利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减

鲁志楠, 边银菊, 王婷婷, 刘森

鲁志楠,边银菊,王婷婷,刘森. 2021. 利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减. 地震学报,43(3):287−302. DOI: 10.11939/jass.20200051
引用本文: 鲁志楠,边银菊,王婷婷,刘森. 2021. 利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减. 地震学报,43(3):287−302. DOI: 10.11939/jass.20200051
Lu Z N,Bian Y J,Wang T T,Liu S. 2021. Crustal attenuation in the southern Tibetan Plateau by reverse two-station Lg-wave Q value tomography. Acta Seismologica Sinica43(3):287−302. DOI: 10.11939/jass.20200051
Citation: Lu Z N,Bian Y J,Wang T T,Liu S. 2021. Crustal attenuation in the southern Tibetan Plateau by reverse two-station Lg-wave Q value tomography. Acta Seismologica Sinica43(3):287−302. DOI: 10.11939/jass.20200051

利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减

基金项目: 核查项目(075440)资助
详细信息
    通讯作者:

    边银菊: e-mail:bianyinju@cea-igp.ac.cn

  • 中图分类号: P315.3+1

Crustal attenuation in the southern Tibetan Plateau by reverse two-station Lg-wave Q value tomography

  • 摘要: 首次基于2017—2019年西藏自治区区域台网27个宽频带固定台站记录的757次地震的波形资料,利用反双台法开展了青藏高原南部地区1 Hz的Lg波Q值层析成像研究。研究中采用3.5—2.4 km/s的速度窗截取了1 981条Lg波,计算得到13 543条路径上的Q值,测试了1°×1°和0.5°×0.5°网格下的棋盘格恢复情况,得到了0.5°×0.5°分辨率的Lg波Q0值层析成像。反演结果显示:青藏高原南部地壳整体的Lg波呈高衰减、低Q值,与P波速度负异常、地热分布及东部的两条裂谷系对应良好,因此推断青藏高原南部地壳存在广泛的熔融物质;两条可能存在的流体-熔融物质通道中,主通道位于亚东—谷露裂谷与桑日—错那裂谷之间,副通道沿雅鲁藏布江缝合带分流而出。此外,还对亚东—谷露裂谷两侧熔融物质的分布差异予以分析,结果表明,印度板块与欧亚板块碰撞前端存在不同的动力学演化模式,亚东—谷露裂谷以西符合缩短增厚理论,以东符合“水泵”模式。
    Abstract: Based on the seismic waveform data of 757 earthquakes recorded by 27 broadband stations of Tibet Autonomous Region seismic network from 2017 to 2019, it is for the first time that the reverse two-station method has been applied to 1 Hz Lg-wave Q value tomography study in the southern Tibetan Plateau. In this research, total 1 981 Lg-waves were intercepted from the velocity window of 3.5−2.4 km/s and the Q values of 13 543 paths were calculated. After testing the checkerboard recovery of 1°×1° and 0.5°×0.5° grids respectively, we got the tomography of the Lg-wave Q0 value of the southern Tibetan Plateau with 0.5°×0.5° resolution. The inversion result shows that there exhibits high attenuation and low Q values of Lg-wave in the southern Tibetan Plateau crust, which is highly consistent with the negative anomaly of P-wave velocity, the geothermal distribution and two rift valleys in the east of the Tibet. Therefore it is inferred that there may be widespread molten material in the crust of the southern Tibetan Plateau and two fluid-melting channels. The main channel is located between the Yadong-Gulu rift and the Sangri-Cona rift, and the secondary channel flows out along the Yarlung Zangbo suture zone. By analyzing the differences of molten material distribution on both sides of the Yadong-Gulu rift, it is considered that there are different dynamical evolution models in the front-end of collision between Indian Plate and Eurasian Plate, the dynamical evolution to the west of Yadong-Gulu rift is in accordance with the theory of shortening and thickening, and that to the east of Yadong-Gulu rift is consistent with the “pump” mode.
  • 图  1   青藏高原南部地区缝合带和地体的分布(蓝色矩形为本文研究区域)

    Figure  1.   Suture zones and terranes distribution in the southern Tibetan Plateau(The blue box is the research area of this study)

    图  2   反双台法几何路径示意图

    (a) 理想条件下;(b) 实际条件下

    Figure  2.   Schematic diagram for the geometry of the reverse two-station method

