Influence of actual topography on the source dynamic rupture process and strong ground motion of the 2010 Yushu MS7.1 earthquake
-
摘要: 基于震源动力学模型,采用曲线网格有限差分法模拟了水平自由地表及实际地形条件下2010年玉树MS7.1地震的震源破裂过程及相应的地面地震动,获取了断层面上的破裂传播过程、最终滑移量分布及峰值地面速度分布,讨论了实际地形对玉树地震破裂过程及相应地震动的影响。基于本文设定的动力学模型,模拟结果显示:断层面上的高应力降是玉树地震出现超剪切破裂传播现象的主要原因;计算区域的实际地形阻碍了由自由地表引起的超剪切破裂的产生,对断层面滑移量的分布特征及滑动速率影响较大,进而在一定程度上降低了地震动峰值,同时对地震动的分布特征产生影响,且地震动平行断层面的水平分量相对受影响更大。Abstract: Based on the source dynamic models, the curved grid finite-difference method was implemented to simulate the dynamic rupture process and the resultant ground motions of the 2010 MS7.1 Yushu earthquake with horizontal free surface and actual topography respectively. Then the rupture propagation, final slip distribution and distribution of peak ground velocity were obtained to investigate the effect of actual topography on the dynamic rupture process of the Yushu earthquake and the resultant strong ground motions. Based on our models, the results show that the super-shear rupture occurred during the rupture propagation process, which was mainly induced by high stress drop on fault plane. The actual topography has prevented the generation of super-shear induced by free surface and has a great influence on the final slip distribution and slip rate on fault plane, then will affect the characteristics of ground motions as well as reduce the peak values of ground motions to a certain extent. The fault-parallel component of ground motion is relatively more affected. The investigation about the fault rupture dynamics will help us to understand well about the source rupture process and explain the characteristics of its strong ground motions, which is of great significance to more reasonably predict the ground motions of possible destructive earthquakes in the future.
-
引 言
地震波(P,S,pP,sP等)在传播过程中,遇到间断面会发生反射或转换,所产生的新震相(P410P,P660P,S410S,S660S,S410P,S660P,s410P等)为间断面(“410”,“660”等)的深入研究提供了地震学基础(Flanagan,Shearer,1998a; Deuss,2009; Schmerr,Thomas,2011). 这些前驱震相在单条记录中的能量(幅度)往往很弱,常淹没于噪声之中; 但是通过叠加大量的观测波形数据,则可以压制噪声,更加有效地提取与间断面相关的有用信号(Rost,Thomas,2002; 臧绍先,周元泽,2002).
很多研究者利用下行的转换震相在间断面的转换点深度确定该间断面的深度. 例如: Richards和Wicks(1990)使用SdP转换波,利用非线性叠加方法对汤加地区下方的“670”间断面的深度和性质进行了深入研究; 谢彩霞等(2012)利用4次根倾斜叠加方法有效提取了离源下行的SdP次生转换震相,进一步确认了汤加—斐济下方300 km附近速度间断面的存在; Li等(2008)通过叠加S--P转换波,计算了中国东北地区“660”间断面的深度,并探讨了俯冲带对“660”间断面的影响.
发生在俯冲带中的深震会在近源区速度间断面产生反射震相(p410P,s410P等)和转换震相(S410P,S660P等)(Flanagan,Shearer,1998b). 长周期震相(PP,SS)前驱波方法对狭窄俯冲带间断面的横向分辨具有很大局限性(Flanagan,Shearer,1998a; Schmerr,Thomas,2011). 接收函数方法是研究地球内部间断面的一种有效方法,可以通过P波与其上行转换波Pds的到时差来确定间断面的深度(Langston,1979),但其主要适用于三分量地震台站下方壳、 幔间断面的研究.
在深源地震(震源深度h>300 km)分布密集的俯冲带(如汤加—斐济俯冲带),使用深震震相sP在近源区速度间断面底界面反射的震相s410P确定狭窄俯冲带间断面的横向变化具有很大的优势. 本文将通过倾斜叠加大量的观测波形数据,有效提取sP在近源区“410”速度间断面底界面反射的弱前驱波s410P,利用sP震相与其前驱波s410P震相的到时差计算汤加—斐济俯冲带“410”速度间断面的深度.
