Anqing earthquake; double-difference earthquake location algorithm; instrumental clock error; sPL; S-P arrival time difference
-
摘要: 通过余震序列的精确定位可以较为准确地刻画主震破裂区的时空变化规律. 为了减小仪器时钟误差对地震定位精度的影响, 本文基于2011年1月19日安庆地震流动台站的S-P到时差, 通过主事件和双差地震定位法得到较为准确的主震位置和余震序列时空分布, 并评估了仪器时钟误差; 又通过对sPL近震深度震相的分析, 得到了余震序列较为可靠的深度分布. 结果表明, 安庆地震发生在宿松—枞阳断裂带附近, 余震序列大体近水平分布在5 km深度, 呈长1.5 km、 宽1 km、 高0.3 km的薄板状展布; 从时空分布来看, 随着时间的推移余震序列似乎有往北东方向扩展的趋势. 研究表明, 基于S-P到时差的定位方法可以有效消除时钟不准确带来的影响, 为中小地震和余震序列活动性的研究提供可靠的定位结果.Abstract: Accurate locations of aftershocks are helpful for understanding rupture process of the main shock. In order to suppress the impact of instrumental clock error, the arrival-time differences between S and P by the temporary seismic array installed after the 19 January 2011 Anqing earthquake were used to reconstruct the travel-time data of P and S and more accurate locations of the main shock and aftershocks were obtained by using master event and double-difference earthquake location algorithm; an algorithm was proposed to estimate the range of clock error; more reliable depth distribution of the aftershocks was also obtained via analysing sPL, a depth phase at near epicentral distance. The result shows that the Anqing earthquake occurred near Susong--Zongyang fault zone, and the aftershocks concentrated nearly horizontally in the depth range of about 5 km, spreading in the shape of a thin slab around 1.5 km long, 1.0 km wide and 0.3 km thick; the sequence tended to spread northeastward as time went on. The study suggests that earthquake location based on S--P arrival-time difference method can effectively eliminate the influence of clock error, providing reliable results for moderate, minor earthquakes and aftershocks.
-
-
图 1 绝对到时初始定位和双差法重新定位的结果 (a) A-A′剖面深度分布图; (b) B-B′剖面深度分布图; (c) 余震序列的震中分布图.空心圆为绝对到时初定的余震序列,实心圆为双差法重新定位的余震序列,实三角为流动台站的分布,实心星号为CENC速报的主震位置 ①,空心星号为CENC正式的主震位置 ②
Figure 1. Location by using absolute arrival time earthquake location method and double-difference earthquake location method (a) Depth distribution along A-A′; (b) Depth distribution along B-B′; (c) Epicenter distribution of aftershocks. Open circles represent aftershocks located by absolute arrival time earthquake location method,solid dots indicate aftershocks relocated by double-difference earthquake location method,solid triangles denote temporary stations used,solid star shows location of the main shock preliminarily reported by CENC,and open star shows final location of the main shock by CENC
图 3 安庆地震序列重新定位结果 (a) 主事件相对定位方法对主震重新定位; (b) A-A′剖面深度分布; (c) B-B′剖面深度分布; (d) 安庆地震序列重新定位的震中分布. 图(a)中,三角形为相对定位所用台站的分布,星号为主震相对定位的最终结果; 图(b)—(d)中,空心圆为初定的余震序列,绿色实心圆为2011年1月21日18时之前双差重新定位的余震序列,蓝色倒三角为1月21日18时—25日双差重新定位的余震序列,正三角为流动台分布,实心星号为CENC速报的主震位置①,空心星号为CENC正式的主震位置① ,红色方框为主事件相对定位后主震的位置
