汶川地震的面波震级测定及其多普勒效应

刘瑞丰, 邹立晔, 张立文

刘瑞丰, 邹立晔, 张立文. 2018: 汶川地震的面波震级测定及其多普勒效应. 地震学报, 40(3): 364-373. DOI: 10.11939/jass.20170212
引用本文: 刘瑞丰, 邹立晔, 张立文. 2018: 汶川地震的面波震级测定及其多普勒效应. 地震学报, 40(3): 364-373. DOI: 10.11939/jass.20170212
Liu Ruifeng, Zou Liye, Zhang Liwen. 2018: Determination of the surface-wave magnitude of the Wenchuan earthquake and its seismic Doppler effect. Acta Seismologica Sinica, 40(3): 364-373. DOI: 10.11939/jass.20170212
Citation: Liu Ruifeng, Zou Liye, Zhang Liwen. 2018: Determination of the surface-wave magnitude of the Wenchuan earthquake and its seismic Doppler effect. Acta Seismologica Sinica, 40(3): 364-373. DOI: 10.11939/jass.20170212

汶川地震的面波震级测定及其多普勒效应

基金项目: 中国地震局经常性项目(16A43ZX014)资助
详细信息
    通讯作者:

    邹立晔: email: zouly_xm@qq.com

  • 中图分类号: P315.3+2

Determination of the surface-wave magnitude of the Wenchuan earthquake and its seismic Doppler effect

  • 摘要: 本文介绍了全球主要地震机构对2008年5月12日汶川地震参数的速报和修订情况,分析了美国地质调查局国家地震信息中心测定的面波震级。通过对比198个全球地震台站测定的面波震级和面波周期,得出如下结论:测定面波震级偏大的台站主要分布在震中的东北方向,测定面波震级偏小的台站主要分布在震中的西南和东南方向,面波周期偏小的台站主要分布在震中东北方向。由于此次地震破裂方向是以北东向单侧破裂为主,且地震多普勒效应导致震中东北方向振动加强,因此该方向上的面波震级偏大,地震烈度衰减慢;而震中西南方向的振动减弱,此方向面波震级偏小,地震烈度衰减快。从而造成地震烈度沿中央断裂带的北东方向衰减慢,而南西方向衰减快的特征分布。
    Abstract: The fast report and revision of the parameters of the Wenchuan earthquake on 12 May 2008 by some major international seismological institutions are introduced, and the surface-wave magnitude measured by National Earthquake Information Center of United States Geological Survey is analyzed in this paper. The comparison of the measured surface-wave magnitudes and periods of 198 global seismic stations reveals that, those stations with larger magnitudes are mainly in NE direction of the epicenter while those with smaller magnitudes are in SW and SE direction, and stations with smaller periods are mainly in NE direction. The seismic intensity map of the Wenchuan earthquake shows that the intensity attenuated slowly in the NE direction of the central fracture zone while the intensity attenuated fast in the SW direction. The reason is that Wenchuan earthquake is a unilateral rupture mainly in NE direction, due to the seismic Doppler effect, the stronger shaking leads to the larger surface-wave magnitudes and slower intensity attenuation in the NE direction of the epicenter, vice versa the weaker shaking leads to the smaller surface-wave magnitudes and faster intensity attenuation in the SW direction.
  • 图  1   在震中距为R、方位角为φ的NEIC台上所测定震级大小的分布图

    Figure  1.   Magnitude distribution measured by NEIC stations where R is the epicentral distance and φ is the azimuth

    图  2   汶川MS8.0地震地表破裂带与烈度分布图(引自袁一凡,2008

    Figure  2.   Surface fractures and intensity map of the Wenchuan earthquake (after Yuan,2008

    表  1   国际地震机构速报的汶川地震的参数

    Table  1   Parameters of the Wenchuan earthquake quickly reported by major international seismological institutions

    序号 发震时刻 (UTC)
    时:分:秒
    震中位置 震源
    深度/km
    MS 测定机构
    北纬/° 东经/° 中文名称 代码
    1 06:28:04.1 30.95 103.40 14 8.0 中国地震台网中心 CENC
    2 06:28:00.9 31.10 103.30 10 7.8 美国国家地震信息中心 NEIC
    3 06:27:59.3 31.10 103.30 10 8.0 俄罗斯科学院 RAS
    4 06:27:58.9 31.10 103.20 10 7.5 欧洲地中海地震中心 EMSC
    5 06:28:00.8 30.80 103.40 10 6.8 (mb 罗马尼亚地球物理研究所 RNIEP
    注:表中序号1数据来自中国地震台网中心 (2008a),其它数据来自Swiss Seismological Service (2008)
    下载: 导出CSV

