Effect of different site categories on the characteristic period of the response spectrum
-
摘要:
为探究不同场地类别对反应谱特征周期的影响,建立了包含四种场地类别的180个计算剖面,在现行 《建筑抗震设计规范》 GB 50011—2010中场地分类的基础上按照土的软硬程度进一步细分,以不同幅值的El Centro地震动作为输入地震动,采用一维等效线性化方法进行土层反应分析,计算得到场地地震动反应谱,规准化得到反应谱特征周期。结果表明:① 在同一类别场地中,随着等效剪切波速的增大,特征周期呈减小的趋势;② 在同一类别场地中,随着输入地震动强度的增大,特征周期也相应增大;③ 在不同类别场地中,输入相同的地震动,场地类别从Ⅰ类到Ⅳ类,反应谱特征周期逐渐增大。最后,根据细分后的场地类型给出了其反应谱特征周期建议值,并进行了验证。
Abstract:Site classification is one of the significant factors affecting the determination of ground motion parameters. Presently, in China, the criteria for classifying sites are established based on the thickness of overburden and the equivalent shear wave velocity in the Code for Seismic Design of Buildings (GB 50011−2010). However, previous studies show that the variability of these two indicators has a significant impact on ground motion. Consequently, numerous scholars have embarked on research regarding the influence of site conditions on seismic parameters. Nevertheless, most of the current researches have been conducted based on the site categories classified in the current code. Given the broad range of site classes in China, there is a lack of more refined research results. Therefore, 180 calculation profiles containing four catagories of sites are established in this paper, and they are further subdivided according to the existing standards in China. The characteristics of class Ⅰ site primarily include thin overburdens and a wide distribution range of equivalent shear wave velocities. Consequently, class Ⅰ site is divided into categories A1, A2, A3 and A4, with A1 representing soft soil and A2 representing medium-soft soil. Additionally, the hard soil in class Ⅰ site is further divided into A3 and A4 based on equivalent shear wave velocity. Class Ⅱ sites are widely distributed in China, and in this study, it also accounts for a significant proportion. To conduct a more detailed study, class Ⅱ site is subdivided into categories B1, B2, B3 and B4, with B1 representing soft soil, B2 representing medium-soft soil, and B3 and B4 representing medium-hard soil. Class Ⅲ site is mainly characterized by thick overburden and relatively soft soil quality, thus classified into C1 representing soft soil and C2 representing medium-soft soil. Class Ⅳ site mainly consists of deep and soft overburdens, designated as class D. To investigate the relationship between the subdivided site categories and characteristic periods, El Centro ground motions with different amplitudes are chosen as input ground motion. One-dimensional equivalent linearization method is employed to analyze the seismic response of overburden, and the computational results are standardized using differential evolution to obtain characteristic periods for different sites.
When studying the characteristic period Tg of the response spectrum, the characteristic period of the response spectrum was fitted to a trend line with the scatter plot of the overburden thickness in order to further analyze the effect of the overburden thickness on Tg. According to the Tg scatter plot: In class Ⅰ sites, under the action of ground motions with peak ground accelerations of 50, 100, 200, and 300 cm/s2, the characteristic period of response spectrum does not vary with site category, and the reference value of the characteristic period of response spectrum can be taken as 0.65 s. For class Ⅱ sites, when the ground motions of four different intensities are input, Tg increases gradually with the overburden thickness for B1 and B2 sites. Moreover, the larger the input ground motion at the same overburden thickness, the larger the characteristic period. For B3 and B4 sites, when the ground motions of four different intensities is input, Tg shows a trend of first decreasing and then increasing with the overburden thickness, and the increasing trend becoming more pronounced with greater seismic motion intensities increase. Additionally, in class Ⅱ site, when the input ground motion intensity is 50 cm/s2, the influence of the subdivided site category on the characteristic period of the response spectrum is negligible, with the reference value of the characteristic period of the response spectrum being 0.7 s. However, when the input ground motion intensity is 100—300 cm/s2, the characteristic period of B1 site is significantly larger than that of B4 site, and the difference between them increases with the increase of input ground motion amplitude. For class Ⅲ site, in C1 site, under the same intensity of seismic motion, the characteristic period of response spectrum generally increases with the overburden thickness. In C2 site, as the intensity of seismic motion increases, the characteristic period of response spectrum gradually increases with the overburden thickness, and when subjected to strong ground motion, the corresponding increase in the characteristic period of response spectrum is more pronounced. In class Ⅳ soft soil site, the characteristic period of response spectrum generally increases with the overburden thickness.