    (a) An ideal recording geometry;(b) A more practical geometry

    图  3   本文反双台法计算所用台站及地震事件的分布

    Figure  3.   Distribution of seismic stations and earthquakes calculated by reverse two-station method in this paper

    图  4   Pn波与Lg波窗口的拾取实例

    Figure  4.   An example showing the Pn-waves and the window of Lg-waves

    图  5   每个网格经过的Q0射线数量

    Figure  5.   Number of Q0 rays per grid

    图  6   Q0射线分布直方图

    Figure  6.   Q0 values distribution histogram

    图  7   1°×1° (a)和0.5°×0.5° (b)网格下的棋盘格测试结果

    Figure  7.   The checkerboard test results with gridding of 1°×1° (a) and 0.5°×0.5° (b)

    图  8   青藏高原南部地区Lg波Q0值层析成像

    Figure  8.   Lg-wave Q0 value tomography of the southern Tibetan Plateau

    图  9   青藏高原南部熔融通道(红色实线区域)的推断示意图

    Ⅰ ,Ⅱ ,Ⅲ和Ⅳ代表四个由雅鲁藏布江缝合带和亚东—谷露裂谷划分的地块

    Figure  9.   The inference of melting channels in the southern Tibetan Plateau

    The area delineated by red solid lines denotes melting channels,and the symbols of Ⅰ ,Ⅱ ,Ⅲ and Ⅳ represent four blocks separated by the Yarlung Zangbo suture and Yadong-Gulu rift

  • 艾印双,郑天愉. 1997. 青藏高原地震活动及其构造背景[J]. 地球物理学进展,12(2):30–40.

    Ai Y S,Zheng T Y. 1997. Seismic activity in Tibetan Plateau and its tectonic implication[J]. Progress in Geophysics,12(2):30–40 (in Chinese).

    白嘉启,梅琳,杨美伶. 2006. 青藏高原地热资源与地壳热结构[J]. 地质力学学报,12(3):354–362. doi: 10.3969/j.issn.1006-6616.2006.03.010

    Bai J Q,Mei L,Yang M L. 2006. Geothermal resource and crustal thermal structure of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics,12(3):354–362 (in Chinese).

    才巴央增,赵俊猛. 2018. 藏南裂谷系的研究综述[J]. 地震研究,41(1):14–21. doi: 10.3969/j.issn.1000-0666.2018.01.002

    Caibayangzeng,Zhao J M. 2018. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research,41(1):14–21 (in Chinese).

    冯昭贤,赵文津. 1997. INDEPTH与INDEPTH-MT项目简介[J]. 现代地质,11(3):363–365.

    Feng Z X,Zhao W J. 1997. Simple introduction to project INDEPTH and subproject NDEPTH-MT[J]. Geoscience,11(3):363–365 (in Chinese).

    何静,吴庆举,李永华,雷建设. 2017. 天然地震Lg波衰减研究进展及其在中国大陆地区的应用[J]. 地球物理学进展,32(2):466–475. doi: 10.6038/pg20170204

    He J,Wu Q J,Li Y H,Lei J S. 2017. Developments of earthquake Lg-wave attenuation study and its application in the continental China[J]. Progress in Geophysics,32(2):466–475 (in Chinese).

    李仕虎,黄宝春,朱日祥. 2012. 青藏高原东南缘构造旋转的古地磁学证据[J]. 地球物理学报,55(1):76–94. doi: 10.6038/j.issn.0001-5733.2012.01.008

    Li S H,Huang B C,Zhu R X. 2012. Paleomagnetic constraints on the tectonic rotation of the southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,55(1):76–94 (in Chinese). doi: 10.1002/cjg2.1702

    李永华,吴庆举. 2007. 中国地学热点研究区几个地学问题的探讨[J]. 国际地震动态,(9):11–19. doi: 10.3969/j.issn.0253-4975.2007.09.003

    Li Y H,Wu Q J. 2007. Study on some “Hot Spot” areas of geo-sciences in China[J]. Recent Developments in World Seismology,(9):11–19 (in Chinese).

    李娱兰. 2019. 青藏高原地震活动性及冈底斯成矿带东段上地幔顶部Pn波速度结构[D]. 北京: 中国地震局地球物理研究所: 1–8.

    Li Y L. 2019. Seismicity of the Qinghai-Tibet Plateau and Velocity Structure of Pn Wave on the Top of the Upper Mantle in the Eastern Gangdise Metallogenic Belt[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1–8 (in Chinese).