Figure 3. Result of the relocated Anqing earthquake sequence (a) Relocation of the main shock by using master event relative location method; (b) Depth distribution along A-A′ ; (c) Depth distribution along B-B′ ; (d) Epicenter distribution of the relocated Anqing earthquake sequence. In figure (a),triangles are permanent stations used,and star represents the main shock; In figures (b),(c) and (d),open circles represent aftershocks located primarily by using absolute arrival time earthquake location method,green solid circles represent aftershocks relocated by using double-difference earthquake location method before 18:00 on Jan. 21,2011 blue inverted triangles are aftershocks relocated by using double-difference earthquake location method from 18:00 on Jan. 21 to Jan. 25,regular triangles denote temporary stations,solid and open stars denote the same as in Fig.1,red square represents the main shock relocated by using master event relative location method
图 5 通过sPL震相估计地震序列的深度 (a) ML1.0以上余震的实测sPL-P到时差演变; (b) 不同震源深度下 sPL-P的理论到时差与震中距的关系
Figure 5. Determination of focal depth by using sPL (a) Measured sPL-P arrival-time differences of ML≥1.0 aftershocks; (b) Relation between theoretical sPL-P arrival-time difference and epicentral distance at different focal depths
表 1 流动台阵记录的1.5级以上余震(引自CEDC统一目录③)
Table 1 M≥1.5 aftershocks recorded by the temporary seismic array (from uniform catalog of CEDC)
表 2 定位使用的一维地壳速度模型
Table 2 1D crustal velocity model
-
崇加军, 倪四道, 曾祥方. 2010. sPL, 一个近距离确定震源深度的震相[J]. 地球物理学报, 53(11): 2620-2630. 高立新, 刘芳, 赵蒙生, 于红梅. 2007. 用sPn震相计算震源深度的初步分析与应用[J]. 西北地震学报, 29(3): 213-244. 洪德全, 王行舟, 韩立波, 戚浩, 张炳. 2011. 用CAP方法研究安庆4.8级地震震源机制[J]. 中国地震, 27(2): 207-214. 黄媛, 杨建思, 张天中. 2006. 2003年新疆巴楚-伽师地震序列的双差法重新定位研究[J]. 地球物理学报, 49(1): 162-169. 李文军, 王培德, 李春来, 陈棋福. 2005. 近场精确定位在卢龙ML6.2地震发震构造研究中的应用[J]. 地震学报, 27(4): 377-384. 罗艳, 倪四道, 曾祥方, 郑勇, 陈棋福, 陈颙. 2010. 汶川地震余震区东北端一个余震序列的地震学研究[J]. 中国科学: 地球科学, 40(6): 677-687. 吴建平, 黄媛, 张天中, 明跃红, 房立华. 2009. 汶川MS8.0级地震余震分布及周边区域P波三维速度结构研究[J]. 地球物理学报, 52(2): 320-328. 吴开统, 焦远碧, 吕培苓, 王志东. 1990. 地震序列概论[M]. 北京: 北京大学出版社: 138-141. 谢祖军, 郑勇, 倪四道, 熊熊, 王行舟, 张炳. 2012. 2011年1月19日安庆ML4.8地震的震源机制解和深度研究[J]. 地球物理学报, 55(5): 1624-1634. 邢凤鸣, 徐祥. 1994. 安徽两条A型花岗岩带[J]. 岩石学报, 10(4): 357-369. 杨智娴, 陈运泰, 张宏志. 2002. 张北-尚义地震序列的重新定位和发震构造[J]. 地震学报, 24(4): 366-377. 杨智娴, 陈运泰, 郑月军, 于湘伟. 2003. 双差地震定位法在我国中西部地区地震精确定位中的应用[J]. 中国科学: 地球科学, 33(增刊): 129-134. 杨智娴, Brian W Stump, 陈运泰, Robert B Herrmann, Rongmao Zhou, Chris T Hayward. 2011. 1999年海城-岫岩地震序列的精准定位[J]. 地震学报, 33(3): 271-278. 姚大全, 汤有标, 刘加灿, 李杰, 刘庆忠. 1997. 安徽西南宿松-枞阳断裂中段活动性的综合评价[J]. 地震地质, 19(4): 297-300. 于湘伟, 陈运泰, 张怀. 2010. 京津唐地区地壳三维P波速度结构与地震活动性分析[J]. 地球物理学报, 53(8): 1817-1828. 翟洪涛, 郑颖平, 李光, 孟凡月. 2010. 宿松-枞阳断裂最新活动时代及未来地震危险性研究[J]. 防灾减灾工程学报, 30(5): 567-571. 张四昌, 刁桂苓. 1992. 唐山地震序列的构造过程[J]. 中国地震, 8(2): 73-80. 张学民, 刁桂苓, 束沛镒, 刘素英. 2004. 华北地区地下介质波速比值(vP/vS)研究[J]. 地震地质, 26(2): 305-317. 周龙泉, 刘杰, 马宏生, 周俊杰. 2009. 2003年大姚6.2级、 6.1级地震序列震源位置及震源区速度结构的联合反演[J]. 地震, 29(2): 12-24. 周仕勇, 许忠淮, 韩京, 许洪新, 努尔尼沙. 1999. 主地震定位法分析以及1997年新疆伽师强震群高精度定位[J]. 地震学报, 21(3): 258-265. Bent A L, Perry H K C. 2002. Depths of eastern Canadian earthquakes from regional data[J]. Seism Res Lett, 73(2): 273-284.
