基于希尔伯特-黄变换的近断层地震动脉冲特性研究

王东升, 陈笑宇, 张锐, 国巍

王东升,陈笑宇,张锐,国巍. 2022. 基于希尔伯特-黄变换的近断层地震动脉冲特性研究. 地震学报,44(5):824−844. DOI: 10.11939/jass.20220090
引用本文: 王东升,陈笑宇,张锐,国巍. 2022. 基于希尔伯特-黄变换的近断层地震动脉冲特性研究. 地震学报,44(5):824−844. DOI: 10.11939/jass.20220090
Wang D S,Chen X Y,Zhang R,Guo W. 2022. Characteristics of pulses in near-fault ground motion based on Hilbert-Huang transform. Acta Seismologica Sinica44(5):824−844. DOI: 10.11939/jass.20220090
Citation: Wang D S,Chen X Y,Zhang R,Guo W. 2022. Characteristics of pulses in near-fault ground motion based on Hilbert-Huang transform. Acta Seismologica Sinica44(5):824−844. DOI: 10.11939/jass.20220090

基于希尔伯特-黄变换的近断层地震动脉冲特性研究

基金项目: 国家自然科学基金(52208507)资助
详细信息
    作者简介:

    王东升,博士,教授,主要从事桥梁及结构抗震研究,e-mail:dswang@hebut.edu.cn

    通讯作者:

    陈笑宇,博士,主要从事地震动特性及结构抗震研究,e-mail:daisychen0206@163.com

  • 中图分类号: P315.9

Characteristics of pulses in near-fault ground motion based on Hilbert-Huang transform

  • 摘要: 近断层地震动中存在的低频、大幅值速度脉冲使得临近断层结构具有更高的强度和延性需求。对近断层地震动脉冲特性的深入研究有利于加深对临近断层结构反应的认识,从而为临近断层结构抗震设计提供理论依据。受强震记录处理及速度脉冲识别和提取方法的限制,目前已有的研究工作主要集中于近断层地震动记录的单脉冲特性,多脉冲特性涉及较少。本文基于希尔伯特-黄变换及其相关理论,针对近断层地震动,提出了涵盖原始强震记录基线校正,至多速度脉冲定量判别及提取的整套脉冲特性研究方法,该方法对多脉冲记录尤为有效;基于提取出的理想化速度脉冲构建了(多)脉冲参数与地震参数的统计关系;以脉冲持时新定义了近断层地震动的有效强震持时,并通过多层结构非线性时程分析进行了验证。新方法中,基线校正过程可以获得稳定的地面峰值位移(PGD)和具有物理意义的基线偏移时程;提出的速度脉冲识别及波形提取方法可以将每个脉冲准确定位于时域,同时自动化获得脉冲相关参数;基于理想脉冲定义的近断层地震动有效强震持时可以良好地 表征多脉冲记录的强度。
    Abstract: Large-amplitude and long-period pulses are observed in velocity time histories of near-fault ground-motion records. The pulses in these records can pose severe ductility or strength demands to the near-fault structures and can subject them to higher collapse risks. Further research on the characteristics of pulses in near-fault ground motion is beneficial to deepen the understanding of the response of structures close to faults, and provide theoretical basis for the aseismic design. At present, methods related to strong motion processing and identification of near-fault pulses mainly focus on the single pulse in a record, so the multi-pulse characteristics of near-fault ground motions are less involved. Hence, a set of methods based on Hilbert-Huang transform (HHT) are proposed here to investigate the multi-pulse characteristics. Firstly, the raw near-fault record is corrected by the proposed HSA method, and then the ideal pulse signal can be extracted by the HHT method from the corrected record. According to the extracted pulse signal, the statistical relationships between pulse parameters and earthquake parameters are investigated. Finally, an effective strong motion duration is defined based on the pulse duration, which is verified by the nonlinear time history analysis of multi-storey buildings. The developed methods are particularly suitable for multi-pulse records. Stable peak ground displacement (PGD) and physically baseline offset time history can be obtained by the HSA method. Each velocity pulse in a record can be located in the time domain exactly and automatically by the HHT method. The proposed definition of strong motion duration for near-fault records can well characterize the intensity of multi-pulse records.
  • 图  13   各个脉冲周期与主能量脉冲周期$T_{\rm{p}}^{{E}} $间的关系

    Figure  13.   Relationship between the nth pulse in time domain and the main large-energy pulse period $T_{\rm{p}}^{{E}} $

    图  1   第七阶本征模态函数时间-频率空间能量密度分布及其转角频率

    (1999年台湾集集地震TCU068台站,图2同)

    Figure  1.   Energy density distribution in time-frequency space and corner frequencies of the 7th IMF

