汤阴地堑南部土壤Rn空间分布特征

胡宁, 马志敏, 娄露玲, 王宇, 张宝山, 王明亮, 陈蒙, 郭德科

胡宁,马志敏,娄露玲,王宇,张宝山,王明亮,陈蒙,郭德科. 2022. 汤阴地堑南部土壤Rn空间分布特征. 地震学报,44(3):489−500. DOI: 10.11939/jass.20200054
引用本文: 胡宁,马志敏,娄露玲,王宇,张宝山,王明亮,陈蒙,郭德科. 2022. 汤阴地堑南部土壤Rn空间分布特征. 地震学报,44(3):489−500. DOI: 10.11939/jass.20200054
Hu N,Ma Z M,Lou L L,Wang Y,Zhang B S,Wang M L,Chen M,Guo D K. 2022. Spatial distribution characteristics of soil radon in the southern Tangyin graben. Acta Seismologica Sinica44(3):489−500. DOI: 10.11939/jass.20200054
Citation: Hu N,Ma Z M,Lou L L,Wang Y,Zhang B S,Wang M L,Chen M,Guo D K. 2022. Spatial distribution characteristics of soil radon in the southern Tangyin graben. Acta Seismologica Sinica44(3):489−500. DOI: 10.11939/jass.20200054

汤阴地堑南部土壤Rn空间分布特征

基金项目: 地震科技星火计划(XH19028YSX和XH16026)和国家自然科学基金(41601584)共同资助
详细信息
    作者简介:

    胡宁,博士,高级工程师,主要从事第四纪地质环境研究,e-mail:qningh@126.com

    通讯作者:

    王明亮,硕士,工程师,主要从事地下流体、地震地质研究,e-mail:704397278@qq.com

  • 中图分类号: P315.72+4

Spatial distribution characteristics of soil radon in the southern Tangyin graben

  • 摘要: 为分析汤阴地堑南部土壤Rn空间分布特征,揭示其与断裂构造、岩性及沉积层厚度之间的联系,本文采用网格化布点野外流动观测方法测定了该地区380个点的土壤Rn浓度,结果表明:汤阴地堑土壤Rn浓度介于3.09—78.54 kBq/m3,背景均值为27.22 kBq/m3,异常阈值下限为48.40 kBq/m3。在空间分布上,研究区西部(以第四系等厚线50 m为界),受岩石单元和人类石料开采活动的影响,Rn浓度背景值高于东部。在西部高浓度背景影响下,Rn浓度高值异常点除沿汤西断裂带分布外,还沿断裂带外围呈斑块状分布,断裂带对气体释放的控制作用在一定程度上被掩盖。而东部地区,覆盖层较厚,Rn浓度背景值较低,部分高值异常点主要沿汤中和汤东断裂带分布,显示出构造对气体迁移的控制作用;另一部分高值异常点与第四系等厚线近似平行,呈条带分布,推测新乡—卫辉间存在一条规模较大的隐伏断裂。此外,研究区主要断裂带的Rn异常衬度表现为汤东断裂带高于汤西和汤中断裂带。结合研究区地质背景和深部孕震环境认为,该Rn异常衬度表现是汤阴地堑南部构造活动背景的反映。因此,研究区土壤Rn浓度空间分布主要受断裂构造、岩性、沉积层厚度以及人类活动的影响,气体异常衬度主要受汤阴地堑南部构造活动背景的控制。土壤Rn浓度能够有效地用于汤东活动断裂带的构造活动监测,而对位于隆起区与沉降区的过渡地带、断裂局部出露于地表,且受人类活动影响较大的汤西断裂带则需充分考虑环境背景的影响。
    Abstract: This paper discussed the spatial distribution characteristics of radon in the soil gas and their relationship with faults, geological structures, lithology, and sediment thickness based on the radon concentrations obtained by the field mobile measurement at the gridding layout observation points in the southern Tangyin graben. The measurements showed that the soil radon concentrations in the Tangyin graben varied from 3.09 to 78.54 kBq/m3 with a mean value of 27.22 kBq/m3, and the anomalous threshold was 48.40 kBq/m3. Spatially, the studied area was divided into two parts based on the contour of Quaternary system (50 m thickness), the distribution characteristics of soil gas presented that radon background concentrations were higher in western region than that in eastern evidently because of the difference of lithology units made up the local strata and the influence of human mining activity. Accordingly, the radon concentration anomalies of soil gas in western region were patchily scattered on the periphery of Tangxi fault belt besides of distributed along the fault belt itself. Nevertheless, in eastern region, the most of radon concentration anomalies mainly presented along Tangzhong and Tangdong fault belts. Similarly, the contours map of radon concentrations also indicated the azimuth of concentration anomalous belts were consistent with the strike of Tangzhong and Tangdong faults in east region, which implied the emanation of deep-seated source gas was controlled by fault structures. In addition, the radon concentrations contours map also suggested there was a radon anomalous band of NE strike that was almost parallel to contours of local Quaternary system thickness, by which we speculated there was a buried fault. Furthermore, in this studied area, though the release intensity of soil radon in the western part was significantly higher than that in the middle-eastern part, the radon concentrations anomalous extent showed a trend of increasing from west to east, which revealed that the Tangdong fault was more active than others. The comprehensive analysis indicated that the spatial distribution of soil radon concentrations was mainly controlled by fault structures, lithology formation, thickness of sedimentary layer, and human mining activities, and variations of radon concentrations were mainly dominated by the background tectonic activity of southern Tangyin graben. Our results imply that soil radon is an effective indicator for tectonic activity observation of Tangdong fault. While it is appiled to Tangxi fault which is located in the transition region between the uplift and the subsidence the influence of environmental background needs to be fully considered, because of the impact of bedrock cropping out partially and human mining activities.
  • 图  1   汤阴地堑地质构造及监测点分布图