After conducting statistical analysis of the computed results, this study provides recommended characteristic period values for subdivided site categories. Before conducting the statistics, this study first eliminates possible outliers in the data, ensuring the values within one standard deviation, and then calculates the average characteristic period of response spectrum for each site category. Finally, different characteristic period values for different site catagories are obtained. Three calculation models for class C2 site in Xichang and four calculation models for class C2 site in Yanjiao of Langfang area are selected to verify the recommended values. The verification results indicate that the recommended characteristic period values for class C2 site are more suitable for situations involving small to moderate seismic intensities. For large earthquake scenarios, the average characteristic period values are generally applicable, but there is a slightly larger range of characteristic period variations, necessitating further in-depth research.
In summary, the following conclusions can be drawn from the above results: ① Within the same category of site, an increase in equivalent shear wave velocity correlates with a decreasing trend in characteristic period. ② In the sites of the same category, an increase in the intensity of input seismic motion corresponds to an increase in characteristic period. ③ In different classes of sites with the same input of ground motion, the characteristic period of the response spectrum increases gradually from class Ⅰ to class Ⅳ. The research findings can offer crucial reference for adjusting site seismic motion parameters and contribute to a more accurate assessment of site seismic safety, thereby providing a scientific basis for engineering design and disaster prevention and mitigation.
-
Keywords:
- site category /
- seismic ground motion /
- response spectrum /
- characteristic period
-
引言
我国是一个多震国家,尤其是近年来我国进入了地震高发期(胡敏章等,2019)。地震在带来直接灾害的同时,还会激发大量的次生地质灾害。特别是在山地区域,由地震激发的山体滑坡、泥石流等地质灾害将造成重大的生命财产损失,例如2008年汶川MS8.0地震就激发了海量的地震滑坡,造成重大人员伤亡和严重的房屋建筑损毁(Yuan et al,2010,2013)。在所有这些地震滑坡中,土质滑坡占据了不小的比例。因此,研究土坡地震响应规律对科学防震减灾具有重要的理论和实用价值,而开展对土坡地震响应研究工作的核心之一便是地震动参数的选取问题。
