Quantitative effect of regional one-dimensional velocity models on earthquake relocation:Take the 2017 Jiuzhaigou MS7.0 earthquake sequence as an example
-
摘要: 利用2017年8月1日至2017年12月31日四川地震台网和甘肃地震台网记录到的发生在青藏高原东缘的731个地震事件的9 284条Pg震相到时数据,首先反演了该地区的“最小一维速度模型”,并将该模型和选取的速度模型建立对比模型,以九寨沟地震序列为研究目标,定量讨论了两种速度模型分别在绝对定位和相对定位方法中对定位结果的影响。所得定位结果表明:反演获得的“最小一维速度模型”在重定位中可以有效地减小地震走时均方根残差;绝对定位比相对定位更加依赖于一维速度模型,一维速度模型会直接影响绝对定位结果中的震源分布形态,但在相对定位结果中仅起到调整地震事件相对位置的作用;在地震绝对定位中,震级越大的地震对于速度模型越敏感,而这一特点在相对定位中表现得并不明显。通过本项研究可知,在地震定位研究中,联合采用绝对定位和相对定位方法是最佳策略。
-
关键词:
- 2017年九寨沟MS7.0地震 /
- “最小一维速度模型” /
- 绝对地震定位 /
- 相对地震定位
Abstract: Using 9 284 Pg phase arrival times of 731 earthquakes occurred in the eastern margin of the Tibetan Plateau recorded by Sichuan and Gansu Seismic Networks from August 1, 2017 to December 31, 2017, this paper determine “the minimum one-dimensional velocity model” for the area by inversion. “The minimum one-dimensional velocity model” and the selected comparative velocity model are used to establish the comparative models. Taking the Jiuzhaigou earthquake sequence as the research object, we quantitatively discuss the effects of two velocity models on the positioning results in absolute seismic location and relative seismic location methods. The results show that “the minimum one-dimensional velocity model” obtained by inversion can effectively reduce the root-mean-square residuals of travel time in relocation. Absolute seismic location method is more dependent on one-dimensional velocity model than relative seismic location. Furthermore, one-dimensional velocity model will directly affect the distribution pattern of hypocenters in absolute location, but only adjust the relative position of seismic events in relative location. In absolute location of earthquakes, the earthquake with larger magnitude is more sensitive to velocity model, which is not obvious in relative location. Therefore, the combination of absolute location method and relative location method is the best strategy in earthquake relocation. -
-
图 2 初始一维输入速度模型 (a),反演得到的一维输出速度模型 (b)及不同速度模型下地震走时均方根(RMS)残差随迭代次数增加对应的变化 (c)
Figure 2. Initial 1-D input P wave velocity model (a),1-D output velocity model obtained by inversion (b), variation of root mean square (RMS) of travel time residuals corresponding to different velocity models with increasing iterations (c)
图 5 使用“最小一维速度模型”及台站校正值进行绝对定位前后的震源分布图(a,b,c)及走时均方根(RMS)残差统计分布图(d)
蓝色圆圈表示初始震源位置,红色圆圈表示绝对定位后的震源位置,黄色星形和绿色星形分别表示九寨沟MS7.0主震初始位置和绝对定位后的位置;图(a)中AA′和BB′分别表示平行于、垂直于余震分布方向的两条剖面线,两条剖面线交于O点。图(b)和图(c)分别为震源沿经度和纬度方向的投影. 图6中相应符号的意思同此
Figure 5. Distribution of hypocenters before and after absolute relocation by using “the minimum 1-D velocity model” and station correction (a,b,c) and statistical distribution of travel time RMS residuals (d)
Blue solid circles denote the initial focal location,red solid circles denote the hypocenters after absolute relocation,yellow and green stars denote the initial location and absolute relocation of Jiuzhaigou MS7.0 mainshock,respectively. In Fig. (a) AA′ and BB′ represent two profile lines parallel to and perpendicular to the distribution direction of aftershocks,respectively. The two profiles intersect at O. Figs. (b) and (c) denote the distribution of focal depths along longitude and latitude directions,respectively. All these are the same in Fig. 6
图 7 AA′和BB′深度剖面上绝对定位后的震源分布图
图(a)和(b)表示使用“最小一维速度模型”及台站校正值进行绝对定位的结果,图(c)和(d)表示使用模型Ⅲ进行绝对定位的结果,红色星形表示九寨沟MS7.0主震绝对定位后的位置
Figure 7. Distribution of hypocenters after absolute relocation along profiles AA′ and BB′
