利用P波参数阈值实时估算地震预警潜在破坏区范围

彭朝勇, 杨建思

彭朝勇, 杨建思. 2019: 利用P波参数阈值实时估算地震预警潜在破坏区范围. 地震学报, 41(3): 354-365. DOI: 10.11939/jass.20190140
引用本文: 彭朝勇, 杨建思. 2019: 利用P波参数阈值实时估算地震预警潜在破坏区范围. 地震学报, 41(3): 354-365. DOI: 10.11939/jass.20190140
Peng Chaoyong, Yang Jiansi. 2019: Real-time estimation of potentially damaged zone for earthquake early warning based on thresholds of P-wave parameters. Acta Seismologica Sinica, 41(3): 354-365. DOI: 10.11939/jass.20190140
Citation: Peng Chaoyong, Yang Jiansi. 2019: Real-time estimation of potentially damaged zone for earthquake early warning based on thresholds of P-wave parameters. Acta Seismologica Sinica, 41(3): 354-365. DOI: 10.11939/jass.20190140

利用P波参数阈值实时估算地震预警潜在破坏区范围

基金项目: 国家重点研发计划(2018YFC1504002)、国家自然科学基金项目(41404048)和中国地震局地球物理研究所基本科研业务专项(DQJB14B05)联合资助
详细信息
    通讯作者:

    彭朝勇: e-mail:pengchaoyong@cea-igp.ac.cn

  • 中图分类号: P315.3

Real-time estimation of potentially damaged zone for earthquake early warning based on thresholds of P-wave parameters

  • 摘要: 由于传统的潜在破坏区范围估算方法只能在已获取到震中位置和地震事件结束后才能产出,且往往需要数分钟的耗时,其实时性已无法满足地震预警要求。因此,为了快速产出潜在破坏区范围估算结果并将其用于预警,本文采用了一种结合现地预警技术和区域预警技术、基于预警参数(位移幅值Pd和特征周期τc)阈值的实时潜在破坏区范围估算方法。首先利用国内地震事件(4.0≤MS≤8.0)的记录数据和日本强震动观测事件(6.5≤MJ≤8.0)的数据拟合出特定的适应于我国的参数关系式,包括τc与震级M的相关性、Pd与峰值速度PGV的相关性以及Pdτc和震源距R的相关性;其次,根据最小震级(MS6.0)和仪器烈度(Ⅶ度)定义相应的参数阈值(Pd=0.1 cm和τc=1.1 s);最后,利用已有的3次破坏性地震事件数据开展线下模拟,对该方法的适应性和时效性进行了验证。结果表明,对于2013年MS7.0四川芦山和2014年MS6.5云南鲁甸两次中强地震,震后约10 s即可获取到比较稳定的潜在破坏区范围估计结果;而对于2008年MS8.0汶川特大地震,在其记录台站分布密度不高的情况下,震后40 s左右的估算结果始呈稳定状态。
    Abstract: Conventional methods used for potentially damaged zone (PDZ) estimation usually take several minutes to produce the results, which are generated only after the epicenter of an earthquake has been acquired and the seismic event has ended, its real-time performance cannot meet the requirements of earthquake early warning (EEW). Therefore, to rapidly produce the estimated range of PDZ for EEW, in this paper, we adopted a real-time method to estimate the PDZ range. The method is an integrated on-site and regional early-warning method based on the predefined thresholds of two early-warning parameters, the peak displacement (Pd) and characteristic period (τc). Firstly, we used seismic events records with MS between 4.0 and 8.0 from the China Strong Motion Networks Center and strong-motion records with MJ between 6.5 and 8.0 downloaded from the Japanese National Research Institute for Earth Science and Disaster Resilience to linearly fit relationships of early-warning parameters, including τc versus M, Pd versus PGV, and Pd as a function of τc and hypocentral distance R. We then defined two early-warning parameters thresholds which are set for a minimum magnitude MS6.0 and instrumental intensity Ⅶ, according to the empirical regression analyses of the applied data. At each recording site, the alert level is assigned based on a decisional table with four alert levels defined upon critical values of the parameters Pd and τc. These two threshold values are Pd=0.1 cm and τc=1.1 s. Given a real-time, evolutionary estimation of earthquake location from first P arrivals, the method furnishes an estimation of the extent of PDZ as inferred from continuously updated averages of the period parameter and from mapping of the alert levels determined at the near-source seismic stations. Finally, to test the method’s efficiency and rapidity on mapping the damage zone in a few seconds after an earthquake occurrence, we offline applied the methodology to the strong-motion records of three destructive seismic events. The results show that a robust estimation of the PDZ range for moderate-to-large earthquakes like the 2013 MS7.0 Lushan and 2014 MS6.6 Ludian events can be obtained at about 10 s after the earthquake occurrence. And for the Wenchuan giant earthquake, as the case of low density of recording stations, the prediction of the PDZ becomes stable about 40 s after its occurred time.
  • 图  1   本研究所用震例分布情况