    刘建华,刘福田,阎晓蔚,胥颐,郝天珧. 2004. 华北地区Lg尾波衰减研究:Lg尾波Q0地震成像[J]. 地球物理学报,47(6):1044–1052. doi: 10.3321/j.issn:0001-5733.2004.06.017

    Liu J H,Liu F T,Yan X W,Xu Y,Hao T Y. 2004. A study of Lg coda attenuation beneath North China:Seismic imaging Lg coda Q0[J]. Chinese Journal of Geophysics,47(6):1044–1052 (in Chinese).

    吴中海,叶培盛,王成敏,张克旗,赵华,郑勇刚,尹金辉,李虎侯. 2015. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义[J]. 地球科学:中国地质大学学报,40(10):1621–1642.

    Wu Z H,Ye P S,Wang C M,Zhang K Q,Zhao H,Zheng Y G,Yin J H,Li H H. 2015. The relics,ages and significance of prehistoric large earthquakes in the Angang graben in south Tibet[J]. Earth Science:Journal of China University of Geosciences,40(10):1621–1642 (in Chinese). doi: 10.3799/dqkx.2015.147

    喻成,乔学军,王伟,史永明. 2014. 亚东—谷露裂谷带与块体运动的特征[J]. 大气测量与地球动力学,34(2):36–40.

    Yu C,Qiao X J,Wang W,Shi Y M. 2014. Characteristics of crust deformation in Yadong-Gulu rift and its surrounding areas with GPS data[J]. Journal of Geodesy and Geodynamics,34(2):36–40 (in Chinese).

    张戈铭,李细兵,郑晨,宋晓东. 2019. 青藏高原中东部地壳和上地幔顶部P波层析成像[J]. 地震学报,41(4):411–424. doi: 10.11939/jass.20190003

    Zhang G M,Li X B,Zheng C,Song X D. 2019. Crustal and uppermost mantle velocity structure beneath the central eastern Tibetan Plateau from P-wave tomography[J]. Acta Seismologica Sinica,41(4):411–424 (in Chinese).

    张衡,赵俊猛,徐强. 2011. 西藏东部地区层析成像及东南部裂谷成因讨论[J]. 科学通报,56(27):2328–2334.

    Zhang H,Zhao J M,Xu Q. 2011. Seismic P-wave tomography in eastern Tibet:Formation of the rifts[J]. Chinese Science Bulletin,56(23):2450–2455. doi: 10.1007/s11434-011-4577-x

    张红亮. 2010. 藏北水热活动的地质背景研究[D]. 北京: 中国地质大学(北京): 13–17.

    Zhang H L. 2010. Study on the Geological Background of Hydrothermal Activities in North Tibet[D]. Beijing: China University of Geosciences (Beijing): 13–17 (in Chinese).

    张锦玲,朱新运,马起杨. 2019. 宁夏地区Lg波衰减及场地响应特征[J]. 地震学报,41(4):425–434. doi: 10.11939/jass.20180134

    Zhang J L,Zhu X Y,Ma Q Y. 2019. Lg-wave attenuation and site response in Ningxia region[J]. Acta Seismologica Sinica,41(4):425–434 (in Chinese).

    赵连锋,谢小碧,王卫民,姚振兴. 2018. 中国东北和朝鲜半岛地区地壳Lg波宽频带衰减模型[J]. 地球物理学报,61(3):856–871. doi: 10.6038/cjg2018L0394

    Zhao L F,Xie X B,Wang W M,Yao Z X. 2018. A broadband crustal Lg wave attenuation model in Northeast China and the Korean Peninsula[J]. Chinese Journal of Geophysics,61(3):856–871 (in Chinese).

    赵文津,吴珍汉,史大年,熊嘉育,薛光琦,宿和平,胡道功,叶培盛. 2008. 国际合作INDEPTH项目横穿青藏高原的深部探测与综合研究[J]. 地球学报,29(3):328–342. doi: 10.3321/j.issn:1006-3021.2008.03.007

    Zhao W J,Wu Z H,Shi D N,Xiong J Y,Xue G Q,Su H P,Hu D G,Ye P S. 2008. Comprehensive deep profiling of Tibetan Plateau in the INDEPTH project[J]. Acta Geoscientica Sinica,29(3):328–342 (in Chinese).

    周蕙兰. 1990. 地球内部物理[M]. 北京: 地震出版社: 218–237.

    Zhou H L. 1990. Physics of the Earths Interior[M]. Beijing: Seismological Press: 218–237 (in Chinese).