    表  2   国际地震机构测定的汶川大地震的参数

    Table  2   Parameters of the Wenchuan earthquake observed by major international seismological institutions

    序号 发震时刻 (UTC)
    时:分:秒
    震中位置 震源深
    度/km
    震级类型 测定机构 数据来源
    北纬/° 东经/° mb MS MW 名称 代码
    1 06:27:59.5 31.01 103.42 14 6.4 8.2 中国地震台网中心 CENC 中国地震台网中心 (2008a)
    2 06:28:01.8 31.00 103.32 19 6.9 8.1 7.9 美国国家地震信息中心 NEIC NEIC (2008b)
    3 06:28:41.4 31.49 104.11 12 7.8 7.9 全球矩心矩张量项目
    数据中心
    GCMT GCMT (2008)
    4 06:27:59.0 31.10 103.20 10 7.9 欧洲地中海地震中心 EMSC EMSC (2008)
    5 06:28:03.7 31.60 103.70 33 7.2 8.4 德国格拉芬堡地震
    观测中心
    SZGRF SZGRF (2008)
    注:全球矩心矩张量项目数据中心测定的是“矩心”(即所释放的地震矩的“时-空几何中心”)的位置,其物理意义与传统的震源位置及发震时刻(地震初始破裂的位置与时刻)不相同,不具有简单的可比性。
    下载: 导出CSV

    表  3   《地震数据报告》中列出的汶川地震的209个台站的参数和MSZNEIC,2008a

    Table  3   The related data of 209 stations and MSZ of Wenchuan earthquake in Earthquake Data ReportNEIC,2008a

