四川地区地震背景噪声特征分析

谢江涛, 林丽萍, 赵敏, 谌亮

谢江涛,林丽萍,赵敏,谌亮. 2021. 四川地区地震背景噪声特征分析. 地震学报,43(5):533−550. DOI: 10.11939/jass.20200148
引用本文: 谢江涛,林丽萍,赵敏,谌亮. 2021. 四川地区地震背景噪声特征分析. 地震学报,43(5):533−550. DOI: 10.11939/jass.20200148
Xie J T,Lin L P,Zhao M,Chen L. 2021. Characteristics of seismic ambient noise in Sichuan region. Acta Seismologica Sinica43(5):533−550. DOI: 10.11939/jass.20200148
Citation: Xie J T,Lin L P,Zhao M,Chen L. 2021. Characteristics of seismic ambient noise in Sichuan region. Acta Seismologica Sinica43(5):533−550. DOI: 10.11939/jass.20200148

四川地区地震背景噪声特征分析

基金项目: 国家重点研发计划(2018YFC1504002,2018YFC1503305)资助
详细信息
    通讯作者:

    谢江涛: e-mail:jiangtaoxie@outlook.com

  • 中图分类号: P315. 3+1

Characteristics of seismic ambient noise in Sichuan region

  • 摘要: 选取四川省数字测震台网2015年1月1日至2018年12月31日期间60个固定台站的三分量连续波形记录,计算了台站噪声加速度功率谱密度及相应的概率密度函数分布,统计了不同频率下的噪声功率谱密度值分布,对不同区域、不同频率下背景噪声水平的变化特征予以分析。结果表明:大部分地震台站的高频段噪声由于受到台站附近人为的、规律的作息生活和生产方式的影响,呈现明显的季节性变化和日变化,即夏季噪声水平升高,冬季降低,在农历春节期间达到全年最低值,地理空间分布特征不明显;第二类地脉动冬季噪声水平升高,夏季降低,季节性变化明显,平均变化为1—5 dB,且冬季峰值出现的频率向长周期方向移动1—2 s,呈现明显的地理空间分布特征,川东地区平均噪声水平最高,攀西地区次之,川西高原最低;与第二类地脉动相比,第一类地脉动观测到的噪声能量较弱,季节性变化不明显,地理空间分布的噪声水平差异明显减小;在20 s以上的长周期部分,台站噪声未呈明显的季节性和地理空间分布差异。此外,将地震计安置在山洞和井下,可以有效地降低台站周围干扰源、温度和压强对高频段和长周期观测的影响,噪声水平低于地表安装方式。
    Abstract: Based on the three-component continuous waveform data recorded by sixty permanent seismic stations in Sichuan seismic network from January 1, 2015 to December 31, 2018, this paper calculated the noise power spectral densities and corresponding probability density functions, then gave the statistical characteristics of noise power spectral density at different frequencies, and finally analyzed the characteristics of noise level at different regions and frequencies. The results show that the high-frequency seismic noises of most stations are affected by the nearby human activities, production mode and lifestyle, which has obvious seasonal and diurnal variations. The noise level increases during summer and decreases during winter with the lowest level during the Spring Festival in the whole year; and the geographical distribution is not obvious. For double-frequency microseisms, the noise level increases during winter and decreases during summer, and has obvious seasonal variation with an average of 1−5 dB, which has obvious geographical distribution characteristics. The average noise level in eastern Sichuan is the highest, followed by Panxi region, and the lowest in western Sichuan Plateau. The microseism peaks have different amplitudes and occur at different frequencies in summer and winter, with the peaks shifted by 1−2 s toward longer periods in the winter. Compared with the double-frequency microseism band, the noise energy at primary microseism band is weaker, the seasonal variation is not obvious, and the difference of noise level in geographical distribution is significantly reduced. While the long-period (>20 s) noise level has no obvious seasonal variation and no difference in geographical distribution. In addition, installing seismographs in caves and borehole can effectively reduce the influence of noise sources, temperature and pressure on high-frequency band and long-period observations, therefore the noise level is lower than that of shallow installations.
  • 图  10   四川台网地震台站垂直分量不同周期的噪声水平空间分布

    Figure  10.   Geographic distribution of vertical-component noise level for different periods at the seismic stations in Sichuan seismic network