    周连庆,赵翠萍,修济刚,陈章立. 2008a. 川滇地区Lg波Q值层析成像[J]. 地球物理学报,51(6):1745–1752.

    Zhou L Q,Zhao C P,Xiu J G,Chen Z L. 2008a. Tomography of Q Lg in Sichuan-Yunnan zone[J]. Chinese Journal of Geophysics,51(6):1745–1752 (in Chinese).

    周连庆,赵翠萍,修济刚,陈章立,郑斯华. 2008b. 利用天然地震研究地壳Q值的方法和进展[J]. 国际地震动态,(2):1–11.

    Zhou L Q,Zhao C P,Xiu J G,Chen Z L,Zheng S H. 2008b. Methods and developments of research on crustal Q value by using earthquakes[J]. Recent Developments in World Seismology,(2):1–11 (in Chinese).

    朱新运. 2016. 华北盆地Lg波衰减及台站场地响应特征[J]. 地球科学,41(12):2109–2117.

    Zhu X Y. 2016. Characteristics of Lg wave attenuation and site response in North China basin[J]. Earth Science,41(12):2109–2117 (in Chinese).

    Al-Damegh K,Sandvol E,Al-Lazki A,Barazangi M. 2004. Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian Plate and surrounding regions[J]. Geophys J Int,157(2):775–795. doi: 10.1111/j.1365-246X.2004.02246.x

    Armijo R,Tapponnier P,Han T. 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. J Seismol Res,94(B3):2787–2838.

    Bao X Y,Sandvol E,Ni J,Hearn T,Chen Y J,Shen Y. 2011a. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions[J]. Geophys Res Lett,38(16):L16304.

    Bao X Y,Sandvol E,Zor E,Sakin S,Mohamad R,Gök R,Mellors R,Godoladze T,Yetirmishli G,Türkelli N. 2011b. Pg attenuation tomography within the northern Middle East[J]. Bull Seismol Soc Am,101(4):1496–1506. doi: 10.1785/0120100316

    Brown L D,Zhao W,Nelson K D,Hauck M,Alsdorf D,Ross A,Cogan M,Clark M,Liu X,Che J. 1996. Bright spots,structure,and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science,274(5293):1688–1690. doi: 10.1126/science.274.5293.1688

    Campillo M,Plantet J L,Bouchon M. 1985. Frequency-dependent attenuation in the crust beneath central France from Lg waves:Data analysis and numerical modeling[J]. Bull Seismol Soc Am,75(5):1395–1411.

    Chen Q Z,Freymueller J T,Wang Q,Yang Z Q,Xu C J,Liu J N. 2004. A deforming block model for the present‐day tectonics of Tibet[J]. J Geophys Res,109(B1):B01403.

    England P C,Houseman G A. 1988. The mechanics of the Tibetan Plateau[J]. Phil Trans R Soc Lond A,326(1589):301–320. doi: 10.1098/rsta.1988.0089

    Fan G W,Lay T. 2002. Characteristics of Lg attenuation in the Tibetan Plateau[J]. J Geophys Res,107(B10):2256.

    Fan G W,Lay T. 2003. Strong Lg attenuation in the northern and eastern Tibetan Plateau measured by a two-station/two-event stacking method[J]. Geophys Res Lett,30(10):1530.

    Ford S R,Dreger D S,Mayeda K,Walter W R,Malagnini L,Phillips W S. 2008. Regional attenuation in northern California:A comparison of five 1D Q methods[J]. Bull Seismol Soc Am,98(4):2033–2046. doi: 10.1785/0120070218

    Gök R,Sandvol E,Türkelli N,Seber D,Barazangi M. 2003. Sn attenuation in the Anatolian and Iranian Plateau and surrounding regions[J]. Geophys Res Lett,30(24):8042.

    Herrmann R B. 1980. Q estimates using the coda of local earthquake[J]. Bull Seismol Soc Am,70(4):447–468.

    Hu S B,He L J,Wang J Y. 2000. Heat flow in the continental area of China:A new data set[J]. Earth Planet Sci Lett,179(2):407–419. doi: 10.1016/S0012-821X(00)00126-6

    Li S H,Unsworth M J,Booker J R,Wei W B,Tan H D,Jones A G. 2003. Partial melt or aqueous fluid in the mid-crust of southern Tibet?Constraints from INDEPTH magnetotelluric data[J]. Geophys J Int,153(2):289–304. doi: 10.1046/j.1365-246X.2003.01850.x

    McNamara D T,Owens T J,Walter W R. 1996. Propagation characteristics of Lg across the Tibetan Plateau[J]. Bull Seismol Soc Am,86(2):457–469.