    (a) 地震事件数-震级分布情况;(b) 所用记录的震源距-震级分布情况

    Figure  1.   Distribution of earthquakes used in this study

    (a) Distribution of the number of events with magnitude;(b) Hypocentral distance versus magnitude for the chosen earthquake records

    图  2   τc与震级M的相关性

    (a) 同时使用我国和日本地震事件记录的拟合结果;(b) 仅使用我国地震事件记录的拟合结果 空心圆表示每个地震事件对应的各台站记录计算的τc值,实心圆表示每个地震事件对应的各台站的τc平均值;黑色实线表示τc与震级的拟合关系曲线,灰色虚线表示1倍标准方差

    Figure  2.   Correlations between τc and magnitude M

    (a) Fitting result derived from China and Japan earthquake data;(b) Fitting result derived only from China earthquake data Open circles represent τc values of each strong-motion record,while black dots indicate averaged τc of each event. The empirical τc versus magnitude relation is shown by black solid line with its standard deviations shown by gray dashed lines

    图  3   Pd与PGV相关性

    (a) 同时使用我国和日本地震事件记录的拟合结果;(b) 仅使用我国地震事件记录的拟合结果 圆点表示每条记录对应的Pd与PGV值,黑色实线表示线性拟合曲线,灰色虚线表示1倍标准方差

    Figure  3.   Relationship between Pd and PGV

    (a) Fitting result derived from China and Japan earthquake data;(b) Fitting result derived only from China earthquake data Gray dots represent Pd and PGV values of each strong-motion record. Solid black line indicates the linear fitting curve and the two gray dashed lines show the range of one standard deviation

    图  4   位移幅值Pdτc和震源距R分布图

    Figure  4.   Pd as a function of τc and hypocentral distance R

    图  5   鲁甸MS6.6 (a)、芦山MS7.0 (b)和汶川MS8.0 (c)地震在发震后指定秒的潜在破坏区范围模拟结果

    蓝色到红色的转换边界表示Pd = 0.1 cm等值线,对应于从式(2)计算获取到IMM=Ⅶ的下限值,图中调查烈度线数据来源于中国地震局(200820132014

    Figure  5.   Simulation results of potentially damaged zone estimation in the specified seconds after the earthquake occurred time for the Ludian MS6.5 (a),Lushan MS7.0 (b) and Wenchuan MS8.0 earthquakes (c)

    The color transition from blue to red represents the Pd=0.1 cm isoline,which corresponds to a IMM=Ⅶ,based on the scaling relationship of equation (2),and the observed damage zones were downloaded from China Earthquake Administration (200820132014

    表  1   线下模拟的3次破坏性地震事件的相关信息

    Table  1   The three damaging earthquakes used for off-line simulation

    事件 发震时刻 震中位置 震源深度/km MS
    年−月−日 时:分:秒 东经/° 北纬/°
    云南鲁甸地震 2014−08−03 16:30:12 103.33 27.11 10 6.6
    四川芦山地震 2013−04−20 08:02:48 102.99 30.30 17 7.0
    四川汶川地震 2008−05−12 14:28:00 103.42 31.01 14 8.0
    下载: 导出CSV
  • 陈鲲,俞言祥,高孟潭,冯静. 2012. 用有限强地震动记录校正等震线的估计研究[J]. 地震学报,34(5):633–645. doi: 10.3969/j.issn.0253-3782.2012.05.005