    (a) f =25.000 0 Hz;(b) f =9.638 8 Hz;(c) f =2.026 3 Hz;(d) f =0.328 5 Hz

    图  1   四川省数字测震台网固定台站分布图

    Figure  1.   Distribution of permanent stations in Sichuan digital seismic network

    图  2   四川台网金鸡寺(JJS)和天全(TQU)地震台2015年1月1日至2018年12月31日三分量连续观测数据的噪声功率谱密度(PSD)的概率密度函数(PDF)分布图

    Figure  2.   PSD-PDF distribution of three-component ambient noise at the stations JJS and TQU in Sichuan seismic network recorded from January 1,2015 to December 31,2018

    图  3   四川台网金鸡寺(JJS)台(a)和天全(TQU)台(b)三分量统计中值和最小值功率谱密度(PSD)曲线

    Figure  3.   The three-component median and minimum PSD curves for the stations JJS (a) and TQU (b) in Sichuan seismic network

    图  4   华蓥山台(HYS)台(a)和道孚(DFU)台(b)垂直分量噪声功率谱密度(PSD)值的日变化

    Figure  4.   Diurnal variations of vertical-component ambient noise PSD for the station HYS (a) and DFU (b)

    图  5   地震台站垂直分量夜晚时段的噪声水平及其与白天的噪声水平变化值

    Figure  5.   The vertical-component noise levels of the seismic stations at nighttime (color) and their difference from daytime (circles) in the selected period bands

    (a) 3—10 Hz;(b) 10—20 Hz;(c) 20—40 Hz

    图  6   2015年1月1日至2018年12月31日道孚(DFU)地震台三分量噪声加速度功率谱密度(PSD)值随时间的变化分布

    Figure  6.   PSD spectrogram of ambient noise obtained from continuous three-component records at station DFU from January 1,2015 to December 31,2018

    图  7   2015年1月1日至2018年12月31日道孚(DFU)地震台中心周期Tc为0.32 s和4.6951 s时三分量背景噪声功率谱密度(PSD)值随时间的变化

    Figure  7.   PSD values of ambient noise at the central periods Tc 0.32 s and 4.695 1 s obtained from continuous three-component records for the station DFU in Sichuan seismic network from January 1,2015 to December 31,2018

    图  8   四川台网各台站夏季(a)和冬季(b) 0.1—0.5 Hz频段的垂直分量噪声水平分布

    Figure  8.   Distribution of vertical-component noise level in Sichuan seismic network in the frequency band 0.1—0.5 Hz during summer (a) and winter (b)

    图  9   道孚(DFU)台(a)和金鸡寺(JJS)台(b)垂直分量夏季和冬季噪声功率谱密度(PSD)的概率密度函数(PDF)分布及中值、最小值PSD曲线

    Figure  9.   The PDF distribution of PSD for vertical-component seismic noise in summer and winter for the stations DFU (a) and JJS (b) and the median and minimum PSD curves

    图  10   四川台网地震台站垂直分量不同周期的噪声水平空间分布

    Figure  10.   Geographic distribution of vertical-component noise level for different periods at the seismic stations in Sichuan Seismic Network

    (e) f =0.195 3 Hz;(f) f =0.097 7 Hz;(g) f =0.063 3 Hz;(h) f =0.048 8 Hz;(i) f =0.041 1 Hz;(j) f =0.020 5 Hz

    表  1   四川数字测震台网各台站垂直分量夜晚时段的噪声水平及昼夜变化值

    Table  1   The vertical-component noise level at nighttime for the seismic stations of Sichuan digital seismic networks and their difference from daytime

