鄂尔多斯地块西缘莫霍面起伏及泊松比分布

许英才, 王琼, 曾宪伟, 马禾青, 许文俊, 金涛

许英才, 王琼, 曾宪伟, 马禾青, 许文俊, 金涛. 2018: 鄂尔多斯地块西缘莫霍面起伏及泊松比分布. 地震学报, 40(5): 563-581. DOI: 10.11939/jass.20170224
引用本文: 许英才, 王琼, 曾宪伟, 马禾青, 许文俊, 金涛. 2018: 鄂尔多斯地块西缘莫霍面起伏及泊松比分布. 地震学报, 40(5): 563-581. DOI: 10.11939/jass.20170224
Xu Yingcai, Wang Qiong, Zeng Xianwei, Ma Heqing, Xu Wenjun, Jin Tao. 2018: Moho depth and Poisson’s ratio distribution in the western edge of Ordos block. Acta Seismologica Sinica, 40(5): 563-581. DOI: 10.11939/jass.20170224
Citation: Xu Yingcai, Wang Qiong, Zeng Xianwei, Ma Heqing, Xu Wenjun, Jin Tao. 2018: Moho depth and Poisson’s ratio distribution in the western edge of Ordos block. Acta Seismologica Sinica, 40(5): 563-581. DOI: 10.11939/jass.20170224

鄂尔多斯地块西缘莫霍面起伏及泊松比分布

详细信息
    通讯作者:

    许英才: e-mail: xuyingcai007@163.com

  • 中图分类号: P315.2

Moho depth and Poisson’s ratio distribution in the western edge of Ordos block

  • 摘要: 收集了鄂尔多斯地块西缘的21个宁夏区域地震台网台站和183个中国地震科学探测台阵台站记录到的2015年1月至2016年1月期间的远震P波资料,通过对其进行反褶积提取接收函数,并利用H-Kappa叠加方法计算了研究区内的莫霍面深度和泊松比。结果表明:研究区的莫霍面深度在36—58 km范围内变化,大体呈南厚北薄、西厚东薄的特点,且具有明显的分区特征,即以香山—天景山断裂为界,莫霍面在南北向呈现明显的起伏变化,该断裂以南的地壳增厚方式可能与青藏高原的水平挤压力所导致的上地壳重叠有关;贺兰山东麓断裂两侧的莫霍面深度落差明显,这可能是由于青藏高原东北缘NE向的挤压力以及阿拉善地块与鄂尔多斯地块之间NW−SE向的拉张力共同作用所致。研究区的泊松比整体较高,其中鄂尔多斯地块的平均泊松比要高于青藏高原东北缘的平均泊松比,银川地堑内的高泊松比现象可能与黄河—灵武断裂为超壳断裂有关;研究区内的莫霍面深度与地表高程具有较好的正相关性,说明其地壳均衡效应较好,而整个研究区内泊松比与莫霍面深度的线性关系并不明显。此外,本研究还进一步揭示了研究区内莫霍面深度与泊松比反相关最明显的两个区域,这种明显的反相关关系也表明,构造上的挤压力或拉张力更容易集中在长英质的弱岩层而使地壳增厚或减薄。综上进一步认为,从海原断裂至香山—天景山断裂这一区域及贺兰山东麓断裂两侧区域下方的地壳成分以长英质岩石为主。
    Abstract: This paper collects P-waveforms of teleseismic events occurred from January 2015 to January 2016 recorded by 21 Ningxia regional seismic network stations and 183 China-Array seismic stations deployed in western edge of Ordos block, and extracts receiver functions by deconvolution, and then calculates the Moho depth and Poisson’s ratio in the studied area by using H-Kappa stacking method. The results show that the Moho depth ranges 36−58 km, which is presented as thick in the south and west and thin in the north and the east, exhibiting obvious subarea characteristics. Bounded by the Xiangshan-Tianjingshan fault, the Moho depth has a distinct change in the north-south direction, and to the south of the fault the crust-thicken way is probably related to upper crust overlap due to the horizontal extrusion from Tibetan Plateau. On the both sides of Helanshan eastern piedmont fault, the Moho depth varies largely, which may be caused by the joint impact from the extrusion in NE direction from northeastern Tibetan Plateau and the tension in NW-SE direction between Alxa block and Ordos block. In the studied area, the Poisson’s ratios are relatively high in general, and the average of the Poisson’s ratio of Ordos block is higher than that in northeastern Tibetan Plateau. On the other hand, high Poisson’s ratio in Yinchuan graben is possibly related to Huanghe-Lingwu fault as an ultracrustal one. The Moho depth is positively correlated to the surface elevation, suggesting that the crust is in the better state of isostasy, but there is no obvious linear correlation between Poisson’s ratio and Moho depth in the whole studied area. However, further study finds that there are two distinct areas, in which Poisson’s ratio is inversely correlated with the Moho depth, illustrating that the tectonic extrusion or tension is easier to concentrate on the felsic incompetent beds, which leads to the crust thickening or thinning. Consequently, from the inverse relationship between the Poisson’s ratio and Moho depth, it is believed that the crustal composition consists chiefly of felsic rocks beneath the zone from Haiyuan fault to Xiangshan-Tianjingshan fault and on the both sides of Helanshan eastern piedmont fault.
  • 图  1   研究区地质构造及公元876年—2017年MS≥5.0地震分布