1. 台网资料
甘肃地震台网由甘肃数字测震台网和甘东南野外观测流动台阵构成,二者均处于青藏高原东北缘. 甘肃“十五”数字测震台网自2008年6月正式运行,由兰州、 高台、 安西、 嘉峪关和天水等5个有人值守的国家数字地震台和39个区域遥测数字地震台组成(冯建刚等,2012),目前拥有包括邻省(宁夏、 陕西、 四川、 青海、 内蒙)在内的76个数字测震台站. 甘东南野外观测流动台阵是中国地震局地质研究所和中国地震局兰州地震研究所共同合作在甘东南地区勘址架设,共设有7条测线,150个流动台站,平均台间距约为10 km(图 1). 所有台站均使用REF TEK-130型数据采集器和Guralp公司生产的CMG-3ESPC宽频带地震计. 甘东南野外观测流动台阵运行期间(2009年11月—2011年12月)积累了连续、 可靠、 高质量的地震观测波形数据,为深入研究地球内部物理结构提供了宝贵资料(秦满忠等,2015).
本文选取了甘肃数字测震台网和甘东南野外观测流动台阵共同记录的2011年9月15日发生在汤加—斐济俯冲带(21.61°S,179.53°W,h=644 km,mB=7.3)的深远地震数字观测波形数据,定位结果参考了USGS(2011)地震目录.
2. 数据处理
深震震相sP与其前驱波s410P在地幔中的传播路径基本相同. sP是上行的S波在震中附近地表反射转换的P波; s410P是上行的S波在震中附近“410”间断面底界面反射转换的P波(图 2),该震相在初至震相P与sP之间到达(图 3).
图 3 甘肃地震台网记录到的2011年9月 15日发生在汤加—斐济俯冲带的深远 地震的数字观测波形sMohoP, sLABP和s410P震相分别表示sP在 近源区莫霍面, 岩石圈和“410”的前驱波 The seismic phases sMohoP, sLABP and s410P are the precursors from near-source underside reflection off Moho, lithosphere-asthenosphere boundary, and “410”, respectivelyFigure 3. Waveforms of mB=7.3 event occurred in Tonga-Fiji on September 15, 2011, recorded by the Gansu Seismic Network首先对所选取的汤加—斐济深远地震观测波形数据作重采样、 去倾斜、 去均值处理; 然后作带通滤波处理(0.1—0.01 Hz),同时去掉记录畸形、 信噪比差的观测波形; 最终选取了甘肃数字测震台网和甘东南野外观测流动台阵共同记录到的170条垂直分量观测波形数据. 如图 3所示,汤加—斐济深远震在台网记录中的震中距为88°—102°.
通过倾斜叠加大量的观测波形数据,可以压制噪声,有效地提取与间断面相关的弱信号(Ritsema et al,1995; 臧绍先,周元泽,2002). 在进行倾斜叠加的过程中,选取震中距为94°的台站(红崖山台)作为参考台,sP为参考震相,并以sP震相到时为零时刻(图 3). 信号i(s410P)在任意台s的到时为Δtir+ΔpΔDrs,以红崖山台为参考台的倾斜叠加结果为
式中,Δtir为参考震中距记录的信号i(s410P)与参考震相sP之间的走时差,Δp为信号i在任意台s的水平慢度与信号i(震中距为参考台震中距)水平慢度之差,ΔDrs为任意台s与参考台的震中距之差, m为使用地震记录的台站数.
以sP为参考震相,使用倾斜叠加方法获得了在震中附近“410”间断面底界面反射的前驱波信号s410P,其反射点位置为(21.25°S,179.99°W). 该信号在倾斜叠加波形(图 3中红色线条)中成像清晰,与参考震相sP的观测走时差为137.43 s,使用TauP软件结合理论IASP91全球速度模型得到的s410P与震相sP理论走时差为137.04 s; 通过使用基于CRUST1.0模型(Laske et al,2013)校正后的汤加—斐济地区速度模型IASP91_Tonga(图 4),反算出“410”间断面底部反射点的深度约为398.5 km,“410”间断面抬升约11.5 km,这与俯冲带与近源区“410”间断面的相互作用有关.