    (Station TCU068,1999 Chi-Chi earthquake,Taiwan,the same in Fig. 2

    图  2   各层提取出的未污染成分的位移时程

    Figure  2.   Displacement time histories of uncontaminated components extracted from each level

    图  3   校正后的位移时程(1999年集集地震TCU129台站)

    Figure  3.   The final corrected displacement time history of the record from the station TCU129 (EW) during Chi-Chi earthquake

    图  4   每层分解校正后获得的最终位移时程(1999年集集地震TCU129台站)

    Figure  4.   Final displacement time history of each level from extraction of the record by the station TCU129 (EW) during Chi-Chi earthquake

    图  5   HSA方法和传统两点校正法获得的基线偏移加速度时程(1999年集集地震TCU068台站)

    Figure  5.   Acceleration time history of the baseline shift obtained by the HSA method and the traditional baseline adjustment method (Station TCU068 of 1999 Chi-Chi earthquake)

    图  6   样本数据库96条强震记录的r值分布

    Figure  6.   PGV/PGA ratio for 96 strong motion records in the database

    图  7   1994年北岭地震Jensen Filter Plant台站记录的各阶IMF能量变化 (a)及速度反应谱 (b)

    Figure  7.   Energy changes (a) and spectral velocity (b) of each intrinsic mode function (IMF) for Jensen Filter Plant station during 1994 Northridge earthquake

    图  8   由IMF5和IMF6引发的尖刺(1983年科灵加地震普莱森特瓦利台站)

    Figure  8.   A spike caused by IMF5 and IMF6 in the velocity time history from the Pleasant Valley station during 1983 Coalinga earthquake

    图  9   脉冲波形收敛性检验

    Figure  9.   Test of covergency of the HHT method

    图  10   以HHT方法(a)和小波迭代方法(b)提取出的脉冲波形(2011年新西兰基督城地震PRPC台站)

    Figure  10.   Pulses extracted by the HHT (a) and the iterative procedure (b) method for the velocity time history recorded from PRPC station during 2011 Christchurch earthquake

    图  11   原始强震记录、初步提取脉冲以及理想脉冲(1994年北岭地震Pacoima Dam台站)

    Figure  11.   Original record,rough pulse signal and localized pulses (1994 Northridge earthquake, Pacoima Dam station)

    图  12   脉冲个数与断层距和场地条件的关系

    Figure  12.   Contour map of rupture distance,shear wave velocity and the number of inherent pulses

    图  14   主能量脉冲周期$T_{\rm{p}}^{{E}} $与震级M的关系

    Figure  14.   Relationship between $T_{\rm{p}}^{{E}} $ and magnitude M

    图  15   n个脉冲幅值与主能量脉冲幅值线性关系

    Figure  15.   Linear relationship between PGV and PGVE

    图  16   1994年北岭地震中Pacoima Dam台站记录到的理想脉冲速度时程(a)及能量累积过程(b)

    Figure  16.   Pulse velocity time history (a) and energy flux (b) for the record from Pacoima Dam station during 1994 Northridge earthquake

    图  17   1979年帝王谷地震中El-Centro Array #10台站记录到的理想脉冲速度时程(a)及能量累积过程(b)

    Figure  17.   Pulse velocity time history (a) and energy flux (b) for the record from El-Centro Array #10 station during 1979 Imperial Valley earthquake

    图  18   二十层抗弯钢框架全持时记录与有效持时记录输入下顶层位移时程

    Figure  18.   Top displacement time histories for 20-storey Benchmark steel moment resisting frame under total duration and pulse duration records

    图  19   二十层抗弯钢框架全持时和有效持时下最大层间位移角

    Figure  19.   Max interstorey drift of total and pulse duration for 20-storey moment resistant steel frame structure

    图  20   二十层抗弯钢框架全持时和有效持时下层间位移角

    Figure  20.   Interstorey drift of total and pulse duration for 20-storey moment resistant steel frame structure

    表  1   有效持时记录和全持时记录输入下结构最大层间位移角比较

    Table  1   Comparison of the max interstorey drift under pulse duration and total duration

    三层九层二十层
    均值比0.981.000.99
    可决系数0.970.980.98
    标准差0.020.020.02
    下载: 导出CSV
  • 曹晖, 曹永红. 2008. HH变换在地震动信号分析中的应用[J]. 重庆大学学报, 31(8): 922-927. doi: 10.11835/j.issn.1000-582X.2008.08.018

    Cao H, Cao Y H. 2008. Application limitation of the Hilbert-Huang transform to earthquake ground motion analysis[J]. Journal of Chongqing University, 31(8): 922-927 (in Chinese).

    陈清军, 李英成, 胡灿阳. 2010. 基于正交化HHT法的特殊长周期地震动能量分布研究[J]. 力学季刊, 31(4): 548-554. doi: 10.15959/j.cnki.0254-0053.2010.04.011

    Chen Q J, Li Y C, Hu C Y. 2010. Study on energy distribution of special long-period ground motion based on orthogonal Hilbert-Huang transform method[J]. Chinese Quarterly of Mechanics, 31(4): 548-554 (in Chinese).

