含流体层的河谷场地对地震波散射的间接边界元法模拟

黄磊, 刘中宪, 张雪, 李程程

黄磊, 刘中宪, 张雪, 李程程. 2020: 含流体层的河谷场地对地震波散射的间接边界元法模拟. 地震学报, 42(6): 657-668. DOI: 10.11939/jass.20200008
引用本文: 黄磊, 刘中宪, 张雪, 李程程. 2020: 含流体层的河谷场地对地震波散射的间接边界元法模拟. 地震学报, 42(6): 657-668. DOI: 10.11939/jass.20200008
Huang Lei, Liu Zhongxian, Zhang Xue, Li Chengcheng. 2020: IBEM simulation of seismic wave scattering by valley topography with fluid layer. Acta Seismologica Sinica, 42(6): 657-668. DOI: 10.11939/jass.20200008
Citation: Huang Lei, Liu Zhongxian, Zhang Xue, Li Chengcheng. 2020: IBEM simulation of seismic wave scattering by valley topography with fluid layer. Acta Seismologica Sinica, 42(6): 657-668. DOI: 10.11939/jass.20200008

含流体层的河谷场地对地震波散射的间接边界元法模拟

基金项目: 国家自然科学基金(51878434)、天津市自然基金重点项目(18JCZDJC39200)和天津市科技支撑计划重点项目(17YFZCSF01140)共同资助
详细信息
    通讯作者:

    刘中宪: e-mail:zhongxian1212@163.com

  • 中图分类号: P315.3+1

IBEM simulation of seismic wave scattering by valley topography with fluid layer

  • 摘要: 结合单相介质动力格林函数和流体域格林函数,将间接边界元方法拓展到含流体层河谷对地震波散射的求解,并结合具体算例进行大量参数分析。研究结果表明,含流体层河谷地形对平面P波、SV波入射时的地震响应受控于入射波频率、入射波角度及流体深度等多种因素。总体来看:① 在低频域内,含流体河谷底部及附近地表的频谱特性与不含流体的河谷反应基本一致;② P波入射时在水层体系共振频率处,河谷底部位移缩小效应显著,而此频率处流体表面位移达到最大;③ 流体层具有吸收地震波能量的作用,流体深度越大,河谷表面及附近地表的地震动位移越小。研究成果可在一定程度上为河谷地形附近地震动效应的评估及防震减灾工作提供理论依据。
    Abstract: Combined with the dynamic Green’s function of single-phase medium and the Green’s function in the fluid domain, the indirect boundary element method is developed to solve the scattering of valley topography with fluid on plane P and SV waves, and the parameter analysis is carried out in combination with specific examples. The results show that the seismic response of valley topography with fluid layer to plane P and SV waves is controlled by many factors, such as incident wave frequency, incident wave angle and the depth of fluid. Generally speaking: ① In the low frequency domain, the frequency spectrum characteristics of the valley bottom and the nearby surface are basically the same in the valley with or without water. ② When P wave incidents, at the resonance frequency of this aquifer system, the displacement at the bottom of the valley decreases significantly, but the displacement of fluid surface reaches the maximum. ③ The fluid layer has the function of absorbing seismic wave energy. The larger the fluid depth is, the smaller the ground motion displacement of the valley surface and nearby ground is. The results can provide a theoretical basis for the evaluation of the ground motion effect near the valley terrain and the work of earthquake prevention and mitigation.
  • 图  1   含流体层沉积河谷对地震波的散射计算模型

    (a) 含流体河谷计算模型;(b) 单元离散

    Figure  1.   Calculation model of seismic wave scattering by sedimentary valley with fluid layer

    (a) Calculation model of the valley with fluid layer;(b) Element discretization

    图  2   含流体半圆形河谷计算模型

    Figure  2.   Calculation model of semi-circular valley with fluid layer

    图  3   平面SV波入射下本文含水河谷退化位移与文献结果对比 (引自Sánchez-Sesma,Campillo,1991

    Figure  3.   Comparison between the degradation displacement of water bearing valley of this paper and the results of literature induced by plane SV waves (after Sánchez-Sesma,Campillo,1991