    F1:桌子山断裂;F2:正谊关断裂;F3:贺兰山东麓断裂;F4:黄河—灵武断裂;F5:牛首山断裂;F6:香山—天景山断裂;F7:海原断裂;F8:云雾山断裂;F9:六盘山断裂,下同

    Figure  1.   The geological structure and distribution of MS≥5.0 earthquakes from AD 876 to 2017 in the studied area

    F1:Zhuozishan fault;F2:Zhengyiguan fault;F3:Helanshan eastern piedmont fault;F4:Huanghe-Lingwu fault;F5:Niushoushan fault;F6:Xiangshan-Tianjingshan fault;F7:Haiyuan fault;F8:Yunwushan fault;F9:Liupanshan fault,the same below

    图  2   本文所使用台站(a)和远震事件(b)分布

    三角形代表科学台阵,方块代表宁夏区域地震台网;实心三角形和方块代表有H-Kappa结果的台站,而空心三角形和方框代表无H-Kappa结果的台站。将有H-Kappa结果的台站按纬度从高到低进行编号,其对应台站的代码详见表1

    Figure  2.   The distribution of stations (a) and tele-seismic epicenters (b) used in this study

    The triangles represent the China Array,the squares represent Ningxia regional seismic network,the black triangles and squares all indicate the stations with results by H-Kappa stacking method,and the white triangles and squares all indicate the stations without such results. The stations with H-Kappa results are numbered in consecutive order from high latitude to low,and the corresponding station original codes are listed in Table 1

    图  3   中国科学台阵(a)和宁夏区域地震台网(b)台站的接收函数及其H-Kappa结果

    竖黑线为最优莫霍面深度和波速比所对应的Ps波,PpPs波及PpSs+PsPs波的震相到时

    Figure  3.   Receiver functions of the two stations from China Array (a) and Ningxia regional seismic network (b) and their H-Kappa results for example

    The vertical black lines are the arrival times of Ps,PpPs and PpSs+PsPs phases corresponding to the optimum Moho depth and velocity ratio

    图  4   研究区内的莫霍面深度H (a)与泊松比σ (b)分布

    Figure  4.   Distribution of Moho depthH (a) and Poisson’s ratio σ (b) in the studied area

    图  5   莫霍面深度与地表高程、泊松比的关系(黑色直线为线性回归线)

    (a) 整个研究区;(b) 海原断裂与香山—天景山断裂之间区域;(c) 贺兰山东麓断裂两侧区域

    Figure  5.   The relationship between Moho depth and surface elevation or Poisson’s ratio (Black line represents the linear regression line)

    (a) The whole studied area;(b) The area between Haiyuan fault and Xiangshan-Tianjingshan fault;(c) Both sides of the Helanshan eastern piedmont fault

    图  6   莫霍面深度与泊松比反相关明显的两个区域

    Figure  6.   The two distinct regions of inverse relationship between Moho depth and Poisson’s ratio

    表  1   鄂尔多斯地块西缘各台站下方的地壳结构参数

    Table  1   The parameters of crustal structure beneath stations in the western edge of Ordos block