3. 讨论与结论
甘肃数字测震台网和甘东南野外观测流动台阵记录的汤加—斐济深震震相pP和sP均具有尖锐、 清晰和较大振幅的记录特征,sP记录振幅甚至超过了直达P波,这为我们使用前驱波(sMohoP,sLABP和s410P等)对近源区间断面(莫霍面,岩石圈,“410”等)的深入研究提供了基础资料.
鉴于前驱波震相在单条记录中的能量(振幅)往往很弱,本文通过倾斜叠加大量的观测波形数据,获得了在近源区“410”间断面底界面反射的前驱波震相s410P,并使用CRUST1.0模型校正后的汤加—斐济地区速度模型IASP91_Tonga,反算出“410”间断面底部反射点的深度约为398.5 km.
图 3中震相sLABP和sMohoP相对于参考震相sP的走时差分别为23.16 s和10.62 s. 我们同样对震源区的地壳及岩石圈结构作了修改(图 4),使用TauP软件计算得到近源区岩石圈的深度约为46 km,莫霍面深度约为10 km.
俯冲带对“410”和“660”的影响是目前研究的一个热点(Li et al,2008). 该研究涉及到间断面的性质,又能反映地幔对流的性质和形式. 俯冲带是冷的下沉物质,其通过间断面时会引起间断面的形态变化. 若“410”为相变界面,俯冲带会使它抬升(Vidale,Benz,1992; Collier,Helffrich,1997); 若“660”为相变界面,俯冲板块中的冷物质将使它下沉. 因此,汤加—斐济俯冲带中冷的物质与“410”作用时,俯冲带及相邻地幔中的橄榄石-尖晶石的相变界面会上升(蒋志勇等,2003). 本文中得到的汤加—斐济俯冲带“410”间断面抬升约11.5 km与该结论一致.
本文使用倾斜叠加技术成功提取了sP前驱波(s410P,sLABP和sMohoP),获得了俯冲带间断面的深度,给出了汤加—斐济俯冲带新的地震波速度模型(IASP91_Tonga). 本文结果将为深入研究该区域的地球结构提供基础资料,对正确认识俯冲带的复杂结构以及深入理解地球深部的动力学过程具有重要的参考价值.
-
图 8 水平自由地表模型(模型Ⅰ,左侧)和实际地形模型(模型Ⅱ,右侧)中峰值地面速度三分量分布
(a) 垂直于断层面的水平分量;(b) 平行于断层面的水平分量;(c) 垂向分量
Figure 8. Three components of peak ground velocity distribution for horizontal free surface model (model Ⅰ ,left) and actual topography model (model Ⅱ ,right)
(a) Fault-normal component;(b) Fault-parallel component;(c) Vertical component
表 1 断层面上各区域应力参数
Table 1 Stress parameters for the areas on fault plane
区域 初始剪切
应力$ {\sigma }_{0} $ 剪切破裂
强度${\sigma }_{{\rm{u}}}$ 临界滑动弱化
距离Dc/m1 1.01 1.0 0 2 0.60 1.0 0.15 3 0.96 1.5 0.15 4 0.72 1.2 0.15 5 0.20 16.0 40.0 6 0.20 16.0 40.0 7 0.20 16.0 40.0 断层其它区域 0.49 1.0 0.15 断层外 0.20 200.0 40.0 -
胡峰. 2014. 非平面断层与等效平面断层的破裂动力学及辐射特征研究[D]. 合肥: 中国科学技术大学: 9–20. Hu F. 2014. Research on Nonplanar Fault and ESPFM of Dynamic Rupture and Radiation Pattern[D]. Hefei: University of Science and Technology of China: 9–20 (in Chinese).
刘超,许力生,陈运泰. 2010. 2010年4月14日青海玉树地震快速矩张量解[J]. 地震学报,32(3):366–368. Liu C,Xu L S,Chen Y T. 2010. Quick moment tensor solution for 14 April 2010 Yushu,Qinghai,earthquake[J]. Acta Seismologica Sinica,32(3):366–368 (in Chinese).
王海云. 2010. 2010年4月14日玉树MS7.1地震加速度场预测[J]. 地球物理学报,53(10):2345–2354. Wang H Y. 2010. Prediction of acceleration field of the 14 April 2010 Yushu earthquake[J]. Chinese Journal of Geophysics,53(10):2345–2354 (in Chinese).
