地震时间间隔的统计分布及其地震危险度 D 值在华北大震前的异常变化
THE STATISTICAL DISTRIBUTION OF TIME INTERVALS BETWEEN TWO SUCCESSIVE EARTHQUAKES AND ABNORMAL VARIATION OF THE D-VALUE, THE DEGREE OF SEISMIC DANGER PRIOR TO SEVERAL GREATER EARTHQUAKES IN NORTH CHINA
-
摘要: 本文探讨了华北小震时间间隔的统计分布规律,并且经过统计检验认为,它服从韦布尔(Weibull)分布,f()=-1exp[-(/)].实际计算表明,地震发生方式参数一般小于1,说明华北小震活动呈续发性方式.本文利用可靠性理论中的一些成果,引入地震危险度函数D(t)=1-exp[-(t/)],它表示 t 时刻内发生地震的概率.本文取 t=1d,将 D(1)称为地震危险度 D 值.得到自1970-1984年期间华北共发生的九次 Ms5.8地震前,震中周围区域的地震危险度 D 值,都出现一个明显的异常上升过程.文中还就,和 D 值与实际地震活动的关系,以及 D 值变化的稳定性等问题进行了讨论,认为 D 值是应力的函数.同时,可靠性理论中的其它一些参数,也有着与 D 值相类似的变化.Abstract: In this paper the statistical distribution of the time interval between two successive earthquakes is discussed, statistically tested, and shown that it obeys Weibull distribution f() =-1exp[-(/)].Actual calculation results show that in general the seismicoccurence fashionparametre, the p-value, is less than 1.0. This means that the pattern of seismic occurence is successive. Using some results of the reliability theory, the degree of seismic danger function D(t) =1-exp[-(t/)] is introduced, it is the probability of occurrence of an earthquake in timet. In this paper we let t = 1 day and call D(1) the degree of seismic danger, the D-value. The results indicate that the degree of seismic danger, the D-value showed a significant rising trend before all nine earthquakes of Ms5.8 in North China (1970-1984). The relation between , , D-value and the actual seismic activity, stability of the calculated D-value etc. are discussed. Besides, it is thought that the D-value is a function of stress. The other parametres of reliability theory have similar variations as the D-value.
-
-
[1] Hagiwara, Y., Probability of earthquake occurrence as obtained from Weibull distribution analysis of crustal strain, Tectonorhysics, 23, 313——318, 1974,
[2] Rikitake, T., Recurrence of great earthquakes of subdnction zones, Tectonophysics, 35, 335——362,1976.
[3] 郑建中,中国大地震的发生方式、时间间隔及概率分布,地震研究,6,增刊,439——447, 1983,
[4] 张国民、傅征祥,华北强震的时间分布及其物理解释,地球物理学报,28, 569—— 578, 1985,
[5] 松村正三、郑建中译,地震时间序列的——个参数表示及其在地震预报中的应用,世界地震译丛,1983, No. 2,11——15,
[6] 国家地震局分析预报中心,中国东部地震目录,地震出版社,1981,
[7] 紊藤嘉博,五所译,可靠性基础数学,69——77,国防工业出版社,1977,
[8] 茹诗松,可靠性统计,30——80,华东师范大学出版社,1984,
[9] 中国科学院计算中心概率统计组,概率统计计算,109——115,科学出版社,1979,
[10] 姜秀娥、陈非比,区域震群与唐山大震,地震学报,5, 145——157, 1983,
[11] 朱传镇、罗胜利,震群与大地震关系的研究,地震学报,3, 105——116, 1981,
[12] 顾浩鼎、曹天青,前兆震群与S波偏振,地震学报,1, 343——355, 1980,
[13] Scholz, C. H., Static fatigue of quartz, J. G. R, 77, 2104——2114, 1972,
[14] 宇津德治、陈铁成译,地震学,176——179,地震出版社,1981,
[15] 安艺敬一、宋良玉译,前兆现象的概率综合,世界地震译丛,1982, 6: 22——29,
[16] Jones, L. M., P. Molnar,朱传镇译,前震的某些特征,国外地震,1979, 6: 7——19.[1] Hagiwara, Y., Probability of earthquake occurrence as obtained from Weibull distribution analysis of crustal strain, Tectonorhysics, 23, 313——318, 1974,
[2] Rikitake, T., Recurrence of great earthquakes of subdnction zones, Tectonophysics, 35, 335——362,1976.
[3] 郑建中,中国大地震的发生方式、时间间隔及概率分布,地震研究,6,增刊,439——447, 1983,
[4] 张国民、傅征祥,华北强震的时间分布及其物理解释,地球物理学报,28, 569—— 578, 1985,
[5] 松村正三、郑建中译,地震时间序列的——个参数表示及其在地震预报中的应用,世界地震译丛,1983, No. 2,11——15,
[6] 国家地震局分析预报中心,中国东部地震目录,地震出版社,1981,
[7] 紊藤嘉博,五所译,可靠性基础数学,69——77,国防工业出版社,1977,
[8] 茹诗松,可靠性统计,30——80,华东师范大学出版社,1984,
[9] 中国科学院计算中心概率统计组,概率统计计算,109——115,科学出版社,1979,
[10] 姜秀娥、陈非比,区域震群与唐山大震,地震学报,5, 145——157, 1983,
[11] 朱传镇、罗胜利,震群与大地震关系的研究,地震学报,3, 105——116, 1981,
[12] 顾浩鼎、曹天青,前兆震群与S波偏振,地震学报,1, 343——355, 1980,
[13] Scholz, C. H., Static fatigue of quartz, J. G. R, 77, 2104——2114, 1972,
[14] 宇津德治、陈铁成译,地震学,176——179,地震出版社,1981,
[15] 安艺敬一、宋良玉译,前兆现象的概率综合,世界地震译丛,1982, 6: 22——29,
[16] Jones, L. M., P. Molnar,朱传镇译,前震的某些特征,国外地震,1979, 6: 7——19.
计量
- 文章访问数: 1085
- HTML全文浏览量: 22
- PDF下载量: 36