    序号 台站代码 震中距/° 方位角/° 周期/s MSZ 序号 台站代码 震中距/° 方位角/° 周期/s MSZ
    1 INCN 20.30 65.1 19.0 8.4 37 KONO 65.59 326.2 20.0 8.0
    2 HIA 22.06 29.5 20.0 7.7 38 CTAO 65.42 135.3 21.0 7.7
    3 MDJ 24.68 49.2 20.0 7.9 39 TIR 65.73 304.9 22.0 7.9
    4 TKM2 25.03 306.1 22.0 7.8 40 AKUT 66.02 40.1 18.0 8.1
    5 KULM 25.70 186.1 20.0 7.9 41 FOO 66.98 329.1 18.9 8.3
    6 AAK 25.71 304.9 22.0 7.9 42 BER 67.32 327.8 18.0 8.3
    7 AML 26.14 303.4 19.0 8.0 43 TRI 68.27 311.0 19.0 7.9
    8 EKS2 26.22 304.6 22.0 7.8 44 MIDW 67.56 69.7 19.0 7.9
    9 KURK 26.93 324.1 19.0 8.1 45 GRF 68.33 315.7 20.0 8.4
    10 KKM 27.62 151.4 20.0 7.6 46 GRA1 68.33 315.7 20.0 8.4
    11 MAJO 29.41 69.7 19.0 8.0 47 TIP 68.75 303.6 22.0 7.9
    12 KSM 30.10 166.0 20.0 7.7 48 SDPT 68.43 37.6 20.0 8.1
    13 BRVK 32.53 322.3 20.0 7.9 49 RER 69.10 227.5 22.0 7.7
    14 ERM 33.58 59.7 22.0 7.8 50 COLA 69.81 25.5 20.0 8.1
    15 YSS 34.14 50.8 19.0 8.3 51 CEL 69.73 303.0 21.0 7.7
    16 YAK 35.44 21.2 19.0 8.0 52 AQU 69.82 307.8 20.0 8.0
    17 ARU 40.10 322.6 22.0 7.9 53 OHAK 71.22 34.0 21.0 8.3
    18 GUMO 41.88 105.0 20.0 7.6 54 VLC 71.09 310.6 22.0 8.1
    19 COCO 43.39 189.3 19.0 7.9 55 KDAK 71.29 33.3 19.0 8.3
    20 PET 45.29 44.4 21.0 8.3 56 ECH 71.38 315.4 22.0 7.9
    21 GNI 47.76 297.9 20.0 7.7 57 WLF 71.34 317.1 21.0 8.0
    22 DGAR 48.30 223.0 19.0 7.6 58 WDD 71.72 301.2 20.0 7.6
    23 KIV 48.81 303.2 19.0 8.2 59 EGAK 72.27 24.0 19.0 8.3
    24 BILL 51.55 25.3 19.0 8.2 60 TARA 71.87 99.6 21.0 7.6
    25 MBWA 54.20 161.0 22.0 7.7 61 BNI 73.08 312.6 21.0 8.3
    26 SMY 54.64 44.8 19.0 8.2 62 ABPO 73.31 235.1 19.0 7.8
    27 BR13 56.21 299.5 21.0 7.6 63 MID 73.27 30.0 18.0 8.3
    28 KEV 56.55 336.1 20.0 8.2 64 ESK 73.69 325.2 20.0 8.2
    29 MSEY 57.80 240.8 21.0 7.8 65 LOR 73.79 315.6 18.5 8.4
    30 WAKE 57.84 85.6 20.0 7.8 66 VSL 73.80 306.5 22.0 7.7
    31 ISP 59.07 298.1 22.0 7.9 67 SSB 74.31 313.6 20.0 8.1
    32 KBS 60.08 347.1 20.0 8.1 68 FLN 75.60 318.4 20.0 8.3
    33 ADK 60.35 44.6 22.0 8.1 69 BORG 75.31 338.6 19.0 8.0
    34 PSZ 63.55 311.7 21.0 7.8 70 RJF 76.16 314.6 19.0 8.2
    35 NAO0 64.60 327.2 20.0 7.9 71 SKAG 77.73 26.5 18.0 8.3
    36 NWAO 64.93 167.1 22.0 8.1 72 CAN 78.72 143.4 20.0 7.9
    73 UCH 25.58 304.0 21.0 7.8 109 SNZO 97.50 133.9 20.0 7.8
    74 SIT 79.33 28.3 21.0 8.2 110 LAO 98.19 20.1 20.0 8.2
    75 SFJD 80.32 349.9 21.0 8.3 111 HOPS 98.07 34.7 21.0 8.1
    76 CRAG 81.31 28.7 18.0 8.2 112 LKWY 98.75 23.7 22.0 8.4
    77 PAB 82.91 312.1 19.0 8.1 113 RLMT 98.64 22.7 21.0 8.2
    78 ESLA 82.59 312.0 19.0 8.8 114 AGMN 99.21 12.8 19.0 8.2
    79 FUNA 82.43 104.6 20.0 7.6 115 BMN 99.61 30.2 22.0 8.1
    80 TAU 83.91 149.1 22.0 7.8 116 EYMN 100.29 10.1 20.0 8.3
    81 MTE 84.41 314.2 20.0 8.0 117 CMB 100.12 33.7 22.0 8.0
    82 PAF 85.26 201.0 21.0 7.7 118 AHID 100.07 25.0 19.0 8.2
    83 LSZ 85.50 249.3 22.0 7.8 119 ELK 100.19 28.8 21.0 8.2
    84 SFS 85.88 310.4 20.0 8.5 120 BW06 100.62 24.0 20.0 8.2
    85 KIP 86.24 67.4 22.0 7.6 121 HWUT 100.91 25.9 21.0 8.2
    86 RTC 87.76 308.7 20.0 7.8 122 RSSD 101.17 19.7 19.0 7.6
    87 POHA 89.09 67.5 20.0 7.8 123 DUG 101.64 27.5 19.0 7.9
    88 NLWA 91.17 29.9 21.0 8.2 124 COWI 102.43 8.8 21.0 8.4
    89 FFC 91.88 14.4 21.0 8.0 125 DBIC 101.94 285.3 20.0 8.0
    90 LBTB 92.86 242.6 20.0 7.8 126 LIC 102.33 285.0 21.0 7.7