    陈勇, 陈鲲, 喻言祥. 2007. 用集集主震记录研究近断层强震记录的基线校正方法[J]. 地震工程与工程振动, 27(4): 1-7. doi: 10.3969/j.issn.1000-1301.2007.04.001

    Chen Y, Chen K, Yu Y X. 2007. Base line correction method for near-fault accelerograms using Chi-Chi main shock record[J]. Journal of Earthquake Engineering and Engineering Vibration, 27(4): 1-7 (in Chinese).

    杜东升, 宋宝玺, 许伟志, 王曙光. 2020. 高层钢结构考虑长周期地震动的减震加固研究[J]. 工程力学, 37(7): 189-200. doi: 10.6052/j.issn.1000-4750.2019.09.0508

    Du D S, Song B X, Xu W Z, Wang S G. 2020. Seismic retrofit of a high-rise steel structure considering long-period and long-duration ground motions[J]. Engineering Mechanics, 37(7): 189-200 (in Chinese).

    公茂盛, 谢礼立. 2003. HHT方法在地震工程中的应用之初步探讨[J]. 世界地震工程, 19(3): 39-43. doi: 10.3969/j.issn.1007-6069.2003.03.008

    Gong M S, Xie L L. 2003. Discussion on the application of HHT method to earthquake engineering[J]. World Earthquake Engineering, 19(3): 39-43 (in Chinese).

    韩建平, 程诗焱, 于晓辉, 吕大刚. 2021. 地震动持时对RC框架结构易损性与抗震性能影响[J]. 建筑结构学报, 42(11): 116-127. doi: 10.14006/j.jzjgxb.2019.0677

    Han J P, Cheng S Y, Yu X H, Lü D G. 2021. Effect of ground motion duration on fragility and seismic performance of RC frame structures[J]. Journal of Building Structures, 42(11): 116-127 (in Chinese).

    胡进军, 谢礼立. 2011. 地震破裂的方向性效应相关概念综述[J]. 地震工程与工程振动, 31(4): 1-8. doi: 10.13197/j.eeev.2011.04.001

    Hu J J, Xie L L. 2011. Review of rupture directivity related concepts in seismology[J]. Journal of Earthquake Engineering and Engineering Vibration, 31(4): 1-8 (in Chinese).

    胡聿贤, 周锡元. 1999. 地震工程的跨世纪发展趋势[J]. 工程抗震, 22(1): 3-9.
    Hu Y X, Zhou X Y. 1999. Development trend of earthquake engineering toward new century[J]. Earthquake Resistant Engineering, 22(1): 3-9 (in Chinese). 

    Hu Y X, Zhou X Y. 1999. Development trend of earthquake engineering toward new century[J]. Earthquake Resistant Engineering, 22(1): 3-9 (in Chinese). 

    胡聿贤, 张郁山, 梁建文. 2006. 基于HHT方法的场地液化的识别[J]. 土木工程学报, 39(2): 66-72. doi: 10.3321/j.issn:1000-131X.2006.02.013

    Hu Y X, Zhang Y S, Liang J W. 2006. HHT-based identification of site liquefaction[J]. China Civil Engineering Journal, 39(2): 66-72 (in Chinese).

    黄蓓, 张培震, 张冬丽, 李小军. 2015. 汶川8.0级特大地震的断裂特性与强地面运动的关系[J]. 地震地质, 37(4): 1055-1069. doi: 10.3969/j.issn.0253-4967.2015.04.010

    Huang B, Zhang P Z, Zhang D L, Li X J. 2015. The faulting characteristics of 2008 Wenchuan Ms8.0 earthquake and its relation with strong ground motion[J]. Seismology and Geology, 37(4): 1055-1069 (in Chinese).

    李帅, 王景全, 颜晓伟, 冯宇. 2016. 近断层地震动空间分布特征对斜拉桥地震响应影响[J]. 土木工程学报, 49(6): 94-104. doi: 10.15951/j.tmgcxb.2016.06.011

    Li S, Wang J Q, Yan X W, Feng Y. 2016. Influence of spatial distribution characteristics of near-fault ground motions on seismic responses of cable-stayed bridges[J]. China Civil Engineering Journal, 49(6): 94-104 (in Chinese).

    李帅, 张凡, 颜晓伟, 王景全. 2017. 近断层地震动合成方法及其对超大跨斜拉桥地震响应影响[J]. 中国公路学报, 30(2): 86-97. doi: 10.3969/j.issn.1001-7372.2017.02.011

    Li S, Zhang F, Yan X W, Wang J Q. 2017. Synthetic method for near-fault ground motions and its influence on seismic response of super-span cable-stayed bridge[J]. China Journal of Highway and Transport, 30(2): 86-97 (in Chinese).