王秀英等(2010)研究了地震动参数与汶川地震诱发山体滑坡之间的关系,认为峰值加速度(peak ground acceleration,缩写为PGA)与诱发崩滑之间存在明显的正相关性;张郁山和赵凤新(2011)在地震动峰值位移(peak ground displacement,缩写为PGD)对单自由度体系非线性动力反应的影响研究中得出了地震动峰值位移对体系弹塑性速度及位移的影响;李小军(2013)进一步分析了新一代中国地震动参数区划图中考虑场地条件的地震动参数调整结果和变化特征;杜修力等(2015,2018)对地震动峰值位移对高拱坝和地下结构地震反应的响应影响作出了相应的研究,探寻了高拱坝和地下结构的地震响应与地震动峰值位移的变化关系;而陈冲等(2017)研究了地震动峰值加速度作用下含水边坡稳定性关系,认为在含水情况下,随输入峰值加速度的增大,滑动面向坡内大幅移动,由浅层破坏转变为深层破坏;张江伟等(2018)对地震动参数对土坡地震响应的影响权重进行了研究,得出地震动各参数对坡体变形位移的影响相关性。纵观目前地震动参数对边坡响应的影响规律的研究,可以看出,针对地震动峰值特征参数影响土坡地震响应的对比性研究较少。本文拟针对地震动峰值加速度(PGA)、峰值速度(PGV)和峰值位移(PGD)三个地震动峰值特征参数来研究其对土坡响应的影响规律。为此,随机选取100条含有不同PGA,PGV和PGD的实际地震动纪录,研究三个峰值特征参数对边坡动力响应的影响规律和相关性,以期为土坡地震响应研究中地震动参数选取问题提供参考依据。
1. 地震动选取
随机选取100条来自太平洋地震研究中心数据库中不同地震的原始记录,通过对每条地震动进行基线校正、积分来获取其PGA,PGV以及PGD。经统计,100条地震动的PGA的范围为0.004 1—1.225 9 g,PGV的范围为0.378—112.376 cm/s,PGD的变化范围为0.035 3—35.674 5 cm。对三种地震动峰值参数对边坡的地震响应的表现情况进行对比研究。图1-3给出了前三条地震动M1—M3的加速度、速度、位移时程曲线。
2. 研究方法及模型建立
2.1 研究方法
在模拟、计算土坡的动力响应时,采用动力平衡方程,即
$${\boldsymbol{M}}\ddot {\boldsymbol{u}} {\text{+}} {\boldsymbol{C}}\dot {\boldsymbol{u}} {\text{+}} {\boldsymbol{Ku}} {\text{=}} {\boldsymbol{F}}{\text{(}}t{\text{)}}{\text{,}}$$ (1) 式中,M为结构的质量矩阵,C为结构的阻尼矩阵,K为结构的刚度矩阵,
${\ddot{\boldsymbol u}}$ 为结构的加速度列阵,${\dot{\boldsymbol u}}$ 为结构的速度列阵,u为结构的位移列阵,F(t)为结构的节点荷载列阵。对于求解地震作用下的动力问题,动力荷载就是地震荷载,于是求解边坡地震动力稳定性问题的基本力学运动方程可写为
$$ {\boldsymbol{M}}\ddot {\boldsymbol{u}} {\text{+}} {\boldsymbol{C}}\dot {\boldsymbol{u}} {\text{+}} {\boldsymbol{Ku}} {\text{=}} - {\boldsymbol{M}}{\ddot {\boldsymbol{u}}_g}{\text{(}}t{\text{)}}{\text{.}} $$ (2) 地震是一种随时间变化的复杂荷载,边坡岩土体在地震作用下往往会进入弹塑性状态,这时便无法得到解析解,解析方法也不再适用,但通过数值计算可以得到结构动力反应的数值解。在有限元模拟软件ABAQUS中分为隐式和显式两种算法,其中隐式算法是以Newmark-β法为基础,而显式模块则采用中心差分法来解决动力学问题,这些方法的中心思想是假定结构在每一个微小时间步内呈现线弹性反应,然后通过在时域内逐步积分求解。本文采用隐式算法。
2.2 模型建立
建立如图4所示的土质边坡模型,长为170 m,宽为70 m,边坡坡角为37°,模型坡高30 m,坡顶后缘长80 m。从坡顶至坡脚均匀设置P1,P2,P3,P4,P5 5个观测点(图4)用于记录边坡在地震动作用下各峰值特征参数的变化情况。假定模型材料为均质材料,表1为边坡土体的物理、力学参数。本构模型为理想的弹塑性本构模型,土坡地震模拟计算中采用摩尔-库仑强度准则,式(3),(4)为摩尔-库仑强度准则的相关公式。模型底部采用静态边界条件,侧面设置粘弹性边界,阻尼采用瑞雷阻尼形式(胡聿贤,2006)。
表 1 边坡土体参数Table 1. Parameters for soil slop参数 密度
/(kg·m−3)弹性模量