    编号 台名 H/km κ σ N 编号 台名 H/km κ σ N
    1 15590 46.2±1.5 1.75±0.03 0.26 64 47 LWU 49.7±1.3 1.69±0.03 0.23 43
    2 15592 41.1±1.3 1.70±0.02 0.24 29 48 15660 44.5±1.6 1.77±0.02 0.27 48
    3 15593 47.6±1.3 1.76±0.03 0.26 70 49 15733 40.8±1.0 1.76±0.03 0.26 21
    4 15594 50.8±1.7 1.70±0.03 0.24 55 50 64038 42.2±1.4 1.75±0.03 0.26 24
    5 15702 42.0±1.6 1.82±0.03 0.28 39 51 15637 42.9±1.3 1.83±0.02 0.29 54
    6 15602 44.7±2.1 1.81±0.04 0.28 70 52 15646 48.1±1.3 1.80±0.02 0.28 71
    7 15603 51.2±0.9 1.66±0.02 0.22 55 53 15650 47.5±1.9 1.67±0.03 0.22 90
    8 15595 47.3±1.5 1.83±0.04 0.29 15 54 64036 40.8±1.5 1.70±0.04 0.24 20
    9 15596 49.6±1.7 1.86±0.03 0.30 38 55 15635 48.3±1.1 1.75±0.03 0.26 62
    10 15607 46.8±1.3 1.75±0.03 0.26 78 56 15657 47.6±2.0 1.67±0.02 0.22 46
    11 15706 43.4±1.3 1.75±0.02 0.26 50 57 64034 44.0±1.0 1.79±0.03 0.27 63
    12 15608 46.6±1.9 1.72±0.02 0.24 75 58 YCI 41.0±1.3 1.75±0.02 0.26 41
    13 15707 43.0±1.3 1.73±0.03 0.25 38 59 64043 43.6±1.9 1.73±0.02 0.25 28
    14 WUH 40.9±1.3 1.78±0.02 0.27 29 60 15653 43.0±1.5 1.84±0.03 0.29 52
    15 15614 49.8±1.7 1.77±0.03 0.27 53 61 SGS 49.7±1.9 1.70±0.02 0.24 65
    16 15615 48.7±1.5 1.83±0.04 0.29 16 62 15643 44.4±1.3 1.83±0.02 0.29 27
    17 15597 44.5±1.0 1.66±0.03 0.22 44 63 NSS 44.0±1.3 1.61±0.04 0.19 46
    18 15711 44.1±1.4 1.73±0.04 0.25 43 64 15647 40.8±1.5 1.85±0.03 0.29 27
    19 15628 44.6±1.3 1.92±0.02 0.31 34 65 64030 41.6±1.0 1.79±0.03 0.27 26
    20 SZS 39.8±1.8 1.89±0.03 0.31 46 66 61078 39.9±2.2 1.75±0.02 0.26 21
    21 15717 43.3±1.7 1.76±0.02 0.26 50 67 ZHW 49.0±1.9 1.69±0.03 0.23 39
    22 15619 37.3±1.1 1.88±0.03 0.30 19 68 64035 42.7±1.5 1.89±0.04 0.31 23
    23 64054 40.4±1.6 1.80±0.02 0.28 45 69 15641 39.8±1.3 2.00±0.03 0.33 53
    24 15618 46.1±1.5 1.90±0.02 0.31 40 70 61074 39.9±1.5 1.83±0.03 0.29 20
    25 15722 43.0±1.9 1.74±0.03 0.25 44 71 64027 41.1±2.3 1.85±0.04 0.29 24
    26 64049 41.3±1.8 1.87±0.04 0.30 23 72 61073 41.2±0.9 1.80±0.03 0.28 43
    27 TLE 37.5±1.5 1.85±0.03 0.29 49 73 TXN 39.5±1.2 1.98±0.03 0.33 49
    28 15638 37.8±1.7 1.60±0.02 0.18 54 74 62421 43.6±1.3 1.81±0.03 0.28 35
    29 64046 42.2±1.2 1.98±0.03 0.33 17 75 64024 55.6±2.0 1.84±0.03 0.29 21
    30 15740 43.0±1.5 1.83±0.03 0.29 38 76 64041 38.9±1.7 1.89±0.03 0.31 50
    31 15639 46.7±1.8 1.76±0.03 0.26 16 77 JTA 47.2±1.2 1.77±0.04 0.27 42
    32 YCH 48.6±0.9 1.72±0.03 0.24 55 78 64023 42.2±1.5 1.79±0.03 0.27 33
    33 15659 49.6±2.1 1.74±0.03 0.25 41 79 64022 50.4±1.7 1.66±0.03 0.22 23
    34 15642 47.1±1.6 1.73±0.04 0.25 38 80 64019 56.8±1.3 1.71±0.02 0.24 25
    35 15644 43.1±1.2 1.88±0.03 0.30 21 81 62417 52.5±1.9 1.76±0.04 0.26 18
    36 15651 47.6±1.5 1.74±0.03 0.25 38 82 61066 43.7±1.3 1.76±0.03 0.26 21
    37 64047 36.3±1.3 1.98±0.02 0.33 35 83 62415 51.1±1.3 1.75±0.04 0.26 54
    38 15735 43.2±1.3 1.78±0.03 0.27 24 84 62416 48.2±1.1 1.99±0.03 0.33 30
    39 15734 41.4±1.1 1.79±0.03 0.27 55 85 62411 43.5±1.7 1.82±0.03 0.28 22
    40 64042 47.1±1.6 1.82±0.02 0.28 31 86 62406 52.9±1.5 1.97±0.03 0.33 46
    41 15658 46.1±2.3 1.73±0.02 0.25 45 87 62407 53.7±2.0 1.71±0.02 0.24 21
    42 15655 38.8±1.6 1.79±0.03 0.27 45 88 64017 46.8±1.5 1.90±0.02 0.31 34
    43 15645 48.9±1.7 1.63±0.02 0.20 28 89 64016 50.5±1.7 1.68±0.04 0.23 38
    44 15640 42.0±1.4 1.75±0.02 0.26 39 90 HYU 56.4±1.8 1.75±0.03 0.26 51
    45 15649 46.0±1.8 1.81±0.03 0.28 18 91 62400 46.9±1.2 1.81±0.02 0.28 39
    46 64039 45.3±1.2 1.75±0.02 0.26 19 92 62393 51.3±1.5 1.71±0.02 0.24 32
    下载: 导出CSV

    表  2   AB两区域内的台站莫霍面深度和泊松比

    Table  2   The Moho depth and Poisson’s ratios beneath stations in the regions A and B