    李新乐, 朱晞. 2004. 近断层地震动等效速度脉冲研究[J]. 地震学报, 26(6): 634-643. doi: 10.3321/j.issn:0253-3782.2004.06.009

    Li X L, Zhu X. 2004. Study on equivalent velocity pulse of near-fault ground motions[J]. Acta Seismologica Sinica, 26(6): 634-643 (in Chinese).

    李英民, 董银峰, 赖明. 2007. 基于EMD和VARMA模型的信号处理方法[J]. 振动与冲击, 26(12): 68-73. doi: 10.3969/j.issn.1000-3835.2007.12.016

    Li Y M, Dong Y F, Lai M. 2007. Signal processing method using EMD and VARMA model[J]. Journal of Vibration and Shock, 26(12): 68-73 (in Chinese).

    刘启方, 袁一凡, 金星, 丁海平. 2006. 近断层地震动的基本特征[J]. 地震工程与工程振动, 26(1): 1-10. doi: 10.3969/j.issn.1000-1301.2006.01.001

    Liu Q F, Yuan Y F, Jin X, Ding H P. 2006. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration, 26(1): 1-10 (in Chinese).

    彭小波, 李小军, 刘启方. 2011. 基于强震记录估算同震位移的研究进展及方法[J]. 世界地震工程, 27(3): 73-80.

    Peng X B, Li X J, Liu Q F. 2011. Advances and methods for the recovery of coseismic displacements from strong-motion accelerograms[J]. World Earthquake Engineering, 27(3): 73-80 (in Chinese).

    邱志刚, 罗奇峰. 2015. 几条地震波的归一化时-频反应谱分析[J]. 地球物理学报, 58(4): 1251-1258. doi: 10.6038/cjg20150413

    Qiu Z G, Luo Q F. 2015. Analysis of normalized time-frequency response spectra for three seismic records[J]. Chinese Journal of Geophysics, 58(4): 1251-1258 (in Chinese).

    曲哲, 师骁. 2016. 汶川地震和鲁甸地震的脉冲型地震动比较研究[J]. 工程力学, 33(8): 150-157. doi: 10.6052/j.issn.1000-4750.2015.01.0039

    Qu Z, Shi X. 2016. Comparative study on the pulse-like ground motions in the Wenchuan and the Ludian earthquakes[J]. Engineering Mechanics, 33(8): 150-157 (in Chinese).

    荣棉水, 彭艳菊, 喻畑, 杨宇. 2014. 近断层强震观测记录基线校正的优化方法[J]. 土木工程学报, 47(S2): 300-306. doi: 10.15951/j.tmgcxb.2014.s2.048

    Rong M S, Peng Y J, Yu T, Yang Y. 2014. Optimized baseline correction method for the near-fault observation strong motion records[J]. China Civil Engineering Journal, 47(S2): 300-306 (in Chinese).

    石春香, 罗奇峰. 2003.时程信号的Hilbert-Huang变换与小波分析[J].地震学报,16(4),422-429. doi: 10.1007/s11589-003-0075-9

    Shi C X, Luo Q F. 2003. Hilbert-Huang transform and wavelet analysis of time history signal[J]. Acta Seismol Sin, 16(4): 422-429 (in Chinese). doi: 10.1007/s11589-003-0075-9

    石春香, 李胡生, 罗奇峰, 施卫星. 2011. 振动台试验模型地震反应的HHT研究[J]. 地震学报, 33(1): 114-119. doi: 10.3969/j.issn.0253-3782.2011.01.010

    Shi C X, Li H S, Luo Q F, Shi W X. 2011. HHT analysis on seismic response of a structure model tested on shake table[J]. Acta Seismologica Sinica, 33(1): 114-119 (in Chinese).

    田玉基, 杨庆山, 卢明奇. 2007. 近断层脉冲型地震动的模拟方法[J]. 地震学报, 29(1): 77-84. doi: 10.3321/j.issn:0253-3782.2007.01.009

    Tian Y J, Yang Q S, Lu M Q. 2007. Simulation method of near-fault pulse-type ground motion[J]. Acta Seismologica Sinica, 29(1): 77-84 (in Chinese).

    王东升, 冯启民, 翟桐. 2003. 近断层地震动作用下钢筋混凝土桥墩的抗震性能[J]. 地震工程与工程振动, 23(1): 95-102. doi: 10.3969/j.issn.1000-1301.2003.01.016

    Wang D S, Feng Q M, Zhai T. 2003. Performance of reinforced concrete bridge piers subjected to near-fault ground motions[J]. Earthquake Engineering and Engineering Vibration, 23(1): 95-102 (in Chinese).