/MPa泊松比 黏聚力
/kPa内摩擦角
/°数值 2070 90.8 0.3 13.99 25 $$ \left\{ \begin{array}{l} {\tau _{{n}}} {\text{=}} \dfrac{1}{2}{\text{(}}{\sigma _1} {\text{-}} {\sigma _3}{\text{)}}\cos \phi{\text{,}} \\ {\sigma _n} {\text{=}} \dfrac{1}{2}{\text{(}}{\sigma _1} {\text{+}} {\sigma _3}{\text{)}} {\text{+}} \dfrac{1}{2}{\text{(}}{\sigma _1} {\text{-}} {\sigma _3}{\text{)}}\sin \phi {\text{,}} \end{array} \right. $$ (3) $$ f {\text{=}} \frac{1}{2}{\text{(}}{\sigma _1} {\text{-}} {\sigma _3}{\text{)}} {\text{+}} \frac{1}{2}{\text{(}}{\sigma _1} {\text{+}} {\sigma _3}{\text{)}}\sin \phi {\text{-}} C\cos \phi {\text{=}} 0{\text{,}} $$ (4) 式中,σn和τn分别为滑移面上的正应力和切应力,σ1为最大主应力,σ3为最小主应力,C为土的黏聚力,
$\phi$ 为内摩擦角,f为屈服函数。3. 结果分析
将所选取的地震动原始数据进行基线矫正处理后作为模拟实验的数据进行数值模拟分析。由于篇幅限制,本文仅列出土坡在地震动M1,M2,M3作用下的变形云图(图5)。
收集并计算P1至P5各点地震响应结果,选取每条地震动所对应观测点的最终变形位移作为模拟实验的代表数据,结合每条地震动数据中所包含的特征参数信息绘制散点图,通过图像可以直观地显示出地震动各峰值特征参数对边坡地震响应的影响规律。
3.1 地震动峰值特征参数的影响规律
收集分析P1至P5 5个观测点在不同地震动作用下的最大位移数据,研究其与PGA,PGV,PGD三个地震动峰值参数的变化规律,图6—10所示为各参数与边坡5个观测点最大位移的变化规律。
由图6—10可以看出,各峰值特征参数与土坡变形都有较好的相关性,随着PGA,PGV,PGD的增大,坡体变形位移响应也相应增大,各峰值特征参数对于边坡变形的图像都呈现正相关的趋势。分别比较PGA,PGV,PGD三个地震动峰值特征参数与土坡同一点的位移变化曲线可以得出:PGV与土坡变形的线性关系最为明显,说明其能更好地反映土坡在地震作用下的变形响应规律;PGA,PGD与土坡变形的线性关系稍弱,但仍具有较好的正相关性。通过对图像进行线性拟合,PGV与土坡变形的相关系数最高,对比PGA,PGD的线性关系,PGD的相关系数更高,其相关性稍优于PGA。
而对比同一个地震动峰值参数对于不同边坡观测点位移的图像可以看出,各峰值参数对不同观测点的变化规律图像都比较一致。
3.2 参数优化选择
不同的地震动强度指标反应出的边坡地震响应程度有所不同,在边坡稳定性评价中,如何选择合理的强度指标是能否突出反应边坡地震响应程度的关键。
上节内容就PGA,PGV和PGD三个地震动峰值特征参数对土坡地震响应的影响程度进行了分析。为了进一步进行参数优化选择,作者对比分析了各土坡地震响应与地震动峰值特征参数的相关性,表2显示了土坡地震位移响应与PGA,PGV,PGD的相关系数ρ。相关性系数ρ的计算方法如式(5)所示,将第n条地震动的某一地震动强度指标值记为In,采用有限元法计算边坡模型在第n条地震动输入下的边坡最大地震响应值Rn,重复上述步骤,得到所有地震动记录的Rn及其对应的In,将所有地震动的计算结果绘制在R-I坐标系中,并通过式(5)计算得到R与I之间的相关系数ρ,即
表 2 地震动峰值特征参数和边坡地震响应的相关系数Table 2. The correlation coefficients between peak ground motion characteristic parameters and slope seismic responses监测点位移 相关系数 ρ PGA PGV PGD P1位移 0.873 0.984 0.925 P2位移 0.874 0.978 0.922 P3位移 0.863 0.982 0.926 P4位移 0.861 0.980 0.928 P5位移 0.869 0.982 0.931 $$\rho {\text{=}} \frac{{\displaystyle\sum\limits_{{{n}} {\text{=}} 1}^{100} {{\text{(}}{R_n} {\text{-}} \overline R }{\text{)}}{\text{(}}{I_n} {\text{-}} {\overline {I\;}}{\text{)}}}}{{\sqrt {\displaystyle\sum\limits_{{{n}} {\text{=}} 1}^{100} {{\text{(}}{R_n} {\text{-}} \overline R } {{\text{)}}^2}} \sqrt {\displaystyle\sum\limits_{{{n}} {\text{=}} 1}^{100} {{{{\text{(}}{I_n} {\text{-}} {\overline {I\;}}{\text{)}}}^2}} } }}{\text{.