Figs. (a) and (b) denote the hypocenters after absolute relocation by using “the minimum 1-D velocity model” and station correction,Figs. (c) and (d) denote the hypocenters after absolute relocation by using model Ⅲ,and the red stars denote the location of Jiuzhaigou MS7.0 mainshock after absolute relocation
图 8 使用“最小一维速度模型”进行相对定位前后的震源分布图(a,b,c)及走时均方根(RMS)残差统计分布图(d)
蓝色圆圈表示相对定位前的震源位置,这里采用的是使用“ 最小一维速度模型”和台站校正值在初始位置上进行绝对定位之后的位置,红色圆圈表示相对定位后的震源位置,黄色星形和绿色星形分别表示相对定位前九寨沟MS7.0主震位置和相对定位后九寨沟MS7.0主震位置。图(a)中AA′和BB′分别表示平行于余震分布方向和垂直于余震分布方向的两条剖面线(剖面线位置同图5),两条剖面线交于O点;图(b)和(c)分别为震源沿经度和纬度方向的投影。图9中相应符号的意思同此
Figure 8. The distribution of hypocenters before and after relative relocation by using “the minimum 1-D velocity model” (a,b,c) and statistical distribution of travel time RMS residuals (d)
Blue solid circles denote the hypocenters before relative relocation,and here we use the data after absolute relocation at the initial position by using “the minimum 1-D velocity model” and station correction,red solid circles denote the hypocenters after relative relocation,yellow and green stars denote the location of Jiuzhaigou MS7.0 main shock before and after relative relocation,respectively. AA′ and BB′ represents the two profile lines parallel to and perpendicular to the distribution direction of aftershocks,respectively. The position of profile lines is the same as Fig. 5. The two profiles intersect at O. Figs. (b) and (c) denote the distribution of focal depths along longitude and latitude directions. All these are the same in Fig. 9
图 10 AA′及BB′深度剖面上相对定位后震源分布图
图(a)和(b)表示使用“最小一维速度模型”进行相对定位的结果,图(c)和(d)表示使用模型Ⅲ进行相对定位的结果,红色星形表示九寨沟MS7.0主震相对定位后的位置
Figure 10. Distribution of hypocenters after relative relocation at profiles of AA′ and BB′
Figs. (a) and (b) denote the hypocenters after relative relocation by using “the minimum 1-D velocity model”,Figs. (c) and (d) denote the hypocenters after relative relocation by using model Ⅲ,the red stars denote the location of Jiuzhaigou MS7.0 mainshock after relative relocation
图 11 相对定位后不同震级的震源深度分布统计图
图(a)−(c)表示使用“最小一维速度模型”进行相对定位的结果,图(d)−(f)表示使用模型Ⅲ进行相对定位的结果
Figure 11. Histogram of depth distribution of hypocenters with different magnitudes after relative relocation
Figs. (a)−(c) denote the hypocenters after relative relocation by using “the minimum 1-D velocity model”,Figs. (d)−(f) denote the hypocenters after relative relocation by using model Ⅲ
-
陈雯. 2018. VELEST在地震定位中的运用[D]. 昆明: 云南大学: 56–72. Chen W. 2018. Application of VELEST in Earthquake Location[D]. Kunming: Yunnan University: 56–72 (in Chinese).
房立华,吴建平,苏金蓉,王毛毛,蒋策,范莉苹,王未来,王长在,谭夏露. 2018. 四川九寨沟MS7.0地震主震及其余震序列精定位[J]. 科学通报,63(7):649–662. Fang L H,Wu J P,Su J R,Wang M M,Jiang C,Fan L P,Wang W L,Wang C Z,Tan X L. 2018. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake[J]. Chinese Science Bulletin,63(7):649–662 (in Chinese). doi: 10.1360/N972017-01184
黄晓萍,朱介寿,曹家敏,黄玉婷,蒋科植,王成,江晓涛,杨宜海. 2012. 用非均匀速度模型对汶川8.0级地震余震重新定位[J]. 成都理工大学学报(自然科学版),39(3):328–335. Huang X P,Zhu J S,Cao J M,Huang Y T,Jiang K Z,Wang C,Jiang X T,Yang Y H. 2012. Nonuniform velocity model used in the relocation of Wenchuan MS8.0 earthquake and aftershocks[J]. Journal of Chengdu University of Technology (Science &Technology Edition)
,39(3):328–335 (in Chinese). 李敏娟,沈旭章,张元生,刘旭宙,梅秀苹. 2018. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析[J]. 地球物理学报,61(5):2075–2087. Li M J,Shen X Z,Zhang Y S,Liu X Z,Mei X P. 2018. Fine crustal structures of northeast margin of the Tibetan Plateau and structural features of Jiuzhaigou earthquake focal area constrained by the data from a high-density seismic array[J]. Chinese Journal of Geophysics,61(5):2075–2087 (in Chinese).