    Chen K,Yu Y X,Gao M T,Feng J. 2012. Study on bias correction of ShakeMaps based on limited acceleration records[J]. Acta Seismologica Sinica,34(5):633–645 (in Chinese).

    马强. 2008. 地震预警技术研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 1−154.

    Ma Q. 2008. Study and Application on Earthquake Early Warning[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1−154 (in Chinese).

    马强,李水龙,李山有,陶冬旺. 2014. 不同地震动参数与地震烈度的相关性分析[J]. 地震工程与工程振动,34(4):83–92.

    Ma Q,Li S L,Li S Y,Tao D W. 2014. On the correlation of ground motion parameters with seismic intensity[J]. Earthquake Engineering and Engineering Dynamics,34(4):83–92 (in Chinese).

    彭朝勇,杨建思,薛兵,陈阳,朱小毅. 2013. 基于汶川主震及余震的预警参数与震级相关性研究[J]. 地球物理学报,56(10):3404–3415. doi: 10.6038/cjg20131016

    Peng C Y,Yang J S,Xue B,Chen Y,Zhu X Y. 2013. Research on correlation between early-warning parameters and magnitude for the Wenchuan earthquake and its aftershocks[J]. Chinese Journal of Geophysics,56(10):3404–3415 (in Chinese).

    宋晋东,教聪聪,李山有,侯宝瑞. 2018a. 基于地震P波双参数阈值的高速铁路Ⅰ级地震警报预测方法[J]. 中国铁道科学,39(1):138–144.

    Song J D,Jiao C C,Li S Y,Hou B R. 2018a. Prediction method of first-level earthquake warning for high speed railway based on two-parameter threshold of seismic P-wave[J]. China Railway Science,39(1):138–144 (in Chinese).

    宋晋东,教聪聪,李山有,侯宝瑞,汪源. 2018b. 一种基于地震早期辐射P波能量的高速铁路Ⅰ级地震警报预测方法[J]. 振动与冲击,37(19):14–22,38.

    Song J D,Jiao C C,Li S Y,Hou B R,Wang Y. 2018b. A predicting method for magnitude Ⅰ earthquake alarm of high-speed railways based on seismic early radiated P-wave energy[J]. Journal of Vibration and Shock,37(19):14–22,38 (in Chinese).

    王卫民,赵连锋,李娟,姚振兴. 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报,51(5):1403–1410. doi: 10.3321/j.issn:0001-5733.2008.05.013

    Wang W M,Zhao L F,Li J,Yao Z X. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan,China[J]. Chinese Journal of Geophysics,51(5):1403–1410 (in Chinese).

    王玉石,周正华,兰日清. 2010. 利用修正谱烈度确定我国西部地区仪器烈度的建议方法[J]. 应用基础与工程科学学报,18(增刊1):119–129.

    Wang Y S,Zhou Z H,Lan R Q. 2010. A proposed method for instrumental intensity determination in west China using modified spectrum intensity[J]. Journal of Basic Science and Engineering,18(S1):119–129 (in Chinese).

    张红才. 2013. 地震预警系统关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所: 1−161.

    Zhang H C. 2013. Study of Key Technologies in Earthquake Early Warning System[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1−161 (in Chinese).

    中国地震局. 2008. 汶川8.0级地震烈度分布图[EB/OL]. [2008-09-01]. https://www.cea.gov.cn/cea/xwzx/xydt/5219388/index.html.

    China Earthquake Administration. 2008. Seismic intensity distribution map of the 2008 MS8.0 Wenchuan earthquake[EB/OL]. [2008-09-01]. https://www.cea.gov.cn/cea/xwzx/xydt/5219388/index.html (in Chinese).

