学报. 2021(03): 594-606 . 百度学术
    2. 刘薇,李大虎,梁明剑. 鲜水河断裂带南东段康定—色拉哈断裂的浅层地球物理勘探. 地震工程学报. 2018(06): 1287-1294 . 百度学术
    3. 邹小波,袁道阳,邵延秀,刘兴旺,张波,杨海波. 采用立体像对和差分GPS揭示民乐-永昌隐伏断裂地表变形特征. 地震地质. 2017(06): 1198-1212 . 百度学术
    4. 李大虎,廖华,梁明剑,王明明,王世元,杨歧焱,顾勤平. 龙门山中央断裂南段盐井—五龙断裂的浅层地球物理方法探测. 地震工程学报. 2016(01): 26-35 . 百度学术
    5. 原健龙,丘斌煌,刘洪星,周武,余嘉顺. 不整合面下隐伏逆冲断层反射地震成像模拟研究. 物探化探计算技术. 2015(01): 70-77 . 百度学术
    6. 李洋洋,潘纪顺. 震电综合物探方法在滁州市隐伏断裂中的应用. 河南科技. 2013(22): 183-185 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1536
  • HTML全文浏览量:  36
  • PDF下载量:  147
  • 被引次数: 9
出版历程
  • 发布日期:  2011-09-01

目录

    /

    返回文章
    返回