    台站
    编号
    台站
    代码
    A区域 台站
    编号
    台站
    代码
    B区域
    H/km σ H/km σ
    61 SGS 49.7 0.24 17 15597 44.5 0.22
    62 15643 44.4 0.29 20 SZS 39.8 0.31
    64 15647 40.8 0.29 23 64054 40.4 0.28
    67 ZHW 49.0 0.23 24 15618 46.1 0.31
    69 15641 39.8 0.33 26 64049 41.3 0.30
    71 64027 41.1 0.29 27 TLE 37.5 0.29
    74 62421 43.6 0.28 29 64046 42.2 0.33
    76 64041 38.9 0.31 32 YCH 48.6 0.24
    77 JTA 47.2 0.27 33 15659 49.6 0.25
    78 64023 42.2 0.27 37 64047 36.3 0.33
    81 62417 52.5 0.26 40 64042 47.1 0.28
    83 62415 51.1 0.26 41 15658 46.1 0.25
    84 62416 48.2 0.33 46 64039 45.3 0.26
    87 62407 53.7 0.24 47 LWU 49.7 0.23
    注:H为莫霍面深度,σ为泊松比。
    下载: 导出CSV
  • 陈九辉,刘启元,李顺成,郭飙,赖院根. 2005. 青藏高原东北缘—鄂尔多斯地块地壳上地幔S波速度结构[J]. 地球物理学报,48(2):333–342

    Chen J H,Liu Q Y,Li S C,Guo B,Lai Y G. 2005. Crust and upper mantle S-wave velocity structure across northeastern Tibetan Plateau and Ordos block[J]. Chinese Journal of Geophysics,48(2):333–342 (in Chinese)

    崔笃信,郝明,李煜航,王文萍,秦姗兰,李长军. 2016. 鄂尔多斯块体周缘地区现今地壳水平运动与应变[J]. 地球物理学报,59(10):3646–3661 doi: 10.6038/cjg20161012

    Cui D X,Hao M,Li Y H,Wang W P,Qin S L,Li Z J. 2016. Present-day crustal movement and strain of the surrounding area of Ordos block derived from repeated GPS observations[J]. Chinese Journal of Geophysics,59(10):3646–3661 (in Chinese)

    邓起东,程绍平,闵伟,杨桂枝,任殿卫. 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论[J]. 地质力学学报,5(3):13–21

    Deng Q D,Cheng S P,Min W,Yang G Z,Ren D W. 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block[J]. Journal of Geomechanics,5(3):13–21 (in Chinese)

    范俊喜,马瑾,刁桂苓. 2003. 由小震震源机制解得到的鄂尔多斯周边构造应力场[J]. 地震地质,25(1):88–99

    Fan J X,Ma J,Diao G L. 2003. Contemporary tectonic stress field around the Ordos fault block inferred from earthquake focal mechanisms[J]. Seismology and Geology,25(1):88–99 (in Chinese)

    方盛明,赵成彬,柴炽章,刘保金,酆少英,刘明军,雷启云,刘皓. 2009. 银川断陷盆地地壳结构与构造的地震学证据[J]. 地球物理学报,52(7):1768–1775

    Fang S M,Zhao C B,Chai C Z,Liu B J,Feng S Y,Liu M J,Lei Q Y,Liu H. 2009. Seismic evidence of crustal structures in the Yinchuan faulted basin[J]. Chinese Journal of Geophysics,52(7):1768–1775 (in Chinese)

    酆少英,高锐,龙长兴,方盛明,赵成彬,寇昆朋,谭雅丽,何和英. 2011. 银川地堑地壳挤压应力场:深地震反射剖面[J]. 地球物理学报,54(3):692–697

    Feng S Y,Gao R,Long C X,Fang S M,Zhao C B,Kou K P,Tan Y L,He H Y. 2011. The compressive stress field of Yinchuan graben:Deep seismic reflection profile[J]. Chinese Journal of Geophysics,54(3):692–697 (in Chinese)

    葛粲,郑勇,熊熊. 2011. 华北地区地壳厚度与泊松比研究[J]. 地球物理学报,54(10):2538–2548 doi: 10.3969/j.issn.0001-5733.2011.10.011

    Ge C,Zheng Y,Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton[J]. Chinese Journal of Geophysics,54(10):2538–2548 (in Chinese)

    宫猛,李信富,张素欣,罗燕,曾祥芳,刘丽. 2015. 利用接收函数研究河北及邻区地壳厚度与泊松比分布特征[J]. 地震,35(2):34–42

    Gong M,Li X F,Zhang S X,Luo Y,Zeng X F,Liu L. 2015. Crustal thickness and Poisson’s ratio of Hebei and adjacent areas from teleseismic receiver functions[J]. Earthquake,35(2):34–42 (in Chinese)

    国家地震局地学断面编委会. 1992a. 青海门源至福建宁德地学断面1 ∶ 100万说明书[M]. 北京: 地震出版社: 1–6.

    Editorial Board of Geoscience Transect, State Seismological Bureau. 1992a. Manual on the Geoscience Transection From Menyuan, Qinghai to Ningde, Fujian (1 ∶ 1 000 000) [M]. Beijing: Seismological Press: 1–6 (in Chinese).

    国家地震局地学断面编委会. 1992b. 上海奉贤至内蒙古阿拉善左旗地学断面1 ∶ 100万说明书[M]. 北京: 地震出版社: 1–5.

    Editorial Board of Geoscience Transect, State Seismological Bureau. 1992b. Manual on the Geoscience Transect From Fengxian, Shanghai to Alxa Zuoqi, Inner Mongolia (1 ∶ 1 000 000) [M]. Beijing: Seismological Press: 1–5 (in Chinese).

