基于激光干涉法的地表重力垂直梯度测量系统设计及试验

吴琼, 滕云田, 张兵, 郭有光

吴琼, 滕云田, 张兵, 郭有光. 2016: 基于激光干涉法的地表重力垂直梯度测量系统设计及试验. 地震学报, 38(5): 794-802.
引用本文: 吴琼, 滕云田, 张兵, 郭有光. 2016: 基于激光干涉法的地表重力垂直梯度测量系统设计及试验. 地震学报, 38(5): 794-802.
Wu Qiong, Teng Yuntian, Zhang Bing, Guo Youguang. 2016: Development and experiments of the gravity vertical gradient measuring system based on the laser interferometry. Acta Seismologica Sinica, 38(5): 794-802.
Citation: Wu Qiong, Teng Yuntian, Zhang Bing, Guo Youguang. 2016: Development and experiments of the gravity vertical gradient measuring system based on the laser interferometry. Acta Seismologica Sinica, 38(5): 794-802.

基于激光干涉法的地表重力垂直梯度测量系统设计及试验

基金项目: 

国家科技支撑计划(2012BAF14B12)资助

国家科技支撑计划 2012BAF14B12

详细信息
    通讯作者:

    吴琼: e-mail: wuqiong@cea-igp.ac.cn

  • 中图分类号: P315.62

Development and experiments of the gravity vertical gradient measuring system based on the laser interferometry

  • 摘要: 基于激光干涉法对新型地表重力垂直梯度测量系统进行了研究并初步构建了原理样机. 该测量系统利用双光路干涉测量法, 获取垂直向间距为50 cm且同步自由下落的两个落体相对于参考点的时间和位移信息, 并通过差分运算得到该测点的重力垂直梯度值. 在系统设计过程中, 主要解决了双落体自由下落的同步自动控制和双干涉测量光路的垂直性调节问题. 试验结果表明, 本套测量系统可以获取双落体同步自由下落运动时的干涉条纹信号, 并完成重力垂直梯度测量, 且梯度测量精度优于100 E.
    Abstract: This paper develops a new apparatus for measuring the vertical gravity gradient based on the laser interferometry. The apparatus uses the method of dual optical interferometer to determine the time shifting coordinates of dual free-fall bodies spaced 50 cm vertically, and then calculates the gravity gradient by using differential algorithm. In design and development of this instrument, particular attention is paid to those aspects which would affect synchronistically automatic control of the free-fall bodies and vertical adjustment of the dual measuring beams. The results of the experiments show that the apparatus can obtain the interference signals of these two free-fall bodies during the freely falling and complete the measurement of the gravity gradient with accuracy better than 100 E.
  • 图  1   重力梯度测量算法原理

    Figure  1.   Principle for the algorithm of the gravity vertical gradient measurement

    图  2   干涉法重力梯度测量原理

    Figure  2.   Measuring principle of the gravity vertical gradient based on interferometry

    图  3   真空系统设计

    Figure  3.   Design for the vacuum system

    图  4   落体伺服控制系统设计

    (a)安装在真空舱内的落体伺服控制系统设计;(b)上、 下落体间刚性连接机构设计

    Figure  4.   Design of the free-fall body servo control mechanism

    (a)Design of the free-fall body servo control mechanism in vacuum chamber;(b)Design of the rigid linkage between the up and down free-fall bodies

    图  5   双光路激光干涉测量系统机构设计

    Figure  5.   Design of the measuring structure of dual optical path measuring system based on laser interferometry

    图  6   激光干涉法地表重力垂直梯度测量系统(a)及其初步试验数据(b)

    Figure  6.   The apparatus of the gravity vertical gradient measurement based on laser interferometry(a) and its preliminary test data(35 groups and 16 measurements per group)(b)

    图  7   实测上落体自由下落时得到的干涉条纹(a)及其展开(b)

    Figure  7.   The interference fringes of the upper free-fall body during freely falling(a) and the expansion of the part of these fringes(b)

  • 胡华, 伍康, 申磊, 李刚, 王力军. 2012. 新型高精度绝对重力仪[J]. 物理学报, 61(9): 099101. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201209083.htm

    Hu H, Wu K, Shen L, Li G, Wang L J. 2012. A new high precision absolute gravimeter[J]. Acta Physica Sinica, 61(9): 099101 (in Chinese).

    李红军, 邓方林, 柯熙政. 2002. 旋转加速度计重力梯度仪原理及其应用[J]. 地球物理学进展, 17(4): 614-619. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200204007.htm

    Li H J, Deng F L, Ke X Z. 2002. Rotating accelerometer gravity gradiometer’s measurement principle and it’s applications[J]. Progress in Geophysics, 17(4): 614-619 (in Chinese). http://cn.bing.com/academic/profile?id=2374727968&encoded=0&v=paper_preview&mkt=zh-cn

    刘凤鸣, 赵琳, 王建敏. 2009. 基于加速度计重力梯度仪分析与设计[J]. 地球物理学进展, 24(6): 2058-2062. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200906019.htm

    Liu F M, Zhao L, Wang J M. 2009. The design and analysis for the accelerometer-based gravity gradiometer[J]. Progress in Geophysics, 24(6): 2058-2062 (in Chinese). http://cn.bing.com/academic/profile?id=2358894858&encoded=0&v=paper_preview&mkt=zh-cn

    宁津生, 罗志才, 晁定波. 1996. 卫星重力梯度测量的研究现状及其在物理大地测量中的应用前景[J]. 武汉测绘科技大学学报, 21(4): 309-314. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH604.000.htm