梁建宏,孙丽,刘杰. 2018. 2017年四川九寨沟MS7.0地震及余震精定位研究[J]. 地球物理学报,61(5):2152–2162. Liang J H,Sun L,Liu J. 2018. A high precision relocation study of the MS7.0 Jiuzhaigou earthquake and the aftershocks occurred in 2017[J]. Chinese Journal of Geophysics,61(5):2152–2162 (in Chinese).
梁姗姗,雷建设,徐志国,徐锡伟,邹立晔,刘敬光,陈宏峰. 2018. 2017年四川九寨沟MS7.0强震的余震重定位及主震震源机制反演[J]. 地球物理学报,61(5):2163–2175. Liang S S,Lei J S,Xu Z G,Xu X W,Zou L Y,Liu J G,Chen H F. 2018. Relocation of aftershocks of the 2017 Jiuzhaigou,Sichuan,MS7.0 earthquake and inversion for focal mechanism of the mainshock[J]. Chinese Journal of Geophysics,61(5):2163–2175 (in Chinese).
吕作勇,叶春明,房立华. 2016. 不同一维速度模型的地震定位效果比较:以小江断裂带为例[J]. 华南地震,36(3):43–50. Lü Z Y,Ye C M,Fang L H. 2016. Comparison of earthquake location effect of different 1D velocity model:Application to Xiaojiang fault zone[J]. South China Journal of Seismology,36(3):43–50 (in Chinese).
田玥,陈晓非. 2002. 地震定位研究综述[J]. 地球物理学进展,17(1):147–155. Tian Y,Chen X F. 2002. Review of seismic location study[J]. Progress in Geophysics,17(1):147–155 (in Chinese).
王同军,黄春梅,舒涛,戴应洪,甘利涛. 2017. 四川2015速度模型在九寨沟MS7.0地震震源深度测定中的应用[J]. 中国地震,33(4):503–510. Wang T J,Huang C M,Shu T,Dai Y H,Gan L T. 2017. Application of 2015 model in focal depth of the Jiuzhaigou MS7.0 earthquake located in the Sichuan seismic network[J]. Earthquake Research in China,33(4):503–510 (in Chinese).
王小娜,于湘伟,章文波,王思琳. 2015. 龙门山断裂带南段地壳一维P波速度结构[J]. 地震研究,38(1):16–24. Wang X N,Yu X W,Zhang W B,Wang S L. 2015. 1D P wave velocity structure in the south segment of Longmenshan fault zone[J]. Journal of Seismological Research,38(1):16–24 (in Chinese).
王小娜. 2015. 川滇地区地震重定位及P波速度结构研究[D]. 北京: 中国科学院大学: 31–34. Wang X N. 2015. Study on Earthquake Relocation and P-Wave Velocity Strcture in Sichuan-Yunnan Area[D]. Beijing: University of Chinese Academy of Sciences, 31–34 (in Chinese).
谢祖军,郑勇,姚华建,房立华,张勇,刘成利,王毛毛,单斌,张会平,任俊杰,季灵运,宋美琴. 2018. 2017年九寨沟MS7.0地震震源性质及发震构造初步分析[J]. 中国科学:地球科学,48(1):79–92. Xie Z J,Zheng Y,Yao H J,Fang L H,Zhang Y,Liu C L,Wang M M,Shan B,Zhang H P,Ren J J,Ji L J,Song M Q. 2018. Preliminary analysis on the source properties and seismogenic structure of the 2017 MS7.0 Jiuzhaigou earthquake[J]. Science China Earth Sciences,61(3):339–352. doi: 10.1007/s11430-017-9161-y
杨文东,金星,李山有,马强. 2005. 地震定位研究及应用综述[J]. 地震工程与工程振动,25(1):14–20. Yang W D,Jin X,Li S Y,Ma Q. 2005. Study of seismic location methods[J]. Earthquake Engineering and Engineering Vibration,25(1):14–20 (in Chinese).
易桂喜,龙锋,梁明剑,张会平,赵敏,叶有清,张致伟,祁玉萍,王思维,宫悦,乔惠珍,汪智,邱桂兰,苏金蓉. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报,60(10):4083–4097. Yi G X,Long F,Liang M J,Zhang H P,Zhao M,Ye Y Q,Zhang Z W,Qi Y P,Wang S W,Gong Y,Qiao H Z,Wang Z,Qiu G L,Su J R. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks,northern Sichuan[J]. Chinese Journal of Geophysics,60(10):4083–4097 (in Chinese).