    国家地震局" 鄂尔多斯周缘活动断裂系”课题组. 1988. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社: 1–27.

    Research Group on Active Fault System Around Ordos Massif, State Seismological Bureau. 1988. Active Fault System Around Ordos Massif [M]. Beijing: Seismological Press: 1–27 (in Chinese).

    嵇少丞,王茜,杨文采. 2009. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义[J]. 地质学报,83(3):324–330

    Ji S C,Wang Q,Yang W C. 2009. Correlation between crustal thickness and Poisson’s ratio in the North China Craton and its impli-cation for lithospheric thinning[J]. Acta Geologica Sinica,83(3):324–330 (in Chinese)

    贾萌,王显光,李世林,陈永顺. 2015. 鄂尔多斯块体及周边区域地壳结构的接收函数研究[J]. 地球物理学进展,30(6):2474–2481 doi: 10.6038/pg20150605

    Jia M,Wang X G,Li S L,Chen Y S. 2015. Crustal structures of Ordos block and surrounding regions from receiver functions[J]. Progress in Geophysics,30(6):2474–2481 (in Chinese)

    李海鸥,徐锡伟,姜枚. 2008. 青藏高原中南部的深部地球动力学过程:Hi-Climb剖面北段接收函数和走时残差分析[J]. 中国科学:D辑,38(5):622–629

    Li H O,Xu X W,Jiang M. 2008. Deep dynamical processes in the central-southern Qinghai-Tibet Plateau:Receiver functions and travel-time residuals analysis of north Hi-Climb[J]. Science in China:Series D,51(9):1297–1305 doi: 10.1007/s11430-008-0096-2

    李松林,张先康,任青芳,张成科,石金虎,赵金仁,刘宝峰,潘素珍,张建狮,刘建军. 2001a. 西吉—中卫地震测深剖面及其解释[J]. 地震地质,23(1):86–92

    Li S L,Zhang X K,Ren Q F,Zhang C K,Shi J H,Zhao J R,Liu B F,Pan S Z,Zhang J S,Liu J J. 2001a. Seismic sounding profile and its interpretation in the region of Xiji-Zhongwei[J]. Seismology and Geology,23(1):86–92 (in Chinese)

    李松林,张先康,张成科,赵金仁,成双喜. 2001b. 玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究[J]. 地球物理学报,45(2):210–217

    Li S L,Zhang X K,Zhang C K,Zhao J R,Cheng S X. 2001b. A preliminary study on the crustal velocity structure of Maqin-Lanzhou-Jingbian by means of deep seismic sounding profile[J]. Chinese Journal of Geophysics,45(2):210–217 (in Chinese)

    李永华,吴庆举,田小波,曾融生,张瑞青,李红光. 2006. 青藏高原拉萨及羌塘块体的地壳结构研究[J]. 地震学报,28(6):586–595

    Li Y H,Wu Q J,Tian X B,Zeng R S,Zhang R Q,Li H G. 2006. The crustal structure beneath Qiangtang and Lhasa terrane from receiver function[J]. Acta Seismologica Sinica,28(6):586–595 (in Chinese)

    刘保金,酆少英,姬计法,王帅军,张建狮,袁洪克,杨国俊. 2017. 贺兰山和银川盆地的岩石圈结构和断裂特征:深地震反射剖面结果[J]. 中国科学:地球科学,47(2):179–190

    Liu B J,Feng S Y,Ji J F,Wang S J,Zhang J S,Yuan H K,Yang G J. 2017. Lithospheric structure and faulting characteristics of the Helan mountains and Yinchuan basin:Results of deep seismic reflection profiling[J]. Science China Earth Sciences,60(3):589–601 doi: 10.1007/s11430-016-5069-4

    刘建辉,张培震,郑德文,万景林,王伟涛,杜鹏,雷启云. 2010. 贺兰山晚新生代隆升的剥露特征及其隆升模式[J]. 中国科学:地球科学,40(1):50–60

    Liu J H,Zhang P Z,Zheng D W,Wan J L,Wang W T,Du P,Lei Q Y. 2010. Pattern and timing of Late Cenozoic rapid exhumation and uplift of the Helan Mountain,China[J]. Science China Earth Sciences,53(3):345–355 doi: 10.1007/s11430-010-0016-0

    刘启民,赵俊猛,卢芳,刘宏兵. 2014. 用接收函数方法反演青藏高原东北缘地壳结构[J]. 中国科学:地球科学,44(4):668–679

    Liu Q M,Zhao J M,Lu F,Liu H B. 2014. Crustal structure of northeastern margin of the Tibetan Plateau by receiver function inversion[J]. Science China Earth Sciences,57(4):741–750 doi: 10.1007/s11430-013-4772-5

    罗艳,崇加军,倪四道,陈棋福,陈颙. 2008. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报,51(4):1135–1145

    Luo Y,Chong J J,Ni S D,Chen Q F,Chen Y. 2008. Moho depth and sedimentary thickness in Capital region[J]. Chinese Jour-nal of Geophysics,51(4):1135–1145 (in Chinese)

