深井水位的固体潮效应

EFFECT OF EARTH TIDE ON DEEP WELL WATER LEVEL

  • 摘要: 本文从体应变固体潮对深井水位影响的偏微分方程出发,考虑到含水层和井孔之间相互渗流的边界条件,用叠加原理、冲量定理和分离变量法等方法得出了方程的解.通过对这个解中水井含水层参数给予一些可能的值进行数值计算,讨论了水井固体潮系数和位相滞后与水井含水层参数间的关系,较好地解释了井水位对固体潮响应的位相滞后现象.计算表明,井孔的半径、含水层的孔隙度及固体骨架的体压缩系数愈大,含水的导水系数愈小,则水井水位的固体潮系数愈小,而水位对固体潮响应的位相滞后愈大.井水对长周期的潮汐响应比对短周期的更好.

     

    Abstract: On the basis of the partial differential equations of water level in a deep well that is affected by the bulk strain tide and the boundary conditions of mutual permeation between the aquifer and the well the solutions of the equations have been obtained by the superposition principle, impulse theorem and separation of the variations. Some suitable values are given to the parameters of well aquifer in the solutions. By means of numerical calculation the relations among the well tide coefficients and phase lags and parameters of the well aquifer are discussed. The phase lag phenomenon of response of the well water level to earth tides is better interpreted. The studies of the parameters and the graphs obtained show that the larger the radius of the well casing, the porosity of the aquifer and the bulk compressibility of solid matrix of the aquifer, and the smaller the permeability of the aquifer, the smaller is the tidal coefficient of well water level; while the greater is the phase lag for well water level to respond to the earth tide. The reaponse of the well water level to the tide of longer periods is better than that to the shorter-period tides.

     

/

返回文章
返回