    序号台站
    名称
    台站
    代码
    3—10 Hz 频带10—20 Hz 频带20—40 Hz 频带
    夜晚噪声水平
    /dB
    昼夜变化
    /dB
    夜晚噪声水平
    /dB
    昼夜变化
    /dB
    夜晚噪声水平
    /dB
    昼夜变化
    /dB
    1 安县 AXI −127.27 2.25 −118.32 5.21 −109.54 2.15
    2 安岳 AYU −131.74 8.00 −136.56 16.16 −138.21 14.52
    3 宝兴 BAX −130.44 8.31 −117.78 6.22 −120.61 10.66
    4 巴塘 BTA −129.44 10.80 −128.70 13.22 −129.35 11.84
    5 丙乙底 BYD −140.19 12.60 −140.18 9.43 −134.32 6.09
    6 巴中 BZH −131.37 10.40 −134.36 11.41 −134.25 11.08
    7 成都 CD2 −125.10 2.56 −128.30 2.02 −129.47 0.62
    8 苍溪 CXI −131.53 10.28 −135.32 8.14 −129.87 2.86
    9 道孚 DFU −143.91 12.94 −148.38 9.48 −146.51 2.91
    10 峨眉山 EMS −121.74 9.20 −123.48 11.10 −130.33 13.96
    11 姑咱 GZA −130.59 4.06 −125.17 5.59 −124.94 3.35
    12 甘孜 GZI −129.86 12.40 −137.94 13.45 −135.92 7.78
    13 会理 HLI −123.38 9.63 −124.19 7.98 −128.13 9.39
    14 花马石 HMS −133.13 5.94 −136.34 7.78 −134.90 3.90
    15 黑水 HSH −133.09 7.44 −126.52 8.01 −128.26 3.66
    16 汉王山 HWS −136.54 5.29 −134.05 4.37 −135.98 4.09
    17 华蓥山 HYS −125.08 1.27 −118.83 1.77 −122.46 2.25
    18 红原 HYU −142.59 14.29 −133.77 13.00 −134.80 12.41
    19 金鸡寺 JJS −134.91 7.22 −133.69 10.42 −133.33 2.69
    20 筠连 JLI −139.43 10.59 −131.01 12.04 −133.60 14.78
    21 九龙 JLO −138.43 7.17 −138.66 10.98 −142.43 11.01
    22 剑门关 JMG −138.83 8.68 −138.19 9.74 −133.98 5.33
    23 井研 JYA −135.63 6.94 −143.38 14.73 −144.64 11.14
    24 九寨沟 JZG −143.93 10.13 −138.60 10.88 −139.05 9.52
    25 雷波 LBO −131.24 10.66 −127.53 7.02 −132.99 6.24
    26 泸沽湖 LGH −149.44 14.08 −140.25 17.69 −140.59 15.58
    27 理塘 LTA −142.38 15.07 −131.62 12.86 −131.36 12.89
    28 泸州 LZH −131.22 9.94 −126.66 7.42 −130.66 9.66
    29 马边 MBI −131.59 13.84 −127.66 13.60 −131.69 13.40
    30 蒙顶山 MDS −135.24 10.02 −137.06 14.35 −138.71 10.78
    31 马尔康 MEK −141.97 9.81 −137.25 9.69 −138.41 8.31
    32 美姑 MGU −134.78 12.20 −125.74 9.81 −128.07 15.16
    33 木里 MLI −135.31 12.81 −126.96 10.05 −131.70 8.18
    34 冕宁 MNI −108.62 1.71 −114.16 4.25 −124.79 7.96
    35 茂县 MXI −134.25 11.63 −134.37 10.36 −133.92 6.51
    36 普格 PGE −128.34 11.18 −133.24 11.94 −138.73 12.89
    37 平武 PWU −142.46 6.76 −131.86 5.99 −129.30 3.36
    38 攀枝花 PZH −134.60 11.94 −123.00 14.34 −127.04 11.74
    39 青川 QCH −142.28 11.17 −138.21 12.09 −135.66 7.61
    40 若尔盖 REG −132.80 8.29 −122.80 5.49 −122.06 6.80
    41 壤塘 RTA −138.34 13.67 −132.06 14.16 −133.48 13.50
    42 石棉 SMI −129.27 5.63 −128.19 9.15 −134.12 6.46
    43 石门坎 SMK −141.35 11.93 −138.73 11.61 −136.89 6.15
    44 松潘 SPA −130.44 5.59 −133.89 5.33 −128.07 1.97
    45 天全 TQU −131.84 9.86 −128.01 13.52 −138.34 11.40
    46 旺苍 WAC −134.56 7.56 −137.98 13.32 −137.63 13.41
    47 汶川 WCH −129.50 4.09 −129.94 5.84 −135.15 5.22
    48 五马坪 WMP −142.63 3.89 −145.97 2.85 −140.49 0.93
    49 乡城 XCE −137.05 8.75 −136.27 6.85 −128.68 0.65
    50 西充 XCO −134.28 9.76 −134.11 9.14 −132.33 8.64
    51 宣汉 XHA −133.50 11.09 −116.23 1.91 −110.09 1.65
    52 小金 XJI −130.91 8.22 −125.06 10.11 −128.29 9.12
    53 玄生坝 XSB −136.00 5.82 −134.56 7.61 −133.86 5.26
    54 油罐顶 YGD −133.25 5.53 −130.74 4.95 −127.52 2.33
    55 雅江 YJI −137.74 9.25 −132.05 10.21 −132.70 10.10
    56 盐亭 YTI −134.13 7.75 −133.68 10.24 −129.88 10.63
    57 园艺场 YYC −128.69 6.71 −130.78 7.70 −131.39 8.14
    58 盐源 YYU −144.94 9.33 −140.59 18.68 −135.41 18.48
    59 油榨坪 YZP −142.15 4.39 −138.50 4.90 −136.64 3.87
    60 仲家沟 ZJG −121.31 2.11 −122.69 1.81 −118.80 −2.69
    最小值/dB −149.44 1.27 −148.38 1.77 −146.51 −2.69
    最大值/dB −108.62 15.07 −114.16 18.68 −109.54 18.48
    平均值/dB −134.11 8.67 −131.67 9.33 −132.01 7.84
    中 值/dB −134.19 9.23 −132.65 9.72 −133.16 8.05
    下载: 导出CSV
  • 葛洪魁,陈海潮,欧阳飚,杨微,张梅,袁松湧,王宝善. 2013. 流动地震观测背景噪声的台基响应[J]. 地球物理学报,56(3):857–868. doi: 10.6038/cjg20130315