    唐明帅,郑勇,葛粲,王海涛,冀战波,孔祥艳,魏斌,李志海. 2014. 帕米尔东北缘地壳结构的P波接收函数研究[J]. 地球物理学报,57(10):3176–3188 doi: 10.6038/cjg20141007

    Tang M S,Zheng Y,Ge C,Wang H T,Ji Z B,Kong X Y,Wei B,Li Z H. 2014. Study on crustal structure in the northeastern Pamir region by P receiver functions[J]. Chinese Journal of Geophysics,57(10):3176–3188 (in Chinese)

    童蔚蔚,王良书,米宁,徐鸣洁,李华,于大勇,李成,刘绍文,Liu M,Sandvol E. 2007. 利用接收函数研究六盘山地区地壳上地幔结构特征[J]. 中国科学:D辑,37(增刊1):193–198

    Tong W W,Wang L S,Mi N,Xu M J,Li H,Yu D Y,Li C,Liu S W,Liu M,Sandvol E. 2007. Receiver function analysis for seismic structure of the crust and uppermost mantle in the Liupanshan area,China[J]. Science in China:Series D,50(S2):227–233 doi: 10.1007/s11430-007-6008-z

    屈健鹏,朱佐全,杨国栋,李柱国,师水月. 1998. 鄂尔多斯地块西缘定边—景泰地壳和上地幔电性结构分析[J]. 西北地震学报,20(2):70–75

    Qu J P,Zhu Z Q,Yang G D,Li Z G,Shi S Y. 1998. Analysis on electrical structure of crust and upper mantle along the western border of Ordos block[J]. Northwestern Seismological Journal,20(2):70–75 (in Chinese)

    王未来. 2014. 中国西南地区的接收函数和面波层析成像研究[D]. 北京: 中国地震局地球物理研究所: 30–38.

    Wang W L. 2014. Receiver Function and Surface Wave Tomography Studies of Southwest China[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 30–38 (in Chinese).

    王伟涛,张培震,郑德文,庞建章. 2014. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘,21(4):266–274

    Wang W T,Zhang P Z,Zheng D W,Pang J Z. 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers,21(4):266–274 (in Chinese)

    王兴臣,丁志峰,武岩,朱露培. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究[J]. 地球物理学报,60(6):2080–2090 doi: 10.6038/cjg20170605

    Wang X C,Ding Z F,Wu Y,Zhu L P. 2017. Crustal thicknesses and Poisson’s ratios beneath the northern section of the North-South Seismic Belt and surrounding areas in China[J]. Chinese Journal of Geophysics,60(6):2080–2090 (in Chinese)

    王有学,钱辉. 2000. 青海东部地壳速度结构特征研究[J]. 地学前缘,7(4):568–579

    Wang Y X,Qian H. 2000. Study of crustal velocity structure in east Qinghai[J]. Earth Science Frontiers,7(4):568–579 (in Chinese)

    危自根,储日升,陈凌. 2015. 华北克拉通地壳结构区域差异的接收函数研究[J]. 中国科学:地球科学,45(10):1504–1514

    Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210 doi: 10.1007/s11430-015-5162-y

    危自根,储日升,陈凌,崇加军,李志伟. 2016. 复杂地壳接收函数H -κ叠加:以安纳托利亚板块为例[J]. 地球物理学报,59(11):4048–4062 doi: 10.6038/cjg20161110

    Wei Z G,Chu R S,Chen L,Chong J J,Li Z W. 2016. Analysis of H -κ stacking of receiver functions beneath crust with complex structure:Taking the Anatolia Plate as an example[J]. Chinese Journal of Geophysics,59(11):4048–4062 (in Chinese)

    吴庆举,曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报,41(5):669–679

    Wu Q J,Zeng R S. 1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform[J]. Chinese Journal of Geophysics,41(5):669–679 (in Chinese)

    谢富仁,舒塞兵,窦素芹,张世民,崔效锋. 2000. 海原、六盘山断裂带至银川断陷第四纪构造应力场分析[J]. 地震地质,22(2):139–146

    Xie F R,Shu S B,Dou S Q,Zhang S M,Cui X F. 2000. Quaternary tectonic stress field in the region of Haiyuan-Liupanshan fault zone to Yinchuan fault depression[J]. Seismology and Geology,22(2):139–146 (in Chinese)

    谢晓峰,崇加军,刘渊远. 2010. 利用H-Kappa方法反演宁夏地区的地壳厚度[J]. 地震研究,33(3):308–313

    Xie X F,Chong J J,Liu Y Y. 2010. Inversing the crustal thickness in Ningxia area by H-Kappa method[J]. Journal of Seismological Research,33(3):308–313 (in Chinese)

    徐强,赵俊猛,崔仲雄,刘明乾. 2009. 利用接收函数研究青藏高原东南缘的地壳上地幔结构[J]. 地球物理学报,52(12):3001–3008 doi: 10.3969/j.issn.0001-5733.2009.12.009

    Xu Q,Zhao J M,Cui Z X,Liu M Q. 2009. Structure of the crust and upper mantle beneath the southeastern Tibetan Plateau by P and S receiver functions[J]. Chinese Journal of Geophysics,52(12):3001–3008 (in Chinese)