    91 NEW 93.17 25.7 21.0 8.2 127 MAW 102.89 194.8 20.0 8.1
    92 HAWA 93.77 28.1 20.0 8.1 128 ECSD 103.42 14.7 19.0 8.3
    93 SCHQ 94.10 354.3 20.0 8.2 129 OGNE 104.67 19.6 20.0 8.2
    94 MSO 95.54 24.7 22.0 8.0 130 ISCO 104.61 22.7 19.0 8.2
    95 EGMT 95.92 21.6 21.0 8.1 131 LONY 104.72 358.5 20.0 8.1
    96 HUMO 95.30 32.4 22.0 8.1 132 JFWS 105.40 10.3 19.0 8.2
    97 BMO 95.93 27.8 20.0 8.0 133 NCB 105.36 358.2 20.0 8.3
    98 YBH 96.10 32.8 19.0 7.9 134 SCIA 105.87 12.8 21.0 8.3
    99 TSUM 96.16 251.4 21.0 7.9 135 MVCO 105.91 26.0 19.0 8.1
    100 CASY 97.13 177.1 21.0 8.0 136 WUAZ 106.23 28.9 20.0 8.0
    101 ULM 97.33 12.3 20.0 8.3 137 SDCO 106.50 23.5 21.0 8.1
    102 DGMT 97.14 18.1 22.0 8.3 138 BINY 107.16 359.5 20.0 8.2
    103 WDC 97.08 33.4 22.0 8.0 139 KSU1 107.83 16.2 20.0 8.3
    104 BOZ 97.38 23.9 20.0 8.1 140 HDIL 107.85 10.1 20.0 8.2
    105 MOD 97.07 31.3 19.0 8.1 141 ANMO 108.66 25.5 22.0 8.0
    106 XMAS 96.86 83.5 19.0 7.7 142 ACSO 108.89 5.1 20.0 8.2
    107 WVOR 97.36 29.9 20.0 8.0 143 CCM 109.97 12.2 19.0 7.8
    108 HLID 98.15 26.7 20.0 8.1 144 TUC 109.23 30.2 21.0 8.1
    145 WVT 112.41 9.8 19.0 8.1 178 LVZ 53.66 334.0 21.0 8.5
    146 WCI 110.54 8.1 19.0 7.4 179 JOHN 79.19 77.0 21.0 7.8
    147 AMTX 110.36 21.8 21.0 8.1 180 MCCM 98.82 35.2 20.0 8.0
    148 MNTX 111.96 26.2 20.0 8.0 181 SAO 100.61 35.1 20.0 7.9
    149 WMOK 111.38 19.4 20.0 8.4 182 TPH 101.55 31.6 20.0 7.9
    150 SBA 114.81 168.0 19.0 8.0 183 DAC 102.85 32.9 20.0 8.0
    151 MIAR 112.89 15.1 21.0 8.2 184 MVU 103.33 27.9 22.0 8.1
    152 NATX 115.29 16.9 19.0 8.3 185 GLMI 104.19 5.8 20.0 8.2
    153 GOGA 115.61 6.3 22.0 8.3 186 LBNH 105.00 356.5 19.0 8.1
    154 VBMS 115.77 13.0 19.0 8.5 187 AAM 106.78 5.4 19.0 8.2
    155 LRAL 115.57 9.6 19.0 8.3 188 CBKS 107.30 18.7 21.0 8.2
    156 HKT 116.71 18.6 20.0 7.6 189 MCWV 109.64 2.6 20.0 8.4
    157 BRAL 117.54 10.0 19.0 8.2 190 BLA 112.05 3.2 20.0 8.4
    158 KVTX 118.36 21.4 19.0 8.3 191 CNNC 114.10 1.1 22.0 8.2
    159 DWPF 121.04 4.9 20.0 7.9 192 SHEL 114.20 265.4 20.0 7.6
    160 GRTK 127.52 353.5 20.0 8.0 193 BBSR 115.96 348.7 22.0 8.1
    161 TGUH 134.06 14.4 19.0 8.0 194 NHSC 116.15 3.3 20.0 8.3
    162 ANWB 129.54 341.5 20.0 8.0 195 MOL 65.53 329.6 23.1 8.2
    163 SDDR 130.03 353.3 21.0 8.2 196 KMBO 70.23 256.2 20.0 7.5
    164 SJG 130.13 346.9 20.0 8.4 197 COR 93.6 31.4 21.0 7.3
    165 GTBY 129.34 358.1 22.0 8.2 198 PFO 105.57 12.8 21.0 7.5
    166 MTDJ 131.05 1.1 20.0 8.1 199 BJO1 58.90 341.8 17.7 8.5
    167 FDF 132.14 339.6 21.0 8.1 200 TRO 59.37 336.1 13.8 8.5
    168 JTS 138.18 12.3 21.0 8.1 201 NSS 63.04 331.0 17.2 8.3
    169 GRGR 134.75 339.1 22.0 8.1 202 PMR 70.95 28.8 17.0 8.2
    170 RCBR 134.32 294.7 19.0 8.0 203 CLL 66.67 316.9 22.1 8.1
    171 BCIP 139.95 4.9 22.0 7.9 204 CPUP 162.4 280.5 21.0 7.2
    172 PMSA 145.30 189.5 21.0 7.9 205 NNA 161.08 0.5 21.0 7.8
    173 PAYG 147.19 25.7 20.0 7.9 206 LPAZ 163.4 330.0 22.0 8.1
    174 OTAV 148.89 3.4 20.0 7.9 207 TRQA 166.0 235.9 21.0 8.2
    175 RPN 151.25 90.6 21.0 7.8 208 PLCA 169.1 205.4 19.0 7.9
    176 SPB 153.04 278.7 20.0 8.2 209 LCO 174.5 289.4 20.0 8.2
    177 EFI 155.20 208.3 21.0 8.0 平均 8.1
    注:表中平均值计算未包括增加的11个台站资料。
    下载: 导出CSV
  • 陈运泰. 2008. 汶川地震的成因断层、破裂过程与成灾机理[C]//中国科学院第十四次院士大会学部学术报告汇编. 北京: 中国科学院: 38–39.