    王国权, 周锡元. 2004. 921台湾集集地震近断层强震记录的基线校正[J]. 地震地质, 26(1): 1-14. doi: 10.3969/j.issn.0253-4967.2004.01.001

    Wang G Q, Zhou X Y. 2004. Baseline correction of near fault ground motion recordings of the 1999 Chi-Chi, Taiwan earthquake[J]. Seismology and Geology, 26(1): 1-14 (in Chinese).

    王景全, 李帅, 张凡. 2017. 采用SMA智能橡胶支座的近断层大跨斜拉桥易损性分析[J]. 中国公路学报, 30(12): 30-39. doi: 10.3969/j.issn.1001-7372.2017.12.004

    Wang J Q, Li S, Zhang F. 2017. Seismic fragility analyses of long-span cable-stayed bridge isolated by SMA wire-based smart rubber bearing in near-fault regions[J]. China Journal of Highway and Transport, 30(12): 30-39 (in Chinese).

    温卫平, 籍多发, 刘惠华, 翟长海. 2022. 考虑倒塌储备的近断层区域RC框架结构抗震设计方法[J]. 建筑结构学报, 43(4): 1-7.

    Wen W P, Ji D F, Liu H H, Zhai C H. 2022. Seismic design method of RC frame structures at near-fault region considering collapse margin[J]. Journal of Building Structures, 43(4): 1-7 (in Chinese).

    吴巧云, 朱宏平. 2010. 地震波时变谱估计方法比较研究[J]. 工程力学, 27(1):15-19.

    Wu Q Y, Zhu H P. 2010. Comparative research on time-varying spectrum estimation method of earthquake ground motions [J]. Eng Mech, 27(1):15-19.

    谢俊举, 温增平, 高孟潭. 2013. 利用强震数据获取汶川地震近断层地面永久位移[J]. 地震学报, 35(3): 369-379. doi: 10.3969/j.issn.0253-3782.2013.03.008

    Xie J J, Wen Z P, Gao M T. 2013. Recovery of co-seismic deformation from strong motion records during the Wenchuan earthquake[J]. Acta Seismologica Sinica, 35(3): 369-379 (in Chinese).

    谢俊举, 李小军, 温增平. 2017. 近断层速度大脉冲对反应谱的放大作用[J]. 工程力学, 34(8): 194-211. doi: 10.6052/j.issn.1000-4750.2016.09.0680

    Xie J J, Li X J, Wen Z P. 2017. The amplification effects of near-fault distinct velocity pulses on response spectra[J]. Engineering Mechanics, 34(8): 194-211 (in Chinese).

    谢俊举, 李小军, 温增平, 周宝峰. 2018. 芦山7.0级地震近断层地震动的方向性[J]. 地球物理学报, 61(4): 1266-1280. doi: 10.6038/cjg2018K0686

    Xie J J, Li X J, Wen Z P, Zhou B F. 2018. Variations of near-fault strong ground motion with directions during the 2013 Lushan Ms7.0 earthquake[J]. Chinese Journal of Geophysics, 61(4): 1266-1280 (in Chinese).

    于海英, 江汶乡, 解全才, 杨永强, 程翔, 杨剑. 2009. 近场数字强震仪记录误差分析与零线校正方法[J]. 地震工程与工程振动, 29(6): 1-12. doi: 10.13197/j.eeev.2009.06.004

    Yu H Y, Jiang W X, Xie Q C, Yang Y Q, Cheng X, Yang J. 2009. Baseline correction of digital strong-motion records in near-field[J]. Journal of Earthquake Engineering and Engineering Vibration, 29(6): 1-12 (in Chinese).

    俞言祥, 高孟潭. 2001. 台湾集集地震近场地震动的上盘效应[J]. 地震学报, 23(6): 615-621. doi: 10.3321/j.issn:0253-3782.2001.06.007

    Yu Y X, Gao M T. 2001. Effects of the hanging wall and footwall on peak acceleration during the Chi-Chi earthquake, Taiwan[J]. Acta Seismologica Sinica, 23(6): 615-621 (in Chinese).

    张斌, 俞言祥, 肖亮. 2020. 近断层强震记录基线校正的改进方法[J]. 振动与冲击, 39(5): 137-142. doi: 10.13465/j.cnki.jvs.2020.05.018

    Zhang B, Yu Y X, Xiao L. 2020. An improved method for near-fault strong ground motion records’ baseline correction[J]. Journal of Vibration and Shock, 39(5): 137-142 (in Chinese).

    张郁山. 2003. 希尔伯特-黄变换(HHT)与地震动时程的希尔伯特谱[D]. 北京: 中国地震局地球物理研究所: 1–10.