    许文俊,赵卫明,柴炽章,金延龙,孙立新,郑斯华,三浦哲. 2001. 宁夏地区GPS监测网建设、近期地壳运动特征及应力场与地震活动关系初探[J]. 中国地震,17(1):44–55

    Xu W J,Zhao W M,Chai C Z,Jin Y L,Sun L X,Zheng S H,San P Z. 2001. Establishment of the GPS monitoring network in the middle part of Ningxia and preliminary study of relationship between the crustal deformation and the stress field and seismicity[J]. Earthquake Research in China,17(1):44–55 (in Chinese)

    许英才,许文俊,李鸿庭,陈继锋. 2011. 利用数字地震波资料研究宁夏地区介质非弹性衰减和场地响应[J]. 大地测量与地球动力学,31(增刊1):33–37

    Xu Y C,Xu W J,Li H T,Chen J F. 2011. Study on inelastic attenuation and site response of each station in Ningxia area by using waveform data from digital seismic station network[J]. Journal of Geodesy and Geodynamics,31(S1):33–37 (in Chinese)

    杨明芝, 马禾青, 廖玉华. 2007. 宁夏地震活动与研究[M]. 北京: 地震出版社: 1–12.

    Yang M Z, Ma H Q, Liao Y H. 2007. Ningxia Earthquake Activity and Research[M]. Beijing: Seismological Press: 1–12 (in Chinese).

    杨卓欣,段永红,王夫运,赵金仁,潘素珍,李莉. 2009. 银川盆地深地震断层的三维透射成像[J]. 地球物理学报,52(8):2026–2034

    Yang Z X,Duan Y H,Wang F Y,Zhao J R,Pan S Z,Li L. 2009. Tomographic determination of deep earthquake faults in Yinchuan basin by using three-dimensional seismic transmission technology[J]. Chinese Journal of Geophysics,52(8):2026–2034 (in Chinese)

    姚志祥,王椿镛,曾融生,楼海,周民都. 2014. 利用接收函数方法研究西秦岭构造带及其邻区地壳结构[J]. 地震学报,36(1):1–19

    Yao Z X,Wang C Y,Zeng R S,Lou H,Zhou M D. 2014. Crustal structure in western Qinling tectonic belt and its adjacent regions deduced from receiver functions[J]. Acta Seismologica Sinica,36(1):1–19 (in Chinese)

    曾宪伟,莘海亮,陈春梅,蔡新华. 2015. 利用小震震源机制解研究宁夏南部及邻区构造应力场[J]. 地震研究,38(1):51–57

    Zeng X W,Xin H L,Chen C M,Cai X H. 2015. Characteristics research of tectonic stress in southern Ningxia and its adjacent areas by focal mechanisms of small earthquakes[J]. Journal of Seismological Research,38(1):51–57 (in Chinese)

    张宏仁,张永康,蔡向民,渠洪杰,李海龙,王猛. 2013. 燕山运动的" 绪动”:燕山事件[J]. 地质学报,87(12):1779–1790

    Zhang H R,Zhang Y K,Cai X M,Qu H J,Li H L,Wang M. 2013. The triggering of Yanshan movement:Yanshan event[J]. Acta Geologica Sinica,87(12):1779–1790 (in Chinese)

    张洪双,高锐,田小波,腾吉文,李秋生,叶卓,刘震,司少坤. 2015. 青藏高原东北缘地壳S波速度结构及其动力学含义:远震接收函数提供的证据[J]. 地球物理学报,58(11):3982–3992

    Zhang H S,Gao R,Tian X B,Teng J W,Li Q S,Ye Z,Liu Z,Si S K. 2015. Crustal S-wave velocity beneath the northeastern Tibetan Plateau inferred from teleseismic P-wave receiver functions[J]. Chinese Journal of Geophysics,58(11):3982–3992 (in Chinese)

    张培震,王琪,马宗晋. 2002. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘,9(2):430–441

    Zhang P Z,Wang Q,Ma Z J. 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in conti-nental China[J]. Earth Science Frontiers,9(2):430–441 (in Chinese)

    张先康,李松林,王夫运,嘉世旭,方盛明. 2003. 青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异:深地震测深的结果[J]. 地震地质,25(1):52–60

    Zhang X K,Li S L,Wang F Y,Jia S X,Fang S M. 2003. Differences of crustal structures in northeastern edge of Tibet Plateau,Ordos and Tangshan earthquake region in North China:Results of deep seismic sounding[J]. Seismology and Geology,25(1):52–60 (in Chinese)

    张先康,嘉世旭,赵金仁,张成科,杨健,王夫运,张建狮,刘宝峰,孙国伟,潘素珍. 2008. 西秦岭—东昆仑及邻近地区地壳结构:深地震宽角反射/折射剖面结果[J]. 地球物理学报,51(2):439–450

    Zhang X K,Jia S X,Zhao J R,Zhang C K,Yang J,Wang F Y,Zhang J S,Liu B F,Sun G W,Pan S Z. 2008. Crustal structures beneath West Qinling-East Kunlun orogen and its adjacent area:Results of wide-angle seismic reflection and refraction experiment[J]. Chinese Journal of Geophysics,51(2):439–450 (in Chinese)