    中国地震局. 2013.中国地震局发布四川省芦山" 4·20”7.0级强烈地震烈度图[EB/OL]. [2013-04-25]. https://www.cea.gov.cn/cea/zwgk/tzgg/5195230/index.html.

    China Earthquake Administration. 2013. China Earthquake Administration released the seismic intensity distribution map of the " 4·20” MS 7.0 Lushan, Sichuan, earthquake[EB/OL]. [2013-04-25]. https://www.cea.gov.cn/cea/zwgk/tzgg/5195230/index.html (in Chinese).

    中国地震局. 2014. 中国地震局发布云南鲁甸6.5级地震烈度图[EB/OL]. [2014-08-07]. https://www.cea.gov.cn/cea/dzpd/dzzt/3571618/3571619/3577650/index.html.

    China Earthquake Administration. 2014. China Earthquake Administration released the seismic intensity distribution map of the MS 6.5 Ludian, Yunnan, earthquake[EB/OL]. [2014-08-07]. https://www.cea.gov.cn/cea/dzpd/dzzt/3571618/3571619/3577650/index.html (in Chinese).

    Allen T I,Wald D J. 2009. On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30)[J]. Bull Seismol Soc Am,99(2A):935–943. doi: 10.1785/0120080255

    Atkinson G M,Kaka S I. 2007. Relationships between felt intensity and instrumental ground motion in the central United States and California[J]. Bull Seismol Soc Am,97(2):497–510. doi: 10.1785/0120060154

    Colombelli S,Amoroso O,Zollo A,Kanamori H. 2012a. Test of a threshold-based earthquake early-warning method using Japanese data[J]. Bull Seismol Soc Am,102(3):1266–1275. doi: 10.1785/0120110149

    Colombelli S,Zollo A,Festa G,Kanamori H. 2012b. Early magnitude and potential damage zone estimates for the great MW9 Tohoku-Oki earthquake[J]. Geophys Res Lett,39(22):L22306.

    Colombelli S,Zollo A,Festa G,Picozzi M. 2014. Evidence for a difference in rupture initiation between small and large earthquakes[J]. Nat Commun,5:3958. doi: 10.1038/ncomms4958

    Cua G, Heaton T. 2007.The virtual seismologist (VS) method: A bayesian approach to earthquake early warning[G]//Earthquake Early Warning Systems. Heidelberg: Springer: 97−132.

    Horiuchi S,Negishi H,Abe K,Kamimura A,Fujinawa Y. 2005. An automatic processing system for broadcasting earthquake alarms[J]. Bull Seismol Soc Am,95(2):708–718. doi: 10.1785/0120030133

    Lu M,Li X J,An X W,Zhao J X. 2010. A preliminary study on the near-source strong-motion characteristics of the great 2008 Wenchuan earthquake in China[J]. Bull Seismol Soc Am,100(5B):2491–2507. doi: 10.1785/0120090132

    Moratto L,Costa G,Suhadolc P. 2009. Real-time generation of ShakeMaps in the southeastern Alps[J]. Bull Seismol Soc Am,99(4):2489–2501. doi: 10.1785/0120080283

    Peng C Y,Yang J S,Xue B,Zhu X Y,Chen Y. 2014. Exploring the feasibility of earthquake early warning using records of the 2008 Wenchuan earthquake and its aftershocks[J]. Soil Dyn Earthq Eng,57:86–93. doi: 10.1016/j.soildyn.2013.11.005

    Peng C Y,Yang J S,Chen Y,Zhu X Y,Xu Z Q,Zheng Y,Jiang X D. 2015. Application of a threshold-based earthquake early warning method to the MW6.6 Lushan earthquake,Sichuan,China[J]. Seismol Res Lett,86(3):841–847. doi: 10.1785/0220140053

    Peng C Y,Yang J S,Zheng Y,Zhu X Y,Xu Z Q,Chen Y. 2017a. New τc regression relationship derived from all P wave time windows for rapid magnitude estimation[J]. Geophys Res Lett,44(4):1724–1731.