    F1:汤西断裂;F2:汤中断裂;F3:汤东断裂;F4:新商断裂;F5:盘古寺断裂;F6:凤凰岭断裂;F7:朱营断裂;F8:薄壁断裂;F9:九里山断裂;F10:百泉断裂,下同。底图引自中国地震局地球物理勘探中心(2016

    Figure  1.   Geological map and sampled points plot of Tangyin graben

    F1:Tangxi fault;F2:Tangzhong fault;F3:Tangdong fault;F4:Xinshang fault;F5:Pangusi fault;F6:Fenghuangling fault; F7:Zhuying fault;F8:Bobi fault;F9:Jiulishan fault;F10:Baiquan fault,the same below. Modified after Geophysical Exploration Center,China Earthquake Administration (2016)

    图  2   汤阴地堑南部的土壤Rn分布Q-Q

    Figure  2.   The Q-Q plots of soil radon concentration in southern Tangyin graben

    图  3   汤阴地堑土壤Rn浓度空间分布

    Figure  3.   The spatial distribution plot of soil radon concentration in Tangyin graben

    图  4   汤阴地堑南部土壤Rn空间等值线及结果解释

    Figure  4.   The contours map of soil Rn concentration and geophysical interpretation for southern Tangyin graben

    图  5   浅层人工地震剖面Ⅱ(a)和Ⅲ(b)解释断点

    Figure  5.   Interpretation of faults located on shallow artificial seismic profiles Ⅱ (a) and Ⅲ (b)

    表  1   汤阴地堑南部土壤Rn浓度分布特征

    Table  1   The soil radon concentration statistical characteristics of southern Tangyin graben

     测点数最大值
    /(kBq·m−3
    最小值
    /(kBq·m−3
    平均值
    /(kBq·m−3
    中值
    /(kBq·m−3
    下四分位
    /(kBq·m−3
    上四分位
    /(kBq·m−3
    标准差
    /(kBq·m−3
    背景值
    /(kBq·m−3
    异常阈值
    /(kBq·m−3
    异常
    衬度
    全部测点38078.543.0928.2727.1519.1035.5612.9627.2248.402.13
    西部测点11167.613.0934.1133.7624.1643.5514.4133.3658.511.92
    东部测点26978.544.8825.8625.1818.2032.6911.5025.4044.592.11
    汤西断裂3658.587.1932.8531.8825.7541.8512.0232.9654.801.72
    汤中断裂4351.917.8826.4324.9319.7830.4111.1326.5946.871.89
    汤东断裂6871.407.1623.2822.5814.3429.1911.8022.3838.642.38
    下载: 导出CSV
  • 胡宁,马志敏,娄露玲,张宝山,王宇,王明亮,王文净,郭德科. 2019. 汤东活动断裂带气体地球化学特征[J]. 地震学报,41(4):524–535. doi: 10.11939/jass.20180131

    Hu N,Ma Z M,Lou L L,Zhang B S,Wang Y,Wang M L,Wang W J,Guo D K. 2019. Geochemical characteristics of soil gas in Tangdong active fault zone[J]. Acta Seismologica Sinica,41(4):524–535 (in Chinese).