}}$$ (5) 由表2中地震动峰值特征参数与边坡地震响应的相关性计算结果可以得出:PGV与边坡各监测点响应的相关性最高,相关系数介于0.978—0.984,平均值为0.981;而PGD的相关性略小于PGV,相关系数介于0.922—0.931,平均值为0.926;在三个地震动峰值特征参数中,PGA的相关性最小,相关系数介于0.861—0.874,平均值为0.868。对比结果显示,PGV可以作为最优参数进行考虑,但是其它参数仍可作为辅助参数进行综合对比研究。
4. 讨论与结论
通过计算分析土坡在100条随机地震动作用下的响应,探讨了PGA,PGV和PGD三个峰值特征参数土坡变形的影响规律和相关性,能够得出以下结论:① 对于土坡坡面的变形位移响应,与其相关性最高的特征参数为PGV,其次是PGD,最后是PGA,且三者与土坡变形位移都具有较好的正相关性;② PGA由于其获取的便利性以及工程运用的广泛性,可以作为描述地震动强弱的合理参数;③ PGD能够直接反应地震幅度对结构所造成的影响。综上所述,在关于土坡地震响应的研究中,可以选择PGV作为研究参数进行分析,也可以结合其它两个特征参数对分析结果进行综合考量。
值得指出的是,本文工作基于二维均质土坡模型展开,尚存在一定的局限性。在今后的研究中,可以针对三维模型分析或是进行动力试验,以便更好地为实际工程服务。
-
表 1 土的类型划分和剪切波速范围(引自中国建筑科学研究院,2016)
Table 1 Classification of soil types and range of corresponding shear wave velocities (after China Academy of Building Research,2016)
土的类型 岩土名称和性状 土层剪切波速
vS/(m·s−1)岩石 坚硬、较硬且完整的岩石 vS>800 坚硬土或软质岩石 破碎、较破碎的岩石或软、较软的岩石,密实的碎石土 500<vS≤800 中硬土 中密、稍密的碎石土,密实、中密的砾、粗、中砂,fak>150 kPa的黏性土和粉土,坚硬黄土 250<vS≤500 中软土 稍密的砾、粗、中砂,除松散外的细、粉砂,fak≤150 kPa的黏性土和粉土,fak>130 kPa的填土,可塑性黄土 150<vS≤250 软弱土 淤泥和淤泥质土,松散的砂,新近沉积的黏性土和粉土,fak≤130 kPa的填土,流塑性黄土 vS≤150 注:fak为荷载试验等方法得到的地基承载力特征值,vS为岩土剪切波速。 表 2 四类场地模型分类情况
Table 2 Classification of four classes of site models
场地类别 土类号 H/m vSe/ (m·s−1) 剖面数量 I A1 0—3 vSe≤150 3 A2 0—3 150<vSe≤250 7 A3 0—5 250<vSe≤350 12 A4 0—5 350<vSe ≤490 11 Ⅱ B1 3—15 60<vSe≤150 10 B2 3—50 150<vSe≤250 21 B3 5—90 250<vSe≤350 34 B4 5—50 350<vSe≤490 12 Ⅲ C1 15—80 60<vSe≤150 25 C2 50—110 150<vSe≤250 35 Ⅳ D 80—120 60<vSe≤150 10 注:H为覆盖土层厚度,vSe为等效剪切波速。 表 3 不同场地类别的特征周期建议值
Table 3 Reference values for the characteristic periods of different classes of sites
场地类别 不同输入地震动峰值加速度下的特征周期/s 50 cm/s2 100 cm/s2 200 cm/s2 300 cm/s2 Ⅰ A1,A2,A3,A4 0.65 0.65 0.65 0.65 Ⅱ B4 0.70 0.70 0.70 0.70 B3 0.70 0.70 0.75 0.80 B2 0.70 0.75 0.90 1.00 B1 0.70 0.85 1.20 1.35 平均值 0.70 0.75 0.90 0.95 Ⅲ C2 0.75 0.80 0.95 1.15 C1 0.90 1.05 1.35 1.80 平均值 0.80 0.90 1.15 1.50 Ⅳ D 1.05 1.35 2.10 2.30 表 4 典型剖面特征周期计算值与平均值