    Ge H K,Chen H C,Ouyang B,Yang W,Zhang M,Yuan S Y,Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J]. Chinese Journal of Geophysics,56(3):857–868 (in Chinese).

    吴建平,欧阳飚,王未来,姚志祥,袁松涌. 2012. 华北地区地震环境噪声特征研究[J]. 地震学报,34(6):818–829. doi: 10.3969/j.issn.0253-3782.2012.06.008

    Wu J P,Ouyang B,Wang W L,Yao Z X,Yuan S Y. 2012. Ambient noise level of North China from temporary seismic array[J]. Acta Seismologica Sinica,34(6):818–829 (in Chinese).

    谢江涛,林丽萍,谌亮,赵敏. 2018. 地震台站台基噪声功率谱概率密度函数Matlab实现[J]. 地震地磁观测与研究,39(2):84–89. doi: 10.3969/j.issn.1003-3246.2018.02.012

    Xie J T,Lin L P,Chen L,Zhao M. 2018. The program of probability density function of power spectral density curves from seismic noise of a station based on Matlab[J]. Seismological and Geomagnetic Observation and Research,39(2):84–89 (in Chinese).

    谢江涛,林丽萍,赵敏,黄春梅,李荪海. 2019. 应急流动观测组网技术在康定6.3级地震中的应用[J]. 华南地震,39(3):23–31. doi: 10.13512/j.hndz.2019.03.004

    Xie J T,Lin L P,Zhao M,Huang C M,Li S H. 2019. The application of emergency portable seismological observation network technology in Kangding MS6.3 earthquake[J]. South China Journal of Seismology,39(3):23–31 (in Chinese).

    谢江涛,林丽萍,谌亮. 2020. 九寨沟MS7.0地震应急流动台站噪声水平分析[J]. 大地测量与地球动力学,40(9):962–969. doi: 10.14075/j.jgg.2020.09.017

    Xie J T,Lin L P,Chen L. 2020. Ambient noise level of MS7.0 Jiuzhaigou earthquake emergency mobile stations[J]. Journal of Geodesy and Geodynamics,40(9):962–969 (in Chinese).

    Aster R C,McNamara D E,Bromirski P D. 2008. Multidecadal climate-induced variability in microseisms[J]. Seismol Res Lett,79(2):194–202. doi: 10.1785/gssrl.79.2.194

    Beauduin R,Lognonné P,Montagner J P,Cacho S,Karczewski J F,Morand M. 1996. The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station[J]. Bull Seismol Soc Am,86(6):1760–1769. doi: 10.1785/BSSA0860061760

    Bormann P, Wielandt E. 2013. Seismic signals and noise[G]//New Manual of Seismological Observatory Practice 2 (NMSOP2). Potsdam: Deutsches GeoForschungsZentrum: 1–62.