    张晓亮,师昭梦,蒋锋云,朱良玉,王雄. 2011. 海原—六盘山弧型断裂及其附近最新构造变形演化分析[J]. 大地测量与地球动力学,31(3):20–24

    Zhang X L,Shi Z M,Jiang F Y,Zhu L Y,Wang X. 2011. Research on late tectonic deformation evolvement of Haiyuan-Liupanshan arc fault and its surrounding area[J]. Journal of Geodesy and Geodynamics,31(3):20–24 (in Chinese)

    赵红格,刘池洋,王锋,王建强,李琼,姚亚明. 2007. 贺兰山隆升时限及其演化[J]. 中国科学:D辑,37(增刊1):185–192

    Zhao H G,Liu C Y,Wang F,Wang J Q,Li Q,Yao Y M. 2007. Uplift and evolution of Helan Mountain[J]. Science in China:Series D,50(S2):217–226 doi: 10.1007/s11430-007-6010-5

    Chen L,Ai Y S. 2009. Discontinuity structure of the mantle transition zone beneath the North China craton from receiver function migration[J]. J Geophys Res,114(B6):B06307

    Chevrot S,van der Hilst R D. 2000. The Poisson ratio of the Australian crust:Geological and geophysical implications[J]. Earth Planet Sci Lett,183(1/2):121–132

    Christensen N I. 1996. Poisson’s ratio and crustal seismology[J]. J Geophys Res,101(B2):3139–3156 doi: 10.1029/95JB03446

    Clark M K,Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8):703–706 doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

    Deng Y F,Shen W S,Xu T,Ritzwoller M H. 2015. Crustal layering in northeastern Tibet:A case study based on joint inversion of receiver functions and surface wave dispersion[J]. Geophys J Int,203(1):692–706 doi: 10.1093/gji/ggv321

    Ji S C,Wang Q,Salisbury M H. 2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio[J]. Tectonophysics,463(1/2/3/4):15–30

    Langston C A. 1977. The effect of planar dipping structure on source and receiver responses for constant ray parameter[J]. Bull Seismol Soc Am,67(4):1029–1050

    Langston C A. 1979. Structure under Mount Rainier,Washington,inferred from teleseismic body waves[J]. J Geophys Res,84(B9):4749–4762 doi: 10.1029/JB084iB09p04749

    Last R J,Nyblade A A,Langston C A,Owens T J. 1997. Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities[J]. J Geophys Res,102(B11):24469–24483

    Ligorria J P,Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am,89(5):1395–1400

    Pan S Z,Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos Plateau and the NE Tibetan Plateau from receiver function analysis[J]. Earth Planet Sci Lett,303(3/4):291–298

    Royden L H,Burchfiel B C,van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau[J]. Science,321(5892):1054–1058 doi: 10.1126/science.1155371

    Shen X Z,Zhou Y Z,Zhang Y S,Mei X P,Guo X,Liu X Z,Qin M Z,Wei C X,Li C Q. 2014. Receiver function structures beneath the deep large faults in the northeastern margin of the Tibetan Plateau[J]. Tectonophysics,610:63–73 doi: 10.1016/j.tecto.2013.10.011

    Tian X B,Zhang Z J. 2013. Bulk crustal properties in NE Tibet and their implications for deformation model[J]. Gondwana Res,24(2):548–559 doi: 10.1016/j.gr.2012.12.024

    Wang C Y,Sandvol E,Zhu L,Lou H,Yao Z X,Luo X H. 2014a. Lateral variation of crustal structure in the Ordos block and surrounding regions,North China,and its tectonic implications[J]. Earth Planet Sci Lett,387:198–211 doi: 10.1016/j.jpgl.2013.11.033

    Wang H Y,Gao R,Zeng L S,Kuang Z Y,Xue A M,Li W H,Xiong X S,Huang W Y. 2014b. Crustal structure and Moho geometry of the northeastern Tibetan Plateau as revealed by SinoProbe-02 deep seismic-reflection profiling[J]. Tectonophysics,636:32–39 doi: 10.1016/j.tecto.2014.08.010

    Wei Z G,Chen L,Wang B Y. 2013. Regional variations in crustal thickness and vP/vS ratio beneath the central-western North China Craton and adjacent regions[J]. Geol J,48(5):531–542 doi: 10.1002/gj.v48.5

    Xu X Q,Shen X Z,Chang M,Luo G F,Yao L. 2012. Preliminary analysis of teleseismic receiver functions of the Ningxia and its adjacent area[J]. Earthquake Science,25(1):47–53 doi: 10.1007/s11589-012-0830-x

    Zandt G,Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson’s ratio[J]. Nature,374(6518):152–154

    Zhu L P,Zeng R S,Wu F T,Owens T J,Randall G E. 1993. Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms[J]. Acta Seismologica Sinica,6(2):305–316 doi: 10.1007/BF02650943

    Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res,105(B2):2969–2980 doi: 10.1029/1999JB900322

图(6)  /  表(2)
计量
  • 文章访问数:  1467
  • HTML全文浏览量:  816
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-24
  • 修回日期:  2018-03-26
  • 网络出版日期:  2018-08-19
  • 发布日期:  2018-08-31

目录

    /

    返回文章
    返回