    Mitchell B J. 1980. Frequency dependence of shear wave internal friction in the continental crust of eastern North America[J]. J Geophys Res,85(B10):5212–5218. doi: 10.1029/JB085iB10p05212

    Myers S C,Beck S,Zandt G,Wallace T. 1998. Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves[J]. J Geophys Res,103(B9):21233–21252. doi: 10.1029/98JB00956

    Nelson K D,Zhao W J,Brown L D,Kuo J,Che J K,Liu X W,Klemperer S L,Makovsky Y,Meissner R,Mechie J,Kind R,Wenzel F,Ni J,Nabelek J,Leshou C,Tan H D,Wei W B,Jones A G,Booker J,Unsworth M,Kidd W S F,Hauck M,Alsdorf D,Ross A,Cogan M,Wu C D,Sandvol E,Edwards M. 1996. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science,274(5293):1684–1688. doi: 10.1126/science.274.5293.1684

    Ni J,Barazangi M. 1983. High-frequency seismic wave propagation beneath the Indian shield,Himalayan arc,Tibetan Plateau and surrounding regions:High uppermost mantle velocities and efficient Sn propagation beneath Tibet[J]. Geophys J R astr Soc,72(3):665–689. doi: 10.1111/j.1365-246X.1983.tb02826.x

    Nuttli O W. 1980. The excitation and attenuation of seismic crustal phases in Iran[J]. Bull Seismol Soc Am,70(2):469–485.

    Paige C C,Saunders M A. 1982. LSQR:An algorithm for sparse linear equations and sparse lest squares[J]. ACM Trans Math Software,8(1):43–71. doi: 10.1145/355984.355989

    Phillips W S,Hartse H E,Taylor S R,Randall G E. 2000. 1 Hz Lg Q tomography in central Asia[J]. Geophys Res Lett,27(20):3425–3428. doi: 10.1029/2000GL011482

    Press F,Ewing M. 1952. Two slow surface waves across North America[J]. Bull Seismol Soc Am,42(3):219–228. doi: 10.1785/BSSA0420030219

    Reese C C,Rapine R R,Ni J F. 1999. Lateral variation of Pn and Lg attenuation at the CDSN station LSA[J]. Bull Seismol Soc Am,89(1):325–330. doi: 10.1785/BSSA0890010325

    Ringdal F,Marshall P D,Alewine R W. 1992. Seismic yield determination of Soviet underground nuclear explosions at the Shagan River test site[J]. Geophys J Int,109(1):65–77. doi: 10.1111/j.1365-246X.1992.tb00079.x

    Ruzaikin A I,Nersesov I L,Khalturin V I,Molnar P. 1977. Propagation of Lg and lateral variations in crustal structure in Asia[J]. J Geophys Res,82(2):307–316. doi: 10.1029/JB082i002p00307

    Sato R. 1967. Attenuation of seismic waves[J]. J Phys Earth,15(2):32–61. doi: 10.4294/jpe1952.15.32

    Shin T C,Herrmann R B. 1987. Lg attenuation and source studies using 1982 Miramichi data[J]. Bull Seismol Soc Am,77(2):384–397.

    Singh C,Shekar M,Singh A,Chadha R K. 2012. Seismic attenuation characteristics along the Hi-CLIMB profile in Tibet from Lg Q inversion[J]. Bull Seismol Soc Am,102(2):783–789. doi: 10.1785/0120110145

    Singh S,Herrmann R B. 1983. Regionalization of crustal coda Q in the continental United States[J]. J Geophys Res,88(B1):527–538. doi: 10.1029/JB088iB01p00527

    Tapponnier P,Mercier J L,Armijo R,Han T L,Zhou J. 1981. Field evidence for active normal faulting in Tibet[J]. Nature,294(5840):410–414. doi: 10.1038/294410a0

    Tapponnier P,Peltzer G,Le Dain A Y,Armijo R,Cobbold P R. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G,Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671–1677. doi: 10.1126/science.105978

    USGS. 2019. Search earthquake catalog[EB/OL]. [2019-09-01]. https://earthquake.usgs.gov/earthquakes/search.