    Chen Y T. 2008. Generating faults, rupture process and disaster mechanism of the Wenchuan earthquake[C]//Collection of the Academician Reports on the 14th General Assembly, Chinese Academy of Sciences. Beijing: Chinese Academy of Sciences: 38–39 (in Chinese).

    陈运泰, 许力生, 张勇, 杜海林, 冯万鹏, 刘超, 李春来, 张红霞. 2009. 汶川特大地震震源特性分析报告[G]//汶川大地震工程震害调查分析与研究. 北京: 中国岩石力学与工程学会: 6–17.

    Chen Y T, Xu L S, Zhang Y, Du H L Feng W P, Liu C, Li C L , Zhang H X. 2009. Analysis report of the source characters of the great Wenchuan earthquake[G]//Investigation, Analysis and Research on the Engineering Earthquake Damages of the Great Wenchuan Earthquake. Beijing: Chinese Society for Rock Mechanics and Engineering: 6–17 (in Chinese).

    郭履灿, 庞明虎. 1981. 面波震级和它的台基校正值[J]. 地震学报, 3 (3): 312-320.

    Guo L C, Pang M H. 1981. Surface-wave magnitude and its station correction [J]. Acta Seismologica Sinica, 3 (3): 312-320 (in Chinese).

    胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社: 54–56.

    Hu Y X. 2006. Earthquake Engineering [M]. Beijing: Seismological Press: 54–56 (in Chinese).

    刘瑞丰, 陈运泰, 任枭, 徐志国, 王晓欣, 邹立晔, 张立文. 2015. 震级的测定[M]. 北京: 地震出版社: 1–10.

    Liu R F, Chen Y T, Ren X, Xu Z G, Wang X X, Zou L Y, Zhang L W. 2015. Determination of Magnitude [M]. Beijing: Seismological Press: 1–10 (in Chinese).

    刘瑞丰, 陈运泰, Peter Bormann, 任枭, 侯建民, 邹立晔. 2006. 中国地震台网与美国地震台网测定震级的对比(Ⅱ): 面波震级[J]. 地震学报, 28(1): 1-7.

    Liu R F, Chen Y T, Bormann P, Ren X, Hou J M, Zou L Y. 2006. Comparison between earthquake magnitudes determined by China seismograph network and U.S. seismograph network (Ⅱ): Surface wave magnitude [J]. Acta Seismologica Sinica, 28 (1): 1-7(in Chinese).

    许绍燮. 1999. 中华人民共和国国家标准《地震震级的规定》(GB 17740—1999)宣贯教材[M]. 北京: 中国标准出版社: 1–10.

    Xu S X. 1999. Teaching Book for Propagandizing and Implementing the National Standard of the Peoples Republic of China: General Ruler for Earthquake Magnitude (GB 17740–1999) [M]. Beijing: Standards Press of China: 1–10 (in Chinese).

    袁一凡. 2008. 四川汶川8.0级地震灾害损失评估[J]. 地震工程与工程振动, 28(5): 10-19.

    Yuan Y F. 2008. The earthquake disaster loss evaluation[J]. Earthquake Engineering and Engineering Vibration, 28(5): 10-19(in Chinese).

    张勇, 许力生, 陈运泰. 2009. 2008年汶川大地震震源机制的时空变化[J]. 地球物理学报, 52 (2): 379-389.