    (a) η=2.0,θβ=0°;(b) η=2.0,θβ=30°

    图  4   平面P波入射下不含流体的河谷与充满流体的河谷竖向位移放大系数对比

    Figure  4.   Comparison of vertical displacement amplification factors between the valley without fluid and the valley full of fluid induced by plane P waves

    (a) η=0.5,θα=0°;(b) η=2.0,θα=0°;(c) η=5.0,θα=0°;(d) η=0.5,θα=30°;(e) η=2.0,θα=30°;(f) η=5.0,θα=30°

    图  5   平面SV波入射下不含流体的河谷与充满流体的河谷水平位移放大系数对比

    Figure  5.   Comparison of horizontal displacement amplification factors between the valley without fluid and the valley full of fluid induced by plane SV waves

    (a) η=0.5,θα=0°;(b) η=2.0,θα=0°;(c) η=5.0,θα=0°;(d) η=0.5,θα=30°;(e) η=2.0,θα=30°;(f) η=5.0,θα=30°

    图  6   平面P波入射下充满流体的河谷表面和流体表面位移放大系数谱

    Figure  6.   Displacement amplification factor spectrum of the valley surface with full of fluid and that of the fluid surface induced by plane P waves

    (a) x/a=0,θα=0°;(b) x/a=0.5,θα=0°;(c) x/a=0,θα=30°;(d) x/a=0.5,θα=30°

    图  7   平面P波入射下不含流体的河谷与充满流体的河谷竖向位移放大系数谱

    Figure  7.   Amplification factor spectrum of vertical displacement for the valley without fluid and the valley full of fluid induced by plane P waves

    (a) x/a=0,θα=0°;(b) x/a=0.5,θα=0°;(c) x/a=1.5,θα=0°;(d) x/a=0,θα=30°;(e) x/a=0.5,θα=30°;(f) x/a=1.5,θα=30°

    图  8   平面SV波入射下不含流体的河谷与充满流体的河谷水平位移放大系数谱

    Figure  8.   Amplification factor spectrum of horizontal displacement for the valley without fluid and the valley full of fluid induced by plane SV waves

    (a) x/a=0,θα=0°;(b) x/a=0.5,θα=0°;(c) x/a=1.5,θα=0°;(d) x/a=0,θα=30°;(e) x/a=0.5,θα=30°;(f) x/a=1.5,θα=30°

    图  9   平面P波入射下流体深度不同时河谷表面的竖向位移放大系数

    Figure  9.   Vertical displacement amplification factor of the valley surface with different fluid depth induced by P waves

    (a) η=0.5,θα=0°;(b) η=2.0,θα=0°;(c) η=5.0,θα=0°;(d) η=0.5,θα=30°;(e) η=2.0,θα=30°;(f) η=5.0,θα=30°

    图  10   平面SV波入射下流体深度不同时河谷表面的水平位移放大系数

    Figure  10.   Horizontal displacement amplification factor of the valley surface with different fluid depth induced by plane SV waves

    (a) η=0.5,θα=0°;(b) η=2.0,θα=0°;(c) η=5.0,θα=0°;(d) η=0.5,θα=30°;(e) η=2.0,θα=30°;(f) η=5.0,θα=30°

    表  1   含流体层河谷地形对平面P波、SV波的地震响应计算参数

    Table  1   Calculation parameters of seismic response of valley terrain with fluid layer for plane P wave and SV wave

    P波波速cα/(m·s−1SV波波速cβ/(m·s−1密度ρ/(kg·m−3
    空气3301.29
    流体1 5011 000
    弹性土体2 6701 0902 200
    下载: 导出CSV
  • 陈少林,张莉莉,李山有. 2014. 半圆柱型沉积盆地对SH波散射的数值分析[J]. 工程力学,31(4):218–224. doi: 10.6052/j.issn.1000-4750.2012.11.0819

    Chen S L,Zhang L L,Li S Y. 2014. Numerical analysis of the plane SH waves scattering by semi-cylindrical alluvial valley[J]. Engineering Mechanics,31(4):218–224 (in Chinese).