Biasi G P, Weldon R J. 2006. Estimating surface rupture length and magnitude of paleoearthquakes from point measurements of rupture displacement[J]. Bull Seism Soc Amer, 96(5): 1612-1623.
Bondár I, Bergman E, Engdahl E R, Kohl B, Kung Y L, McLaughlin K. 2008. A hybrid multiple event location technique to obtain ground truth event locations[J]. Geophys J Int, 175(1): 185-201.
Dietz L D, Ellsworth W L. 1990. The October 17, 1989, Loma Prieta, California, earthquake and its aftershocks: Geometry of the sequence from high-resolution locations[J]. Geophys Res Lett, 17(9): 1417-1420.
Hauksson E, Felzer K, Given D. 2008. Preliminary report on the 29 July 2008 MW5.4 Chino Hills, eastern Los Angeles basin, California, earthquake sequence[J]. Seism Res Lett, 79(6): 855-866.
Havskov J, Alguacil G. 2010. Instrumentation in Earthquake Seismology[M]. Dordrecht, Netherlands: Springer: 124-127.
Kanamori H, Anderson D L. 1975. Theoretical basis of some empirical relation in seismology[J]. Bull Seism Soc Amer, 65(5): 1075-1095.
Kisslinger C. 1996. Aftershocks and fault-zone properties[G]//Advances in Geophysics. San Diego: Academic Press. 38: 1-36.
Kisslinger C, Jones L M. 1991. Properties of aftershock sequences in southern California[J]. J Geophys Res, 96(B7): 11947-11958.
Klein F W. 2002. User's Guide to HYPOINVERSE-2000, a FORTRAN Program to Solve for Earthquake Locations and Magnitudes[R]. U S Geological Survey, Open-File Report 02-171: 1-123.
Langston C A. 1987. Depth of faulting during the 1968 Meckering Australia earthquake sequence determined from waveform analysis of local seismograms[J]. J Geophys Res, 92(B11): 561-574.
Somerville P, Irikura K, Graves R, Sawada S, Wald D, Abrahamson N, Iwasaki Y, Kagawa T, Smith N, Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seism Res Lett, 70(1): 59-80.
Spence W. 1980. Relative epicenter determination using P-wave arrival-time differences[J]. Bull Seism Soc Amer, 70(1): 171-183.
Stehly L, Campillo M, Shapiro N M. 2007. Traveltime measurements from noise correlation: Stability and detection of instrumental time-shifts[J]. Geophy J Int, 171(1): 223-230.
Tajima F, Kanamori H. 1985. Global survey of aftershock area expansion patterns[J]. Phys Earth Planet Interi, 40(2): 77-134.
Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bull Seism Soc Amer, 90(6): 1353-1368.
Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bull Seism Soc Amer, 84(4): 974-1002.
Xie J, Zeng X F, Chen W W, Zhan Z W. 2011. Comparison of ground truth location of earthquake from InSAR and from ambient seismic noise: A case study of the 1998 Zhangbei earthquake[J]. Earthq Sci, 24(2): 239-247.
Yang Z X, Waldhauser F, Chen Y T, Richards P G. 2005. Double-difference relocation of earthquakes in central-western China, 1992-1999[J]. J Seism, 9(2): 241-264.
Zha X J, Fu R S, Dai Z Y, Jing P, Ni S D, Huang J S. 2009. Applying InSAR technique to accurately relocate the epicenter for the 1999 MS=5.6 Kuqa earthquake in Xinjiang province, China[J]. Geophys J Int, 176(1): 107-112.
Zhan Z W, Wei S J, Ni S D, Helmberger D V. 2011. Earthquake centroid locations using calibration from ambient seismic noise[J]. Bull Seism Soc Amer, 101(3): 1438-1445.
-
期刊类型引用(1)
1. 赵博,高原,梁建宏,刘杰. 应用地震干涉法定位四川九寨沟7.0级地震震源位置. 地球物理学报. 2018(06): 2292-2300 . 百度学术
其他类型引用(2)