    Zhang Y, Xu L S, Chen Y T. 2009. Spatio-temporal variation of the source mechanism of the 2008 great Wenchuan earthquake [J]. Chinese Journal of Geophysicis, 52 (2): 379-389(in Chinese).

    中国地震台网中心. 2008a. 地震信息[DB/OL]. [2008–05–12]. http://www.cenc.ac.cn.

    China Earthquake Networks Center. 2008a. Earthquake information [DB/OL]. [2008–05–12]. http://www.cenc.ac.cn (in Chinese).

    中国地震台网中心. 2008b. 中国地震台站观测报告[R]. 北京: 中国地震台网中心: 1–10.

    China Earthquake Networks Center. 2008b. Seismological Report of the Chinese Seismic Stations[R]. Beijing: China Earthquake Networks Center: 1–10 (in Chinese).

    中国地震台网中心. 2008c. 中国数字地震台网观测报告[R]. 北京: 中国地震台网中心: 1–10.

    China Earthquake Networks Center. 2008c. Seismological Report of the Chinese Digital Seismic Network[R]. Beijing: China Earthquake Networks Center: 1–10 (in Chinese).

    周庆, 张春山, 陈献程. 2011. 汶川MS8.0地震灾害的非对称分布与成因分析[J]. 地震学报, 33(4): 492-504.

    Zhou Q, Zhang C S , Chen X C. 2011. Asymmetric disaster distribution and its cause analysis of the MS8.0 Wenchuan earthquake. Acta Seismologica Sinica, 33 (4): 492-504(in Chinese).

    EMSC. 2008. M7.9 − Eastern Sichuan, China − 2008-05-12 06:28:00 UTC[EB/OL]. [2017–10–22]. https://www.emsc-csem.org/Earthquake/earthquake.php?id=85969.

    GCMT. 2008. Monthly CMT solutions[EB/OL]. [2017–10–22]. http://www.ldeo.columbia.edu/~gcmt/projects/CMT/catalog/NEW_MONTHLY/2008/mar08.ndk.

    Gutenberg B. 1945.Amplitudes of surface waves and magnitudes of shallow earthquakes[J].Bull. Seism. Soc. Am. 35: 3-12.

    NEIC. 2008a. The preliminary determination of epicenters (PDE) bulletin[EB/OL]. [2014–10–01]. ftp://hazards.cr.usgs.gov/NEICPDE/olderPDEdata/mchedr/.

    NEIC. 2008b. M7.9−eastern Sichuan, China [EB/OL]. [2017–10–22]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650

    Somerville P G, Smith N F, Graves R W, Abrahamson N A. 1997.Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture direction[J]. Seis Res Lett, 68(1): 199-222.

    Swiss Seismological Service. 2008. Recent earthquakes Switzerland[DB/OL]. [2008–05–12]. http://www.seismo.ethz.ch.

    SZGRF. 2008. Seismological center observatory[DB/OL]. [2008–07–01]. https://www.szgrf.bgr.de/bulletins.html.

  • 期刊类型引用(6)

    1. 王梦琪,黄汉明,吴业正,王鹏飞. 基于多尺度注意残差网络的地震波形分类研究. 地震工程学报. 2024(03): 724-733 . 百度学术
    2. 王晓霞,高翠珍,史双双,宫静芝,薛锦明. 论爆破塌陷特殊地震动特征识别. 西部资源. 2022(06): 120-122 . 百度学术
    3. 王婷婷,边银菊,杨千里,任梦依. 不同地区人工爆炸与天然地震记录特征及识别研究. 地震学报. 2021(04): 427-440 . 本站查看
    4. 毛世榕,史水平,苏梅艳,蒋志峰,玉壮基. 基于RBF神经网络的地震与爆破识别技术. 地震地磁观测与研究. 2020(03): 59-66 . 百度学术
    5. 包宝小,贾宝金,刘芳,席文雅. 乌兰浩特地震台爆破与地震记录识别判据. 地震地磁观测与研究. 2019(03): 40-46 . 百度学术
    6. 毛世榕,管振德,阎春恒. 基于小波包分形和神经网络的地震与岩溶塌陷识别. 地震学报. 2018(02): 195-204 . 本站查看

    其他类型引用(8)

图(2)  /  表(3)
计量
  • 文章访问数:  1534
  • HTML全文浏览量:  944
  • PDF下载量:  62
  • 被引次数: 14
出版历程
  • 收稿日期:  2018-01-03
  • 修回日期:  2018-03-13
  • 网络出版日期:  2018-05-01
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回