Table 4 Calculated values and their average of characteristic periods for typical profiles
输入地震动强度
/(cm·s−2)特征周期计算值/s 特征周期均值/s 50 0.65 0.70 0.70 0.70 0.85 0.85 0.85 0.75 100 0.75 0.75 0.75 0.75 0.85 0.85 0.90 0.80 200 1.05 0.80 0.75 0.80 0.90 1.05 1.05 0.95 300 1.20 0.85 0.85 0.90 1.05 1.20 1.20 1.05 -
薄景山,李秀领,刘德东,刘红帅. 2003. 土层结构对反应谱特征周期的影响[J]. 地震工程与工程振动,23(4):42–45. doi: 10.3969/j.issn.1000-1301.2003.05.007 Bo J S,Li X L,Liu D D,Liu H S. 2003. Effects of soil layer construction on characteristic periods of response spectra[J]. Journal of Earthquake Engineering and Engineering Vibration,23(4):42–45 (in Chinese).
曹均锋,冯伟栋,孟凡月,董双林,翟洪涛. 2013. 剪切波速对场地地表地震动参数的影响[J]. 震灾防御技术,8(3):252–260. doi: 10.11899/zzfy20130304 Cao J F,Feng W D,Meng F Y,Dong S L,Zhai H T. 2013. Effect of shear wave velocity on the ground motion parameters of site surface[J]. Technology for Earthquake Disaster Prevention,8(3):252–260 (in Chinese).
陈卓识,袁晓铭,孟上九. 2015. 浅硬场地剪切波速变异性对结构地震输入的影响[J]. 地震工程与工程振动,35(1):20–27. Chen Z S,Yuan X M,Meng S J. 2015. The impact of shear-wave velocity variability on structural seismic input of stiff-shallow site[J]. Journal of Earthquake Engineering and Engineering Vibration,35(1):20–27 (in Chinese).
李红立,王贵珍. 2012. 不同场地条件对地震动参数的影响[J]. 四川建筑科学研究,38(6):168–171. doi: 10.3969/j.issn.1008-1933.2012.06.045 Li H L,Wang G Z. 2012. Affections of different site conditions on the ground motion parameters[J]. Sichuan Building Science,38(6):168–171 (in Chinese).
李平. 2010. 场地类型对设计反应谱平台值的影响[D]. 哈尔滨:中国地震局工程力学研究所:13−58. Li P. 2010. The Effects of Site Types on Platform Value of the Design Response Spectrum[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration:13−58 (in Chinese).
李平,薄景山,孙有为. 2010. 剪切波速差异性对地震反应的影响[J]. 世界地震工程,26(增刊):133–137. Li P,Bo J S,Sun Y W. 2010. Shear wave velocity diversity influence on the seismic response[J]. World Earthquake Engineering,26(S1):133–137 (in Chinese).
李平,薄景山,齐文浩,刘德东,肖瑞杰. 2012. 土层结构对汉源烈度异常的影响[J]. 地震学报,34(6):851–857. Li P,Bo J S,Qi W H,Liu D D,Xiao R J. 2012. Effects of soil structure on abnormal intensity in Hanyuan old town[J]. Acta Seismologica Sinica,34(6):851–857 (in Chinese).