    杜修力,雷枝,李亮,王进廷. 2015. 地震和波浪联合作用下自由场海水动水压力分析[J]. 世界地震工程,31(3):1–9.

    Du X L,Lei Z,Li L,Wang J T. 2015. Hydrodynamic pressures analysis of free field seawater under coactions of earthquake and wave[J]. World Earthquake Engineering,31(3):1–9 (in Chinese).

    李伟华,赵成刚. 2006. 具有饱和土沉积层的充水河谷对平面波的散射[J]. 地球物理学报,49(1):212–224. doi: 10.3321/j.issn:0001-5733.2006.01.028

    Li W H,Zhao C G. 2006. Scattering of plane waves by circular-arc alluvial valleys with saturated soil deposits and water[J]. Chinese Journal of Geophysics,49(1):212–224 (in Chinese).

    李伟华. 2010. 考虑水—饱和土场地—结构耦合时的沉管隧道地震反应分析[J]. 防灾减灾工程学报,30(6):607–613. doi: 10.3969/j.issn.1672-2132.2010.06.004

    Li W H. 2010. Seismic response analysis of immersed tube tunnel considering the dynamic interactions between water,stratum and structure influence of liquid parameters on the damage of buried pipeline[J]. Journal of Disaster Prevention and Mitigation Engineering,30(6):607–613 (in Chinese).

    梁建文,梁佳利,张季,巴振宁. 2017. 深厚软土场地中三维凹陷地形非线性地震响应分析[J]. 岩土工程学报,39(7):1196–1205. doi: 10.11779/CJGE201707005

    Liang J W,Liang J L,Zhang J,Ba Z N. 2017. Nonlinear seismic response of 3D canyon in deep soft soils[J]. Chinese Journal of Geotechnical Engineering,39(7):1196–1205 (in Chinese).

    刘中宪,于琴,何颖. 2017. 岩土介质随机性对沉积河谷地震动放大效应的影响[J]. 地震学报,39(5):764–777. doi: 10.11939/jass.2017.05.011

    Liu Z X,Yu Q,He Y. 2017. Effect of randomness of geotechnical medium on the seismic ground motion amplification effect of a sedimentary valley[J]. Acta Seismologica Sinica,39(5):764–777 (in Chinese).

    王进廷,金峰,张楚汉. 2003. 位于弹性半空间上的理想流体层动力反应—平面P波入射[J]. 工程力学,20(6):12–175. doi: 10.3969/j.issn.1000-4750.2003.06.003

    Wang J T,Jin F,Zhang C H. 2003. Dynamic response of ideal fluid layer overlying elastic half-space due to P-wave incidence[J]. Engineering Mechanics,20(6):12–175 (in Chinese).

    王进廷,张楚汉,金峰. 2004. 位于弹性半空间上的理想流体层动力反应—平面SV波入射[J]. 工程力学,21(1):15–20. doi: 10.3969/j.issn.1000-4750.2004.01.003

    Wang J T,Zhang C H,Jin F. 2004. Dynamic response of ideal fluid layer overlying elastic half-space due to SVP wave incidence[J]. Engineering Mechanics,21(1):15–20 (in Chinese).

    张奎,李伟华,赵成刚. 2018. 平面波入射下深水地基场地动力响应分析[J]. 岩土工程学报,40(6):1066–1074. doi: 10.11779/CJGE201806012

    Zhang K,Li W H,Zhao C G. 2018. Dynamic responses of an underwater site subjected to plane P- or SV- wave incidence[J]. Chinese Journal of Geotechnical Engineering,40(6):1066–1074 (in Chinese).

    张宁,高玉峰,何稼,徐婕,陈欣,代登辉. 2017. 平面 SH 波作用下部分充填圆弧形沉积谷的二维土层和地形放大效应[J]. 地震学报,39(5):778–797. doi: 10.11939/jass.2017.05.012

    Zhang N,Gao Y F,He J,Xu J,Chen X,Dai D H. 2017. Two-dimensional soil and topographic amplification effects of a partially filled circular-arc alluvial valley under plane SH waves[J]. Acta Seismologica Sinica,39(5):778–797 (in Chinese).