王铭锋. 2018. 震源动力学破裂过程影响因素及强地震动场特征的研究[D]. 北京: 中国科学院大学: 24–25. Wang M F. 2018. Study on the Influence of Different Factors on Earthquake Dynamic Rupture Process and Its Strong Ground Motions[D]. Beijing: University of Chinese Academy of Sciences: 24–25 (in Chinese).
王铭锋,郑傲,于湘伟,章文波. 2018. 局部山体地形对断层动力学破裂过程的影响研究[J]. 地震学报,40(6):737–752. Wang M F,Zheng A,Yu X W,Zhang W B. 2018. Study on the influence of local mountainous topography to fault dynamic rupture[J]. Acta Seismologica Sinica,40(6):737–752 (in Chinese).
王洵,周云,孙蒙,王卫民. 2014. 青海玉树MW6.9级地震震源破裂过程[J]. 地质通报,33(4):517–523. Wang X,Zhou Y,Sun M,Wang W M. 2014. Rupture process of the 2010 MW6.9 Yushu earthquake in Qinghai Province[J]. Geological Bulletin of China,33(4):517–523 (in Chinese).
张丽芬. 2016. 不同因素对于断层动力学破裂过程复杂性的影响研究[D]. 北京: 中国地震局地球物理研究所: 104–114. Zhang L F. 2016. Influences of Different Factors on the Complexities of Fault Dynamic Rupture Propagation[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 104–114 (in Chinese).
张伟. 2006. 含起伏地形的三维非均匀介质中地震波传播的有限差分算法及其在强地面震动模拟中的应用[D]. 北京: 北京大学: 7–109. Zhang W. 2006. Finite Difference Seismic Wave Modelling in 3D Heterogeneous Media With Surface Topography and Its Implementation in Strong Ground Motion Study[D]. Beijing: Peking University: 7–109 (in Chinese).
张勇,许力生,陈运泰. 2010. 2010年青海玉树地震震源过程[J]. 中国科学:地球科学,40(7):819–821. Zhang Y,Xu L S,Chen Y T. 2010. Source process of the 2010 Yushu,Qinghai,earthquake[J]. Science China Earth Sciences,53(9):1249–1251. doi: 10.1007/s11430-010-4045-5
周慧芳,张景发,胡乐银,罗毅. 2011. 青海玉树地震的InSAR数据同震形变场模拟与参数反演分析[J]. 地球信息科学学报,13(3):418–423. Zhou H F,Zhang J F,Hu L Y,Luo Y. 2011. Co-seismic deformation field and parameters inversion of the Yushu earthquake from InSAR[J]. Journal Geo-Information Science,13(3):418–423 (in Chinese). doi: 10.3724/SP.J.1047.2011.00418
朱守彪,袁杰,缪淼. 2017. 青海玉树地震(MS=7.1)产生超剪切破裂过程的动力学机制研究[J]. 地球物理学报,60(10):3832–3843. Zhu S B,Yuan J,Miao M. 2017. Dynamic mechanisms for supershear rupture processes of the Yushu earthquake (MS=7.1)[J]. Chinese Journal of Geophysics,60(10):3832–3843 (in Chinese).
Andrews D J. 1976. Rupture velocity of plane strain shear cracks[J]. J Geophys Res,81(32):5679–5687. doi: 10.1029/JB081i032p05679
Andrews D J. 2010. Ground motion hazard from supershear rupture[J]. Tectonophysics,493(3/4):216–221.
Ben-Menahem A,Shingh S J. 1987. Supershear accelerations and Mach-waves from a rupturing front. Part I. Theoretical model and implications[J]. J Phys Earth,35(5):347–365. doi: 10.4294/jpe1952.35.347
Burridge R. 1973. Admissible speeds for plane-strain self-similar shear cracks with friction but lacking cohesion[J]. J Geophys Res,35(4):439–455.
Dalguer L A,Day S M. 2007. Staggered-grid split-node method for spontaneous rupture simulation[J]. J Geophys Res,112(B2):B02302.
Day S M. 1982. Three-dimensional finite difference simulation of fault dynamics:Rectangular faults with fixed rupture velocity[J]. Bull Seismol Soc Am,72(3):705–727.