    Brenguier F,Campillo M,Takeda T,Aoki Y,Shapiro N M,Briand X,Emoto K,Miyake H. 2014. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops[J]. Science,345(6192):80–82. doi: 10.1126/science.1254073

    Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009. doi: 10.1029/2004GC000768

    Bromirski P D,Stephen R A,Gerstoft P. 2013. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. J Geophys Res:Solid Earth,118(7):3610–3629. doi: 10.1002/jgrb.50268

    Burtin A,Bollinger L,Vergne J,Cattin R,Nábělek J L. 2008. Spectral analysis of seismic noise induced by rivers:A new tool to monitor spatiotemporal changes in stream hydrodynamics[J]. J Geophys Res:Solid Earth,113(B5):B05301. doi: 10.1029/2007JB005034

    de la Torre T L,Sheehan A F. 2005. Broadband seismic noise analysis of the Himalayan Nepal Tibet Seismic Experiment[J]. Bull Seismol Soc Am,95(3):1202–1208. doi: 10.1785/0120040098

    Demuth A,Ottemöller L,Keers H. 2016. Ambient noise levels and detection threshold in Norway[J]. J Seismol,20(3):889–904. doi: 10.1007/s10950-016-9566-8

    Denolle M A,Dunham E M,Prieto G A,Beroza G C. 2013. Ground motion prediction of realistic earthquake sources using the ambient seismic field[J]. J Geophys Res:Solid Earth,118(5):2102–2118. doi: 10.1029/2012JB009603

    Denolle M A,Dunham E M,Prieto G A,Beroza G C. 2014. Strong ground motion prediction using virtual earthquakes[J]. Science,343(6169):399–403. doi: 10.1126/science.1245678

    Gerstoft P,Tanimoto T. 2007. A year of microseisms in southern California[J]. Geophys Res Lett,34(20):L20304. doi: 10.1029/2007GL031091

    Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–210. doi: 10.1029/RG001i002p00177

    Kedar S,Longuet-Higgins M,Webb F,Graham N,Clayton R,Jones C. 2008. The origin of deep ocean microseisms in the North Atlantic ocean[J]. Proc Roy Soc A:Math Phys Eng Sci,464(2091):777–793. doi: 10.1098/rspa.2007.0277

    Lecocq T,Hicks S P,Noten K V,Wijk K V,Koelemeijer P,Plaen R S M D,Massin F,Hillers G,Anthony R E,Apoloner M T,Arroyo-Solórzano M,Assink J D,Büyükakpınar P,Cannata A,Cannavo F,Carrasco S,Caudron C,Chaves E J,Cornwell D G,Craig D,Ouden O F C D,Diaz J,Donner S,Evangelidis C P,Evers L,Fauville B,Fernandez G A,Giannopoulos D,Gibbons S J,Girona T,Grecu B,Grunberg M,Hetényi G,Horleston A,Inza A,Irving J C E,Jamalreyhani M,Kafka A,Koymans M R,Labedz C R,Larose E,Lindsey N J,Mckinnon M,Megies T,Miller M S,Minarik W,Moresi L,Márquez-Ramírez V H,Möllhoff M,Nesbitt I M,Niyogi S,Ojeda J,Oth A,Proud S,Pulli J,Retailleau L,Rintamäki A E,Satriano C,Savage M K,Shani-Kadmiel S,Sleeman R,Sokos E,Stammler K,Stott A E,Subedi S,Sørensen M B,Taira T,Tapia M,Turhan F,Pluijm B V D,Vanstone M,Vergne J,Vuorinen T A T,Warren T,Wassermann J,Xiao H. 2020. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures[J]. Science,369(6509):1338–1343. doi: 10.1126/science.abd2438

    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans R Soc Lond A:Math Phys Eng Sci,243(857):1–35. doi: 10.1098/rsta.1950.0012

    Marzorati S,Bindi D. 2006. Ambient noise levels in north central Italy[J]. Geochem Geophys Geosyst,7(9):Q09010. doi: 10.1029/2006GC001256

    McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001

    Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque: U.S. Geological Survey, 93-322: 1−95.