于湘伟,陈运泰,张怀. 2010. 京津唐地区中小地震重新定位[J]. 地震学报,32(3):257–269. Yu X W,Chen Y T,Zhang H. 2010. Relocation of earthquakes in Beijing-Tianjin-Tangshan region with double-difference tomography technique[J]. Acta Seismologica Sinica,32(3):257–269 (in Chinese).
赵珠,张润生. 1987. 四川地区地壳上地幔速度结构的初步研究[J]. 地震学报,9(2):154–166. Zhao Z,Zhang R S. 1987. Primary study of crustal and upper mantle velocity structure of Sichuan Province[J]. Acta Seismologica Sinica,9(2):154–166 (in Chinese).
朱介寿,王绪本,杨宜海,范军,程先琼. 2017. 青藏高原东缘的地壳流及动力过程[J]. 地球物理学报,60(6):2038–2057. Zhu J S,Wang X B,Yang Y H,Fan J,Cheng X Q. 2017. The crustal flow beneath the eastern margin of the Tibetan Plateau and its process of dynamics[J]. Chinese Journal of Geophysics,60(6):2038–2057 (in Chinese).
Kissling E,Ellsworth W L,Eberhart-Phillips D,Kradolfer U. 1994. Initial reference models in local earthquake tomography[J]. J Geophys Res:Solid Earth,99(B10):19635–19646. doi: 10.1029/93JB03138
Kissling E,Solarino S,Cattaneo M. 1995. Improved seismic velocity reference model from local earthquake data in northwestern Italy[J]. Terr Nova,7(5):528–534. doi: 10.1111/j.1365-3121.1995.tb00554.x
Klein F W. 2002. User’s Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes[R]. US Geol Surv Open File Rept 2002-171: 1–123.
Lee W H K, Lahr J C. 1972. HYPO71: A Computer Program for Determining Hypocenter, Magnitude, and First Motion Pattern of Local Earthquakes[R]. US Geol Surv Open File Rept 72-224. doi: 10.3133/ofr72224.
Lienert B R,Berg E,Frazer L N. 1986. HYPOCENTER:An earthquake location method using centered,scaled,and adaptively damped least squares[J]. Bull Seismol Soc Am,76(3):771–783.
Lin G Q,Shearer P M,Hauksson E. 2007. Applying a three‐dimensional velocity model,waveform cross correlation,and cluster analysis to locate southern California seismicity from 1981 to 2005[J]. J Geophys Res:Solid Earth,112(B12):B12309. doi: 10.1029/2007JB004986
Long F,Yi G X,Wang S W,Qi Y P,Zhao M. 2019. Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS7.0 Jiuzhaigou earthquake sequence,northern Sichuan,China[J]. Earth Planet Phys,3(3):253–267. doi: 10.26464/epp2019027
Musumeci C,Di Grazia G,Gresta S. 2003. Minimum 1-D velocity model in southeastern Sicily (Italy) from local earthquake data:An improvement in location accuracy[J]. J Seismol,7(4):469–478. doi: 10.1023/B:JOSE.0000005716.42446.da
Riaz M S,Zheng Y,Liu F,Zeng S J,Kai W,Gilani S M M. 2019. Tomographic imaging of the 2017 MS7.0 Jiuzhaigou earthquake source region and its implications on material extrusion in the northeast Tibetan Plateau[J]. Tectonophysics,752:24–34. doi: 10.1016/j.tecto.2018.12.026
Spence W. 1980. Relative epicenter determination using P-wave arrival-time differences[J]. Bull Seismol Soc Am,70(1):171–183.
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368.
Waldhauser F,Ellsworth W L. 2002. Fault structure and mechanics of the Hayward fault,California,from double‐difference earthquake locations[J]. J Geophys Res:Solid Earth,107(B3):ESE 3-1–ESE 3-15.
Wang C Y,Han W B,Wu J P,Lou H,Chan W W. 2007. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications[J]. J Geophys Res:Solid Earth,112(B7):B07307.
Wessel P,Smith W H F,Scharroo R,Luis J,Wobbe F. 2013. Generic Mapping Tools:Improved version released[J]. Eos,Trans Am Geophy Un,94(45):409–410.
Wessel P,Smith W H F. 1998. New,improved version of generic mapping tools released[J]. Eos,Trans Am Geophys Un,79(47):579. doi: 10.1029/98EO00426
Wu Y M,Chang C H,Hsiao N-C,Francis T W. 2003. Relocation of the 1998 Rueyli,Taiwan,earthquake sequence using three-dimensions velocity structure with stations corrections[J]. Terr Atmos Ocean Sci,14(4):421–430. doi: 10.3319/TAO.2003.14.4.421(T)
Xu L S,Zhang X,Li C L. 2018. Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake? [J]. Earth Planet Phys,2(2):163–169. doi: 10.26464/epp2018016