    Peng C Y,Chen Y,Chen Q S,Yang J S,Wang H T,Zhu X Y,Xu Z Q,Zheng Y. 2017b. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning[J]. Comput Geosci,100:179–187. doi: 10.1016/j.cageo.2017.01.001

    Satriano C,Lomax A,Zollo A. 2008. Real-time evolutionary earthquake location for seismic early warning[J]. Bull Seismol Soc Am,98(3):1482–1494. doi: 10.1785/0120060159

    Shieh J T,Wu Y M,Allen R M. 2008. A comparison of τc and τ $_{\rm {P}}^{\rm {max}}$ for magnitude estimation in earthquake early warning[J]. Geophys Res Lett,35(20):L20301. doi: 10.1029/2008GL035611

    Teng T L,Wu L D,Shi T C,Tsai Y B,Lee W H K. 1997. One minute after:Strong-motion map,effective epicenter,and effective magnitude[J]. Bull Seismol Soc Am,87(5):1209–1219.

    Wald D J,Quitoriano V,Heaton T H,Kanamori H. 1999. Relationships between peak ground acceleration,peak ground velocity,and modified Mercalli intensity in California[J]. Earthq Spectra,15(3):557–564. doi: 10.1193/1.1586058

    Wald D J, Worden B C, Quitoriano V, Pankow K L. 2006. ShakeMap Manual: Technical Manual, User’s Guide, and Software Guide[R]. [2012-02-04]. http://pubs.usgs.gov/tm/2005/12A01/.

    Wang W T,Ni S D,Chen Y,Kanamori H. 2009. Magnitude estimation for early warning applications using the initial part of P waves:A case study on the 2008 Wenchuan sequence[J]. Geophys Res Lett,36(16):L16305. doi: 10.1029/2009GL038678

    Worden C B,Wald D J,Allen T I,Lin K W,García D,Cua G. 2010. A revised ground-motion and intensity interpolation scheme for ShakeMap[J]. Bull Seismol Soc Am,100(6):3083–3096. doi: 10.1785/0120100101

    Wu Y M,Zhao L. 2006. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning[J]. Geophys Res Lett,33(16):L16312. doi: 10.1029/2006GL026871

    Wu Y M,Kanamori H. 2008. Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake[J]. Earth Planets Space,60(2):155–160. doi: 10.1186/BF03352778

    Wu Y M,Shin T C,Chang C H. 2001. Near real-time mapping of peak ground acceleration and peak ground velocity following a strong earthquake[J]. Bull Seismol Soc Am,91(5):1218–1228.

    Wu Y M,Teng T L,Shin T C,Hsiao N C. 2003. Relationship between peak ground acceleration,peak ground velocity,and intensity in Taiwan[J]. Bull Seismol Soc Am,93(1):386–396. doi: 10.1785/0120020097

    Zhang H C,Jin X,Wei Y X,Li J,Kang L C,Wang S C,Huang L Z,Yu P Q. 2016. An earthquake early warning system in Fujian,China[J]. Bull Seismol Soc Am,106(2):755–765. doi: 10.1785/0120150143

    Zhang Y,Feng W P,Xu L S,Zhou C H,Chen Y T. 2009. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake[J]. Sci China Ser D:Earth Sci,52(2):145–154. doi: 10.1007/s11430-008-0148-7

    Zollo A,Amoroso O,Lancieri M,Wu Y M,Kanamori H. 2010. A threshold-based earthquake early warning using dense accelero-meter networks[J]. Geophys J Int,183(2):963–974. doi: 10.1111/j.1365-246X.2010.04765.x

图(6)  /  表(1)
计量
  • 文章访问数:  1629
  • HTML全文浏览量:  993
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-30
  • 修回日期:  2019-02-19
  • 网络出版日期:  2019-05-21
  • 发布日期:  2019-04-30

目录

    /

    返回文章
    返回