    李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,31(1):82–91. doi: 10.3321/j.issn:0253-3782.2009.01.009

    Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin,North China[J]. Acta Seismologica Sinica,31(1):82–91 (in Chinese).

    刘保金,何宏林,石金虎,冉永康,袁洪克,谭雅丽,左莹,何银娟. 2012. 太行山东缘汤阴地堑地壳结构和活动断裂探测[J]. 地球物理学报,55(10):3266–3276. doi: 10.6038/j.issn.0001-5733.2012.10.009

    Liu B J,He H L,Shi J H,Ran Y K,Yuan H K,Tan Y L,Zuo Y,He Y J. 2012. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang mountain[J]. Chinese Journal of Geophysics,55(10):3266–3276 (in Chinese).

    王明亮,胡宁,郭德科,夏修军,王宇,李源. 2019. 安阳南断裂带土壤H2、Rn地球化学特征[J]. 大地测量与地球动力学,39(11):1198–1201.

    Wang M L,Hu N,Guo D K,Xia X J,Wang Y,Li Y. 2019. Geochemical characteristics of radon and hydrogen in soil gas of south Anyang fault belts[J]. Journal of Geodesy and Geodynamics,39(11):1198–1201 (in Chinese).

    中国地震局地球物理勘探中心. 2016. 新乡市活断层探测与地震危险性评价[R]. 郑州: 中国地震局地球物理勘探中心: 163–295.

    Geophysical Exploration Center, China Earthquake Administration. 2016. Active Fault Detection And Seismic Risk Assessment in Xinxiang City[R]. Zhengzhou: Geophysical Exploration Center, China Earthquake Administration: 163–295 (in Chinese).

    Barkat A,Ali A,Hayat U,Crowley Q G,Rehman K,Siddique N,Haidar T,Iqbal T. 2018. Time series analysis of soil radon in northern Pakistan:Implications for earthquake forecasting[J]. Appl Geochem,97:197–208. doi: 10.1016/j.apgeochem.2018.08.016

    Barnet I,Pacherová P,Poňavič M. 2018. Detection of faults using the profile measurements of radon concentration and gamma dose rate (Bohemian Massif,Czech Republic)[J]. Environ Earth Sci,77(9):330. doi: 10.1007/s12665-018-7513-4

    Burton M,Neri M,Condarelli D. 2004. High spatial resolution radon measurements reveal hidden active faults on Mt.Etna[J]. Geophys Res Lett,31(7):L07618.

    Choubey V M,Bist K S,Saini N K,Ramola R C. 1999. Relation between soil-gas radon variation and different lithotectonic units,Garhwal Himalaya,India[J]. Appl Radiat Isot,51(5):587–592. doi: 10.1016/S0969-8043(98)00149-3

    Choubey V M,Mukherjee P K,Bajwa B S,Walia V. 2007. Geological and tectonic influence on water–soil–radon relationship in Mandi-Manali area,Himachal Himalaya[J]. Environ Geol,52(6):1163–1171. doi: 10.1007/s00254-006-0553-1

    Chowdhury S,Barman C,Deb A,Raha S,Ghose D. 2019. Study of variation of soil radon exhalation rate with meteorological parameters in Bakreswar-Tantloi geothermal region of west Bengal and Jharkhand,India[J]. J Radioanal Nucl Chem,319(1):23–32. doi: 10.1007/s10967-018-6286-2

    Ciotoli G,Lombardi S,Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin:Fucino Plain,central Italy[J]. J Geophys Res:Solid Earth,112(B5):B05407.