    Rastin S J,Unsworth C P,Gledhill K R,McNamara D E. 2012. A detailed noise characterization and sensor evaluation of the North Island of New Zealand using the PQLX data quality control system[J]. Bull Seismol Soc Am,102(1):98–113. doi: 10.1785/0120110064

    Ringler A T,Hutt C R. 2010. Self-noise models of seismic instruments[J]. Seismol Res Lett,81(6):972–983. doi: 10.1785/gssrl.81.6.972

    Sabra K G,Gerstoft P,Roux P,Kuperman W A,Fehler M C. 2005. Extracting time-domain Green’s function estimates from ambient seismic noise[J]. Geophys Res Lett,32(3):L03310. doi: 10.1029/2004GL021862

    Shapiro N M,Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys Res Lett,31(7):L07614. doi: 10.1029/2004GL019491

    Sleeman R,Melichar P. 2012. A PDF representation of the STS-2 self-noise obtained from one year of data recorded in the Conrad observatory,Austria[J]. Bull Seismol Soc Am,102(2):587–597. doi: 10.1785/0120110150

    Stutzmann E,Roult G,Astiz L. 2000. Geoscope station noise levels[J]. Bull Seismol Soc Am,90(3):690–701. doi: 10.1785/0119990025

    Stutzmann E,Schimmel M,Patau G,Maggi A. 2009. Global climate imprint on seismic noise[J]. Geochem Geophys Geosyst,10(11):Q11004. doi: 10.1029/2009GC002619

    Tasič I,Runovc F. 2012. Seismometer self-noise estimation using a single reference instrument[J]. J Seismol,16(2):183–194. doi: 10.1007/s10950-011-9257-4

    Traer J,Gerstoft P,Bromirski P D,Shearer P M. 2012. Microseisms and hum from ocean surface gravity waves[J]. J Geophys Res:Solid Earth,117:B11307. doi: 10.1029/2012JB009550

    Traer J,Gerstoft P. 2014. A unified theory of microseisms and hum[J]. J Geophys Res:Solid Earth,119(4):3317–3339. doi: 10.1002/2013JB010504

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Webb S C. 1998. Broadband seismology and noise under the ocean[J]. Rev Geophys,36(1):105–142. doi: 10.1029/97RG02287

    Webb S C. 2002. Seismic noise on land and on the sea floor[G]//International Geophysics. International Handbook of Earthquake and Engineering Seismology, Part A. Amsterdam: Academic Press: 81: 305-318.

    Welch P. 1967. The use of fast Fourier transform for the estimation of power spectra:A method based on time averaging over short,modified periodograms[J]. IEEE Trans Audio Electroacoust,15(2):70–73. doi: 10.1109/TAU.1967.1161901

    Wolin E,van der Lee S,Bollmann T A,Wiens D A,Revenaugh J,Darbyshire F A,Frederiksen A W,Stein S,Wysession M E. 2015. Seasonal and diurnal variations in long-period noise at SPREE stations:The influence of soil characteristics on shallow stations’ performance[J]. Bull Seismol Soc Am,105(5):2433–2452. doi: 10.1785/0120150046

    Yang Y J,Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochem Geophys Geosyst,9(2):Q02008. doi: 10.1029/2007GC001814

    Young C J,Chael E P,Withers M M,Aster R C. 1996. A comparison of the high-frequency (>1 Hz) surface and subsurface noise environment at three sites in the United States[J]. Bull Seismol Soc Am,86(5):1516–1528. doi: 10.1785/BSSA0860051516

    Zhang M,Wen L X. 2015. An effective method for small event detection:Match and locate (M&L)[J]. Geophys J Int,200(3):1523–1537. doi: 10.1093/gji/ggu466

    Zhu L P,Zhou X F. 2016. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence[J]. Phys Chem Earth:Parts A/B/C,95:10–18. doi: 10.1016/j.pce.2016.01.002

图(11)  /  表(1)
计量
  • 文章访问数:  1060
  • HTML全文浏览量:  411
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 修回日期:  2020-12-28
  • 网络出版日期:  2021-10-27
  • 发布日期:  2021-09-29

目录

    /

    返回文章
    返回