    Wei W B,Unsworth M,Jones A,Booker J,Tan H D,Nelson D,Chen L S,Li S H,Solon K,Bedrosian P,Jin S,Deng M,Ledo J,Kay D,Roberts B. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science,292(5517):716–719. doi: 10.1126/science.1010580

    Xie J. 2002. Lg Q in the eastern Tibetan Plateau[J]. Bull Seismol Soc Am,92(2):871–876. doi: 10.1785/0120010154

    Xie J,Mitchell B J. 1990a. Attenuation of multiphase surface waves in the Basin and Range Province,part I:Lg and Lg coda[J]. Geophys J Int,102(1):121–137. doi: 10.1111/j.1365-246X.1990.tb00535.x

    Xie J,Mitchell B J. 1990b. A back-projection method for imaging large-scale lateral variations of Lg coda Q with application to continental Africa[J]. Geophys J Int,100(1):161–181.

    Xie J,Gok R,Ni J,Aoki Y. 2004. Lateral variations of crustal seismic attenuation along the INDEPTH profiles in Tibet from Lg Q inversion[J]. J Geophys Res,109(B10):B10308.

    Xie J K. 1998. Spectral inversion using Lg from earthquakes:Improvement of the method with applications to the 1995,western Texas earthquake sequence[J]. Bull Seismol Soc Am,88(6):1525–1537.

    Yang X N. 2002. A numerical investigation of Lg geometrical spreading[J]. Bull Seismol Soc Am,92(8):3067–3079. doi: 10.1785/0120020046

    Zhao L F,Xie X B,Wang W M,Zhang J H,Yao Z X. 2010. Seismic Lg-wave Q tomography in and around Northeast China[J]. J Geophys Res,115(B8):B08307.

    Zhao L F,Xie X B,He J K,Tian X B,Yao Z X. 2013a. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth Planet Sci Lett,383:113–122. doi: 10.1016/j.jpgl.2013.09.038

    Zhao L F,Xie X B,Wang W M,Zhang J H,Yao Z X. 2013b. Crustal Lg attenuation within the North China Craton and its surrounding regions[J]. Geophys J Int,195(1):513–531. doi: 10.1093/gji/ggt235

    Zhao W L,Morgan W J. 1987. Injection of Indian crust into Tibetan lower crust:A two-dimensional finite element model study[J]. Tectonics,6(4):489–504. doi: 10.1029/TC006i004p00489

  • 期刊类型引用(10)

    1. 韩建平,柴文阳,石岩,刘云帅. 近断层脉冲型地震动作用下简支梁桥地震响应与损伤分析. 地震工程学报. 2025(02): 251-262+280 . 百度学术
    2. 林燕枝,陈宗燕,邹赐,付青,许莉. 形状记忆合金-铅芯橡胶支座对简支梁桥抗震韧性的影响. 福州大学学报(自然科学版). 2025(02): 201-209 . 百度学术
    3. 石岩,张智超,秦洪果,裴银海. 近断层脉冲地震动下桥梁排架墩基于保险丝的损伤控制研究. 应用基础与工程科学学报. 2024(01): 223-237 . 百度学术
    4. 张尚荣,何佳蔓,唐响,熊洋. 近断层地震动加速度峰值比和脉冲特征的统计分析. 地震学报. 2024(06): 1051-1062 . 本站查看
    5. 张钦,刘子心,刘章军. 考虑脉冲参数随机性的近断层地震动降维建模. 震灾防御技术. 2023(03): 471-482 . 百度学术
    6. 王东升,陈笑宇,张锐,国巍. 基于希尔伯特-黄变换的近断层地震动脉冲特性研究. 地震学报. 2022(05): 824-844 . 本站查看
    7. 赵晓芬,温增平. 近断层速度脉冲型地震动相关问题研究. 地震学报. 2022(05): 765-782 . 本站查看
    8. 李华聪,钟菊芳. 最强脉冲方向分量的周期特性及其影响因素分析. 地震研究. 2021(01): 96-104 . 百度学术
    9. 李华聪,钟菊芳. 垂直和平行于断层方向的脉冲参数特性分析. 地震工程学报. 2021(02): 331-344 . 百度学术
    10. 陈笑宇,王东升,付建宇,国巍. 近断层地震动脉冲特性研究综述. 工程力学. 2021(08): 1-14+54 . 百度学术

    其他类型引用(11)

图(9)
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  413
  • PDF下载量:  85
  • 被引次数: 21
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-09-11
  • 网络出版日期:  2021-07-06
  • 发布日期:  2021-05-14

目录

    /

    返回文章
    返回