梁久亮,曹均锋,王立会,冯伟栋. 2015. 滁州地区覆盖层厚度对场地地震动参数的影响[J]. 防灾科技学院学报,17(1):40–46. doi: 10.3969/j.issn.1673-8047.2015.01.007 Liang J L,Cao J F,Wang L H,Feng W D. 2015. Effect of thickness of covering layer on the seismic ground motion parameters of site in Chuzhou region[J]. Journal of Institute of Disaster Prevention,17(1):40–46 (in Chinese).
廖振鹏. 1989. 地震小区划:理论与实践[M]. 北京:地震出版社:141–153. Liao Z P. 1989. Seismic Microzonation:Theory and Practice[M]. Beijing:Seismological Press:141–153 (in Chinese).
齐文浩,薄景山. 2007. 土层地震反应等效线性化方法综述[J]. 世界地震工程,23(4):221–226. doi: 10.3969/j.issn.1007-6069.2007.04.039 Qi W H,Bo J S. 2007. Summarization on equivalent linear method of seismic responses for soil layers[J]. World Earthquake Engineering,23(4):221–226 (in Chinese).
齐文浩,薄景山,张忠利. 2010. 土层地震反应分析的研究现状[J]. 世界地震工程,26(增刊):368–372. Qi W H,Bo J S,Zhang Z L. 2010. Research status on studies of soil layer seismic response analysis[J]. World Earthquake Engineering,26(S1):368–372 (in Chinese).
王国新,黄坤朋. 2013. 表层土结构对地表地震动的影响研究[J]. 地震工程与工程振动,33(5):33–40. Wang G X,Huang K P. 2013. Effects of surface soil on ground motion characters[J]. Journal of Earthquake Engineering and Engineering Vibration,33(5):33–40 (in Chinese).
文雯,宋廷苏,王珏. 2012. 单一均质土覆盖层厚度对地表峰值加速度和反应谱平台值的影响[J]. 地震研究,35(4):548–554. Wen W,Song T S,Wang J. 2012. Effects of the thickness of overburden layer with signal homogeneous soil on peak acceleration of ground motions and platform value of the acceleration response spectrum[J]. Journal of Seismological Research,35(4):548–554.
赵培培,王振宇,薄景山. 2017. 利用差分进化算法标定设计反应谱[J]. 地震工程与工程振动,37(5):45–50. Zhao P P,Wang Z Y,Bo J S. 2017. Utilizing differential evolution to calibrate seismic design response spectrum[J]. Earthquake Engineering and Engineering Dynamics,37(5):45–50 (in Chinese).
中国建筑科学研究院. 2016. GB 50011—2010 建筑抗震设计规范[S]. 北京:中国建筑工业出版社:19−20. China Academy of Building Research. 2016. GB 50011−2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press:19–20 (in Chinese).
周楷. 2022. 基于SMASS台阵一维土层地震反应分析方法对比分析[D]. 三河:防灾科技学院:1−5. Zhou K. 2022. The Comparison Analysis of 1D Seismic Response Analysis Methods Based on the SMASS Array Site[D]. Sanhe:Institute of Disaster Prevention:1−5 (in Chinese).
Seed H B,Idriss I M. 1969. Influence of soil conditions on ground motions during earthquakes[J]. J Soil Mech Found Div,95(1):99–137. doi: 10.1061/JSFEAQ.0001260
Seed H B,Romo M P,Sun J I,Jaime A,Lysmer J. 1988. The Mexico earthquake of September 19,1985:Relationships between soil conditions and earthquake ground motions[J]. Earthq Spectra,4(4):687–729. doi: 10.1193/1.1585498
Wood H O. 1908. Distribution of Apparent Intensity in San Francisco[R]. Washington:State Earthquake Commission,Carnegie Institute of Washington:220−245.
-
期刊类型引用(1)
1. 禹海涛,李晶,王祺. 软土隧道基于地震响应的输入地震动排序. 地震学报. 2022(01): 123-131 . 本站查看
其他类型引用(3)