    Fu C C,Yang T F,Walia V,Chen C H. 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan[J]. Geochem J,39(5):427–439. doi: 10.2343/geochemj.39.427

    Fu C C,Yang T F,Du J,Walia V,Chen Y G,Liu T K,Chen C H. 2008. Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan[J]. Radiat Meas,43:S348–S352. doi: 10.1016/j.radmeas.2008.03.035

    Fu C C,Yang T F,Chen C H,Lee L C,Wu Y M,Liu T K,Walia V,Kumar A,Lai T H. 2017. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J]. J Asian Earth Sci,149:64–77. doi: 10.1016/j.jseaes.2017.02.032

    Giustini F,Ciotoli G,Rinaldini A,Ruggiero L,Voltaggio M. 2019. Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression:A case study from a volcanic area of central Italy[J]. Sci Total Environ,661:449–464. doi: 10.1016/j.scitotenv.2019.01.146

    Jaishi H P,Singh S,Tiwari R P,Tiwari R C. 2014. Correlation of radon anomalies with seismic events along Mat fault in Serchhip District,Mizoram,India[J]. Appl Radiat Isot,86:79–84. doi: 10.1016/j.apradiso.2013.12.040

    Kandari T,Prasad M,Pant P,Semwal P,Bourai A A,Ramola R C. 2018. Study of radon flux and natural radionuclides (226Ra,232Th and 40K) in the main boundary thrust region of Garhwal Himalaya[J]. Acta Geophys,66(5):1243–1248. doi: 10.1007/s11600-018-0158-6

    Kumar G,Kumari P,Kumar A,Prasher S,Kumar M. 2017. A study of radon and thoron concentration in the soils along the active fault of NW Himalayas in India[J]. Ann Geophys,60(3):S0329.

    Li C H,Zhang H,Su H J,Zhou H L. 2019. Analysis of anomaly characteristics of the soil gas radon from the crossing fault in the mid-east area of Qilian mountain before the 2016 Menyuan MS6.4 earthquake[J]. J Radioanal Nucl Chem,322(2):763–769. doi: 10.1007/s10967-019-06694-4

    Li Y,Du J G,Wang X,Zhou X C,Xie C,Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of northern China[J]. Terr Atmos Ocean Sci,24(3):323–332. doi: 10.3319/TAO.2012.11.26.01(TT)

    Lombardi S,Voltattorni N. 2010. Rn,He and CO2 soil gas geochemistry for the study of active and inactive faults[J]. Appl Geochem,25(8):1206–1220. doi: 10.1016/j.apgeochem.2010.05.006

    Mollo S,Tuccimei P,Heap M J,Vinciguerra S,Soligo M,Castelluccio M,Scarlato P,Dingwell D B. 2011. Increase in radon emission due to rock failure:An experimental study[J]. Geophys Res Lett,38(14):L14304.

    Nazaroff W W. 1992. Radon transport from soil to air[J]. Rev Geophys,30(2):137–160. doi: 10.1029/92RG00055

    Neri M,Ferrera E,Giammanco S,Currenti G,Cirrincione R,Patanè G,Zanon V. 2016. Soil radon measurements as a potential tracer of tectonic and volcanic activity[J]. Sci Rep,6:24581. doi: 10.1038/srep24581

    Papachristodoulou C,Stamoulis K,Ioannides K. 2020. Temporal variation of soil gas radon associated with seismic activity:A case study in NW Greece[J]. Pure Appl Geophys,177(2):821–836. doi: 10.1007/s00024-019-02339-5

    Perrier F,Richon P,Byrdina S,France-Lanord C,Rajaure S,Koirala B P,Lal Shrestha P,Gautam U P,Tiwari D R,Revil A,Bollinger L,Contraires S,Bureau S,Sapkota S N. 2009. A direct evidence for high carbon dioxide and radon-222 discharge in central Nepal[J]. Earth Planet Sci Lett,278(3/4):198–207.