    Zhang Y S. 2003. Hilbert-Huang Transform and Hilbert Spectrum of Earthquake Ground Motion: Study of Methods and Applications[D]. Beijing: Institute of Geophysics, China Seismological Bureau: 1–10 (in Chinese).

    张郁山, 赵凤新. 2014. 基于希尔伯特变换的非平稳地震动模拟方法的验证[J]. 地震学报, 36(4):686-697.

    Zhang Y S, Zhao F X. 2014. Validation of non-stationary ground motion simulation method based on Hilbert transform [J]. Acta Seismologica Sinica, 36(4):686-697 (in Chinese).

    赵晓芬, 温增平, 陈波. 2018. 近断层地震动最强速度脉冲方向分量特性研究[J]. 地震学报, 40(5): 673-688. doi: 10.11939/jass.20170178

    Zhao X F, Wen Z P, Chen B. 2018. Characteristics of near-fault velocity pulses in the strongest pulse orientation[J]. Acta Seismologica Sinica, 40(5): 673-688 (in Chinese).

    郑史雄, 陈志强, 陈志伟, 李晰. 2019. 近场多脉冲地震作用下高墩桥梁地震响应分析[J]. 西南交通大学学报, 54(5): 897-907. doi: 10.3969/j.issn.0258-2724.20170725

    Zheng S X, Chen Z Q, Chen Z W, Li X. 2019. Seismic response analysis of high-pier bridge under near-fault multiple pulse record excitation[J]. Journal of Southwest Jiaotong University, 54(5): 897-907 (in Chinese).

    Alavi B, Krawinkler H. 2004. Behavior of moment-resisting frame structures subjected to near-fault ground motions[J]. Earthquake Eng Struct Dyn, 33(6): 687-706. doi: 10.1002/eqe.369

    Anderson J C, Bertero V V. 1987. Uncertainties in establishing design earthquakes[J]. J Struct Eng, 113(8): 1709-1724. doi: 10.1061/(ASCE)0733-9445(1987)113:8(1709)

    Arias A. 1970. Measure of Earthquake Intensity[R]. Cambridge: Massachusetts Institute of Technology: 1–10.

    Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am, 97(5): 1486-1501. doi: 10.1785/0120060255

    Bertero V V, Mahin S A, Herrera R A. 1978. Aseismic design implications of near-fault San Fernando earthquake records[J]. Earthquake Eng Struct Dyn, 6(1): 31-42. doi: 10.1002/eqe.4290060105

    Bolt B A. 1971. The San Fernando Valley, California, earthquake of February 9 1971: Data on seismic hazards[J]. Bull Seismol Soc Am, 61(2): 501-510. doi: 10.1785/BSSA0610020501

    Bolt B A. 1973. Duration of strong ground motion[C]//Proceedings of the 5th World Conference on Earthquake Engineering. Rome: Earthquake Engineering Research Institute: 1304–1313.

    Bommer J J, Martínez-Pereira A. 2000. Strong-motion parameters: Definition, usefulness and predictability[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand: Earthquake Engineering Research Institute: 206–214.

    Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1199-1211.

    Boore D M, Bommer J J. 2005. Processing of strong-motion accelerograms: Needs, options and consequences[J]. Soil Dyn Earthquake Eng, 25(2): 93-115. doi: 10.1016/j.soildyn.2004.10.007

    Bray J D, Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthquake Eng, 24(11): 815-828. doi: 10.1016/j.soildyn.2004.05.001

    Buyco K, Roh B, Heaton T H. 2021. Effects of long-period processing on structural collapse predictions[J]. Earthquake Spectra, 37(1): 204-234. doi: 10.1177/8755293020936699

    Champion C, Liel A. 2012. The effect of near-fault directivity on building seismic collapse risk[J]. Earthquake Eng Struct Dyn, 41(10): 1391-1409. doi: 10.1002/eqe.1188

    Chang Z W, Sun X D, Zhai C H, Zhao J X, Xie L L. 2016. An improved energy-based approach for selecting pulse-like ground motions[J]. Earthquake Eng Struct Dyn, 45(14): 2405-2411. doi: 10.1002/eqe.2758

    Chang Z W, De Luca F, Goda K. 2019. Near-fault acceleration pulses and non-acceleration pulses: Effects on the inelastic displacement ratio[J]. Earthquake Eng Struct Dyn, 48(11): 1256-1276. doi: 10.1002/eqe.3184

    Chen X Y, Wang D S. 2020. Multi-pulse characteristics of near-fault ground motions[J]. Soil Dyn Earthq Eng. 137(1): 106-275.

    Chiu H C. 1997. Stable baseline correction of digital strong-motion data [J]. Bull Seism Soc Am, 87(4): 932-944.

    Cordioli J A, Bratti G, Stumpf C, Lenzi A, Cotoni V. 2010. On the prediction of damping loss factor of fuselage panels with viscoelastic materials using periodic structure theory and finite element method[C]//Proceedings of the Conference on Advanced Acoustics and Vibration Engineering. Leuven, Belgium: International Symposium on Vibration Modal Analysis: 2257–2266.