    Ning J S, Luo Z C, Chao D B. 1996. The present situation on satellite gravity gradiometry and its vistas in the application of physical geodesy[J]. Journal of Wuhan Technical University of Surveying and Mapping, 21(4): 309-314 (in Chinese). http://ch.whu.edu.cn/EN/abstract/abstract4131.shtml

    宁津生, 罗志才, 陈永奇. 2002. 卫星重力梯度数据用于精化地球重力场的研究[J]. 中国工程科学, 4(7): 23-28. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200207004.htm

    Ning J S, Luo Z C, Chen Y Q. 2002. Application of satellite gravity gradiometry data to the refinement of the earth’s gravity field[J]. Engineering Sciences, 4(7): 23-28 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKX200207004.htm

    彭益武, 赵立珍, 屈少波, 周泽兵. 2006. 二维簧片重力梯度仪的研制[J]. 物探与化探, 30(5): 401-405, 409. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200605005.htm

    Peng Y W, Zhao L Z, Qu S B, Zhou Z B. 2006. The research and development of a two-dimensional flexure hinge gradio-meter[J]. Geophysical & Geochemical Exploration, 30(5): 401-405, 409 (in Chinese).

    滕云田, 吴琼, 郭有光, 张兵, 张涛. 2013. 基于激光干涉的新型高精度绝对重力仪[J]. 地球物理学进展, 28(4): 2141-2147. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201304061.htm

    Teng Y T, Wu Q, Guo Y G, Zhang B, Zhang T. 2013. New type of high-precision absolute gravimeter base on laser interference[J]. Progress in Geophysics, 28(4): 2141-2147 (in Chinese).

    王谦身. 2003. 重力学[M]. 北京: 地震出版社: 291-294.

    Wang Q S. 2003. Gravitology[M]. Beijing: Seismological Press: 291-294 (in Chinese).

    吴琼, 滕云田, 郭有光. 2011. 激光干涉重力梯度仪设计方案[J]. 物探与化探, 35(2): 230-233. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201102019.htm

    Wu Q, Teng Y T, Guo Y G. 2011. The scheme for designing the laser interferometer gravity gradiometer[J]. Geophy-sical & Geochemical Exploration, 35(2): 230-233 (in Chinese). http://cn.bing.com/academic/profile?id=2384220440&encoded=0&v=paper_preview&mkt=zh-cn

    吴琼, 滕云田, 黄大伦, 龙剑锋. 2012. 绝对重力仪研制中一种新的自由落体轨迹重建算法[J]. 地震学报, 34(4): 549-556. http://www.dzxb.org/Magazine/Show?id=28778

    Wu Q, Teng Y T, Huang D L, Long J F. 2012. A new type of algorithm for rebuilding the trace of free-fall body in absolute gravimeter development[J]. Acta Seismologica Sinica, 34(4): 549-556 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201204011.htm

    吴琼, 滕云田, 张兵, 张涛. 2013. 世界重力梯度仪的研究现状[J]. 物探与化探, 37(5): 761-768. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201305001.htm

    Wu Q, Teng Y T, Zhang B, Zhang T. 2013. The research situation of the gradiometer in the world[J]. Geophysical & Geochemical Exploration, 37(5): 761-768 (in Chinese). http://cn.bing.com/academic/profile?id=2356523787&encoded=0&v=paper_preview&mkt=zh-cn

    徐遵义, 晏磊, 宁书年, 邹华胜. 2007. 海洋重力辅助导航的研究现状与发展[J]. 地球物理学进展, 22(1): 104-111. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200701013.htm

    Xu Z Y, Yan L, Ning S N, Zou H S. 2007. Situation and development of marine gravity aided navigation system[J]. Progress in Geophysics, 22(1): 104-111 (in Chinese). http://cn.bing.com/academic/profile?id=2379055963&encoded=0&v=paper_preview&mkt=zh-cn

    朱英, 李卢玲. 1982. 利用重力水平梯度Δgx计算深度的方法及地质效果[J]. 石油物探, (3): 1-16.

    Zhu Y, Li L L. 1982. An approach of calculating the depth from horizontal gravity gradient (Δgx) and its geological reasoning[J]. Geophysical Prospecting for Petroleum, (3): 1-16 (in Chinese).

    Araya A, Kanazawa T, Shinohara M, Yamada T, Fujimoto H, Iizasa K, Ishihara T. 2011. A gravity gradiometer to search for submarine ore deposits[C]//2011 IEEE Symposium on and 2011 Workshop on Scientific Use of Sub-marine Cables and Related Technologies: Underwater Technology.Tokyo: IEEE: 1-3.

    Brown J M, Niebauer T M, Klopping F J. 1999. Results from a new interferometric ballistic differential gravity meter[J]. Boll Geofis Teor Appl, 40(3): 487-496.

    DiFrancesco D, Grierson A, Kaputa D, Meyer T. 2009. Gravity gradiometer systems: Advances and challenges[J]. Geophys Prosp, 57(4): 615-623. doi: 10.1111/gpr.2009.57.issue-4

    Moody M V, Paik H J, Canavan E R. 2002. Three-axis superconducting gravity gradiometer for sensitive gravity experiments[J]. Rev Sci Instr, 73(11): 3957-3974. doi: 10.1063/1.1511798

    Robertson D S. 2001. Using absolute gravimeter data to determine vertical gravity gradients[J]. Metrologia, 38(2): 147-153. doi: 10.1088/0026-1394/38/2/6

    Woolrych T R H, Christensen A N, McGill D L, Whiting T. 2015. Geophysical methods used in the discovery of the Kitumba iron oxide copper gold deposit[J]. Interpretation, 3(2): SL15-SL25. doi: 10.1190/INT-2014-0201.1

图(7)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  216
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-22
  • 修回日期:  2016-04-24
  • 发布日期:  2016-08-31

目录

    /

    返回文章
    返回