Ely G P,Day S M,Minster J B. 2010. Dynamic rupture models for the southern San Andreas fault[J]. Bull Seismol Soc Am,100(1):131–150. doi: 10.1785/0120090187
Harris R A,Barall M,Aagaard B,Ma S,Roten D,Olsen K,Duan B C,Liu D Y,Luo B,Bai K C,Ampuero J P,Kaneko Y,Gabriel A A,Duru K,Ulrich T,Wollherr S,Shi Z Q,Dunham E,Bydlon S,Zhang Z G,Chen X F,Somala S N,Pelties C,Tago J,Cruz-Atienza V M,Kozdon J,Daub E,Aslam K,Kase Y,Withers K,Dalguer L. 2018. A suite of exercises for verifying dynamic earthquake rupture codes[J]. Seismol Res Lett,89(3):1146–1162. doi: 10.1785/0220170222
Huang H Q,Zhang Z G,Chen X F. 2018. Investigation of topographical effects on rupture dynamics and resultant ground motions[J]. Geophys J Int,212(1):311–323. doi: 10.1093/gji/ggx425
Ida Y. 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy[J]. J Geophys Res,77(20):3796–3805. doi: 10.1029/JB077i020p03796
Kaneko Y,Lapusta N. 2010. Supershear transition due to a free surface in 3-D simulations of spontaneous dynamic rupture on vertical strike-slip faults[J]. Tectonophysics,493(3/4):272–284.
Kyriakopoulos C,Oglesby D D,Funning G J,Ryan K J. 2017. Dynamic rupture modeling of the M7.2 2010 EI Mayor-Cucapah earthquake:Comparison with a geodetic model[J]. J Geophys Res:Solid Earth,122(12):10263–10279. doi: 10.1002/2017JB014294
Li Z H,Elliott J R,Feng W P,Jackson J A,Parsons B E,Walters R J. 2011. The 2010 MW6.8 Yushu (Qinghai,China) earthquake:Constraints provided by InSAR and body wave seismology[J]. J Geophys Res,116(B10):B10302. doi: 10.1029/2011JB008358
Madariaga R. 1976. Dynamics of an expanding circular fault[J]. Bull Seismol Soc Am,66(3):639–666.
Oglesby D D,Day S M. 2001. Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake[J]. Bull Seismol Soc Am,91(5):1099–1111.
Somerville P,Irikura K,Graves R,Sawda S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80. doi: 10.1785/gssrl.70.1.59
USGS. 2014. M6.9: Southern Qinghai, China[EB/OL]. [2020-03-10]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000hbbt/focal-mechanism.
Wang D,Mori J. 2012. The 2010 Qinghai,China,earthquake:A moderate earthquake with supershear rupture[J]. Bull Seismol Soc Am,102(1):301–308. doi: 10.1785/0120110034
Zhang W,Zhang Z G,Chen X F. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophys J Int,190(1):358–378. doi: 10.1111/j.1365-246X.2012.05472.x
Zhang W B,Iwata T,Irikura K. 2006. Dynamic simulation of a dipping fault using a three-dimensional finite difference method with nonuniform grid spacing[J]. J Geophys Res,111(B5):B05301.
Zhang W B,Iwata T,Irikura K. 2010. Dynamic simulation of the 1999 Chi-Chi,Taiwan,earthquake[J]. J Geophys Res,115(B4):B04305.
Zhang Z G,Zhang W,Chen X F. 2014. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics[J]. Geophys J Int,199(2):860–879. doi: 10.1093/gji/ggu308
-
期刊类型引用(3)
1. 靳炎锡,秦满忠,李少华. 利用前驱波研究地幔间断面的若干进展. 地震工程学报. 2023(01): 209-219+243 . 百度学术
2. 崔辉辉,高雅健,周元泽. 伊豆-小笠原地区岩石圈软流圈边界地震学证据. 科学通报. 2017(07): 711-720 . 百度学术
3. 秦满忠,刘旭宙,邹锐,张元生,郭晓,魏从信,王亚红,孙点峰. 甘肃祁连山大容量气枪主动源最大探测范围. 地震工程学报. 2017(06): 1070-1075 . 百度学术
其他类型引用(3)