    Downing S D, Socie D F. 1982. Simple rainflow counting algorithms[J]. Int J Fat, 4(1):31-40.

    Gade S, Zaveri K, Konstantin-Hansen H, Herlufsen H. 1995. Complex modulus and damping measurements using resonant and non-resonant methods[C]//Proceedings of the 1995 Noise and Vibration Conference. Nashville, USA: Katholieke Universiteit Leuven: 1458–1462.

    Hall J F, Heaton T H, Halling M W, Wald D J. 1995. Near-source ground motion and its effects on flexible buildings[J]. Earthquake Spectra, 11(4): 569-605. doi: 10.1193/1.1585828

    Housner G W, Hudson D E. 1958. The Port Hueneme earthquake of March 18, 1957[J]. Bull Seismol Soc Am, 48(2): 163-168. doi: 10.1785/BSSA0480020163

    Housner G W, Trifunac M D. 1967. Analysis of accelerograms: Parkfield earthquake[J]. Bull Seismol Soc Am, 57(6): 1193-1220. doi: 10.1785/BSSA0570061193

    Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q N, Yen N C, Tung C C, Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc Roy Soc A: Math Phys Eng Sci, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193

    Huang N E, Chen X Y, Lo M T, Wu Z H. 2011. On Hilbert spectral representation: A true time-frequency representation for nonlinear and nonstationary data[J]. Adv Adapt Data Anal, 3(1/2): 63-93.

    Iwan W D, Moser M A, Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph [J]. Bull Seism Soc Am, 75(5): 1225-1246.

    Iwasaki T, Penzien J, Clough R W. 1972. Literature Survey-Seismic Effects on Highway Bridges[R]. Berkeley: EERC: 72–11.

    Kalkan E, Kunnath S K. 2006. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra, 22(2): 367-390. doi: 10.1193/1.2192560

    Kuo C H, Chao S H, Hsu C C. 2019. Database of Near-Fault Pulse-Like Time History[R]. Taipei: Taiwan Center for Research on Earthquake Engineering: 1–10.

    López-Castañeda A S, Reinoso E. 2021. Strong-motion duration predictive models from subduction interface earthquakes recorded in the hill zone of the Valley of Mexico[J]. Soil Dyn Earthquake Eng, 144: 106676. doi: 10.1016/j.soildyn.2021.106676

    Lu Y, Panagiotou M. 2014. Characterization and representation of near-fault ground motions using cumulative pulse extraction with wavelet analysis[J]. Bull Seismol Soc Am, 104(1): 410-426. doi: 10.1785/0120130031

    Luco N, Cornell C A. 2007. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthquake Spectra, 23(2): 357-392. doi: 10.1193/1.2723158

    Makris N. 1997. Rigidity-Plasticity-Viscosity: Can electrorheological dampers protect base-isolated structures from near-source ground motions?[J]. Earthquake Eng Struct Dyn, 26(5): 571-591. doi: 10.1002/(SICI)1096-9845(199705)26:5<571::AID-EQE658>3.0.CO;2-6

    Makris N, Black C J. 2003. Dimensional Analysis of Inelastic Structures Subjected to Near Fault Ground Motions[R]. Berkeley: Earthquake Engineering Research Center: 1–10.

    Malhotra P K. 1999. Response of buildings to near-field pulse-like ground motions[J]. Earthquake Eng Struct Dyn, 28(11): 1309-1326. doi: 10.1002/(SICI)1096-9845(199911)28:11<1309::AID-EQE868>3.0.CO;2-U

    Mashayekhi M, Harati M, Darzi A, Estekanchi H E. 2020. Incorporation of strong motion duration in incremental-based seismic assessments[J]. Eng Struct, 223: 111144. doi: 10.1016/j.engstruct.2020.111144

    Mavroeidis G P, Papageorgiou A S. 2003. A mathematical representation of near-fault ground motions[J]. Bull Seismol Soc Am, 93(3): 1099-1131. doi: 10.1785/0120020100

    Menun C, Fu Q. 2002. An analytical model for near-fault ground motions and the response of MDOF systems[C]//Proceedings of the Seventh U.S. National Conference on Earthquake Engineering. Boston, Massachusetts: Mira Digital Publishing: 1–10.