    赵成刚,王磊,李伟华. 2008. 具有饱和土沉积层的充水河谷对平面瑞雷波的散射[J]. 地球物理学报,51(5):1567–1573. doi: 10.3321/j.issn:0001-5733.2008.05.032

    Zhao C G,Wang L10.3321/j.issn:0001-5733.2008.05.032,Li W H 2008. Scattering of plane Rayleigh waves by circular-arc alluvial valleys with saturated soil deposits and water layer[J]. Chinese Journal of Geophysics,51(5):1567–1573 (in Chinese).

    周国良,李小军,侯春林,李铁萍. 2012. SV波入射下河谷地形地震动分布特征分析[J]. 岩土力学,33(4):1161–1166. doi: 10.3969/j.issn.1000-7598.2012.04.029

    Zhou G L,Li X J,Hou C L,Li T P. 2012. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves[J]. Rock and Soil Mechanics,33(4):1161–1166 (in Chinese).

    Alejandro Rodríguez-Castellanos A,Víctor Martínez-Calzada V,Rodríguez-Sánchez J E,Orozco-del-Castillo M,Carbajal-Romero M. 2014. Induced water pressure profiles due to seismic motions[J]. Appl Ocean Res,47:9–16. doi: 10.1016/j.apor.2014.03.004

    Carbajal-Romero M,Flores-Mendez E,Flores-Guzmán N,Núñez-Farfán J,Olivera-Villaseñor J,Sánchez-Sesma F J. 2013. Scholte waves on fluid-solid interfaces by means of an integral formulation[J]. Geofis Int,52(1):21–30.

    Liu Z X,Liang J W,Wu C Q. 2016. The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS[J]. Comput Geosci-UK,91:33–48. doi: 10.1016/j.cageo.2016.03.007

    Sánchez-Sesma F J,Campillo M. 1991. Diffraction of P,SV,and Rayleigh waves by topographic features:A boundary integral formulation[J]. Bull Seismol Soc Am,81(6):2234–2253.

    Wang J T,Zhang C H,Jin F. 2004. Analytical solutions for dynamic pressures of coupling fluid-solid-porous medium due to P wave incidence[J]. Earthq Eng Eng Vib,3(2):263–271. doi: 10.1007/BF02858240

    Wang J T,Zhang C H,Jin F. 2009. Analytical solutions for dynamic pressures of coupling fluid-porous medium-solid due to SV wave incidence[J]. Int J NumerAnal Met,33(12):1467–1484. doi: 10.1002/nag.773

    Zhang C,Liu Q J,Deng P. 2017. Surface motion of a half-space with a semicylindrical canyon under P,SV,and Rayleigh waves[J]. B Seismol Soc Am,107(2):809–820. doi: 10.1785/0120160207

  • 期刊类型引用(5)

    1. 程喜. 饱和复杂场地效应对大跨连续梁桥地震响应影响的研究. 震灾防御技术. 2024(01): 14-23 . 百度学术
    2. 赵仕兴,罗麒锐,唐元旭,吴启红,熊峰,周巧玲,卢丹,张敏. 复杂地形地质条件下地震动放大系数研究进展. 建筑结构. 2024(19): 51-58+73 . 百度学术
    3. 方志江,龚文剑,张仰鹏,焦晓东,颜志铭. 基于多种物探方法的公路下伏采空区病害识别与分析. 市政技术. 2024(10): 37-44+51 . 百度学术
    4. 刘中宪,周健,李程程,孟思博. 基于修正随机有限断层法的沉积盆地地震动模拟. 防灾减灾工程学报. 2023(05): 999-1008 . 百度学术
    5. 孟思博,赵嘉玮,刘中宪. 基于差分进化-人工神经网络的沉积河谷地震动放大效应预测模型. 地震学报. 2022(01): 170-181 . 本站查看

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  1091
  • HTML全文浏览量:  461
  • PDF下载量:  38
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-03-21
  • 网络出版日期:  2020-12-08
  • 发布日期:  2020-11-14

目录

    /

    返回文章
    返回