    Ramola R C,Choubey V M,Prasad Y,Prasad G,Bartarya S K. 2006. Variation in radon concentration and terrestrial gamma radiation dose rates in relation to the lithology in southern part of Kumaon Himalaya,India[J]. Radiat Meas,41(6):714–720. doi: 10.1016/j.radmeas.2006.03.009

    Sciarra A,Cantucci B,Coltorti M. 2017. Learning from soil gas change and isotopic signatures during 2012 Emilia seismic sequence[J]. Sci Rep,7(1):14187. doi: 10.1038/s41598-017-14500-y

    Sciarra A,Mazzini A,Inguaggiato S,Vita F,Lupi M,Hadi S. 2018. Radon and carbon gas anomalies along the Watukosek fault system and Lusi mud eruption,Indonesia[J]. Mar Petrol Geol,90:77–90. doi: 10.1016/j.marpetgeo.2017.09.031

    Sun X L,Yang P T,Xiang Y,Si X Y,Liu D Y. 2018. Across-fault distributions of radon concentrations in soil gas for different tectonic environments[J]. Geosci J,22(2):227–239. doi: 10.1007/s12303-017-0028-2

    Tareen A D K,Asim K M,Kearfott K J,Rafique M,Nadeem M S A,Iqbal T,Rahman S U. 2019. Automated anomalous behaviour detection in soil radon gas prior to earthquakes using computational intelligence techniques[J]. J Environ Radioact,203:48–54. doi: 10.1016/j.jenvrad.2019.03.003

    Tuccimei P,Mollo S,Vinciguerra S,Castelluccio M,Soligo M. 2010. Radon and thoron emission from lithophysae-rich tuff under increasing deformation:An experimental study[J]. Geophys Res Lett,37(5):L05305.

    Walia V,Mahajan S,Kumar A,Singh S,Bajwa B S,Dhar S,Yang T F. 2008. Fault delineation study using soil gas method in the Dharamsala area,NW Himalayas,India[J]. Radiat Meas,43(S1):S337–S342.

    Weinlich F H,Faber E,Boušková A,Horálek J,Teschner M,Poggenburg J. 2006. Seismically induced variations in Mariánské Lázně fault gas composition in the NW Bohemian swarm quake region,Czech Republic:A continuous gas monitoring[J]. Tectonophysics,421(1/2):89–110.

    Yang Y,Li Y,Guan Z,Chen Z,Zhang L,Lü C,Sun F. 2018. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan,southwestern of China[J]. Appl Geochem,89:23–33. doi: 10.1016/j.apgeochem.2017.11.006

    Yuce G,Fu C C,D’Alessandro W,Gulbay A H,Lai C W,Bellomo S,Yang T F,Italiano F,Walia V. 2017. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea fault and Karasu fault in the Amik basin (Hatay),Turkey[J]. Chem Geol,469:129–146. doi: 10.1016/j.chemgeo.2017.01.003

  • 期刊类型引用(8)

    1. 杨莉,叶媛媛. 不同地震台站地电场观测资料频谱特征分析. 甘肃科技. 2018(19): 82-85 . 百度学术
    2. 鲍海英,李飞,卜玉菲,潘颖,杨从杰. 江苏地区地电暴特征及差异性. 地震地磁观测与研究. 2018(05): 55-61 . 百度学术
    3. 杨牧萍,黄建平,张学民,申旭辉,王兰炜,泽仁志玛,钱庚,翟丽娜. 东北亚地区电离层ELF/VLF电场的动态背景场研究. 地球物理学进展. 2018(06): 2285-2294 . 百度学术
    4. 张建国,焦立果,刘晓灿,马新欣. 汶川M_S8.0级地震前后ULF电磁辐射频谱特征研究. 地球物理学报. 2013(04): 1253-1261 . 百度学术
    5. 孙雷,李飞,杨冯威. 新沂台地电场频谱特征的分析与研究. 华南地震. 2013(02): 93-103 . 百度学术
    6. 尼鲁帕尔·买买吐孙,张永仙. 地震电磁卫星电离层扰动研究进展综述. 地震. 2012(01): 103-117 . 百度学术
    7. 张建国,姚丽,刘晓灿,马新欣,焦立果. 地震电离层VLF电磁场频谱特征研究. 大地测量与地球动力学. 2012(03): 110-115 . 百度学术
    8. 吴静,付静静. 地震电磁卫星监测输电线谐波辐射研究综述. 地震学报. 2011(06): 828-836+844 . 本站查看

    其他类型引用(6)

图(5)  /  表(1)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  164
  • PDF下载量:  46
  • 被引次数: 14
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-06-06
  • 网络出版日期:  2022-06-26
  • 发布日期:  2022-06-26

目录

    /

    返回文章
    返回