    Repapis C C, Mimoglou P P, Dimakopoulou V V, Psycharis I N. 2020. Efficient strong motion duration of pulse-like records for nonlinear structural analyses[J]. Earthquake Eng Struct Dyn, 49(5): 479-497. doi: 10.1002/eqe.3249

    Riddell R. 2007. On ground motion intensity indices[J]. Earthquake Spectra, 23(1): 147-173. doi: 10.1193/1.2424748

    Sarma S K. 1971. Energy flux of strong earthquakes[J]. Tectonophysics, 11(3): 159-173. doi: 10.1016/0040-1951(71)90028-X

    Shahi S K. 2013. A Probabilistic Framework to Include the Effects of Near-Fault Directivity in Seismic Hazard Assessment[D]. Palo Alto: Stanford University: 137.

    Somerville P G, Smith N F, Graves R W, Abrahamson N A. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismol Res Lett, 68(1): 199-222. doi: 10.1785/gssrl.68.1.199

    Somerville P G. 2003. Magnitude scaling of the near fault rupture directivity pulse[J]. Phys Earth Planet Inter, 137(1/4): 201-212.

    TANG Y, ZHANG J. 2011. Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions [J]. Soil Dyn Earthq Eng, 31(1): 59-76.

    Trifunac M D, Brady A G. 1975. A study on the duration of strong earthquake ground motion[J]. Bull Seismol Soc Am, 65(3): 581-626.

    Wang R J, Schurr B, Milkereit C, Shao Z G, Jin M P. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am, 101(5): 2029-2044. doi: 10.1785/0120110039

    Wu Y M, Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. J Seismol, 11(2): 159-170. doi: 10.1007/s10950-006-9043-x

    Xie J J. 2019. Strong-motion directionality and evidence of rupture directivity effects during the Chi-Chi Mw 7.6 earthquake[J]. Bull Seismol Soc Am, 109(6): 2367-2383. doi: 10.1785/0120190087

    Xu L J, Zhao G C, Chen Y B, Xie L L. 2016. A probabilistic methodology to determine elastic acceleration response spectra for pulse-type records through multi-resolution analyses[J]. J Earthquake Eng, 20(1): 129-155. doi: 10.1080/13632469.2015.1045104

    Yu S B, Kuo L C, Hsu Y J, Su H H, Liu C C, Hou C S, Lee J F, Lai T C, Liu C C, Liu C L, Tseng T F, Tsai C S, Shin T C. 2001. Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 995-1012.

    Zhai C H, Li C H, Kunnath S, Wen W P. 2018. An efficient algorithm for identifying pulse-like ground motions based on significant velocity half-cycles[J]. Earthquake Eng Struct Dyn, 47(3): 757-771. doi: 10.1002/eqe.2989

    Zhang R R, Ma S, Safak E, Hartzell S. 2003. Hilbert-huang transform analysis of dynamic and earthquake motion recordings[J]. J Eng Mech, 129(8): 861-875 doi: 10.1061/(ASCE)0733-9399(2003)129:8(861)

    Zhao G C, Xu L J, Xie L L. 2016. A simple and quantitative algorithm for identifying pulse-like ground motions based on zero velocity point method[J]. Bull Seismol Soc Am, 106(3): 1011-1023. doi: 10.1785/0120150226

  • 期刊类型引用(8)

    1. 唐涛,王运生,刘世成,冯卓,詹明斌. 基于希尔伯特-黄变换的地震加速度时频分析——以泸定M_S6.8级地震为例. 地球物理学进展. 2024(01): 1-9 . 百度学术
    2. 谢俊波,顾诗渤,许为龙. 基于M-LSTM与Resnet并联网络的同轴线缆开路故障定位方法. 机电工程技术. 2024(06): 221-226 . 百度学术
    3. 高文俊,李歆. 地震动脉冲分量表征模型研究综述. 地震工程与工程振动. 2024(03): 1-16 . 百度学术
    4. 禹海涛,朱晨阳,傅大宝,许乃星,卢哲超,蔡辉腾. 基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法. 岩土工程学报. 2024(12): 2675-2683 . 百度学术
    5. 张尚荣,何佳蔓,唐响,熊洋. 近断层地震动加速度峰值比和脉冲特征的统计分析. 地震学报. 2024(06): 1051-1062 . 本站查看
    6. 赵晓芬,温增平. 近断层速度脉冲型地震动识别方法研究综述. 地球与行星物理论评(中英文). 2023(05): 532-540 . 百度学术
    7. 周德政,李晓杰,王宇新,王健,闫鸿浩,王小红. 爆炸冲击测试信号的滤波算法研究. 爆破. 2023(03): 191-198 . 百度学术
    8. 田兴丽,孙环阳,张红光,祁成. 城市轨道交通车辆制动系统的智能诊断与预警系统. 城市轨道交通研究. 2023(11): 94-98+103 . 百度学术

    其他类型引用(4)

图(20)  /  表(1)
计量
  • 文章访问数:  606
  • HTML全文浏览量:  191
  • PDF下载量:  169
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-07-24
  • 网络出版日期:  2022-08-31
  • 发布日期:  2022-09-14

目录

    /

    返回文章
    返回