An adjustment method for the characteristic period of site acceleration response spectra with soft layers
-
摘要:
在分析场地条件对地震震害影响及国内外关于软弱土层对场地地震反应影响的基础上,采用实际含淤泥质土层场地资料,建立了12个含软弱土层的场地模型,在不同输入地震动水平下进行了场地地震反应一维等效线性化分析,讨论了软弱土层厚度和埋深对场地地震反应的影响。结果表明:随着软弱土层的埋深或厚度的增加,反应谱特征周期逐渐增大;输入地震动峰值增加,反应谱特征周期亦增大。继而依据软弱土层厚度、埋深及输入地震动强度对场地加速度反应谱特征周期的影响特征,提出了含软弱土层场地地震动加速度反应谱特征周期调整方法。
Abstract:In recent years, the impact of soft soil on the seismic response of soil layers in sites has attracted attention. Some scholars have conducted in-depth analysis from different perspectives, and the research results show that soft soil increases the dominant period and response spectrum characteristic period of the site to a certain extent. As the position of the soft interlayer deepens, the amplification effect of the site decreases, and the dominant period and response spectrum characteristic period of the site increase. Compared with the Code for Seismic Design of Buildings (GB 50011−2010) in China, the characteristic period of the seismic acceleration response spectrum for sites containing weak soil layers after regulation is much larger than the value specified in the code. At present, although there is an analysis of the impact of weak soil layers on site seismic response, there is little research on the adjustment methods of characteristic periods of site response spectra containing weak soil layers.Based on the analysis for the effect of site conditions on earthquake damage and the influence of soft layers on site seismic response at home and abroad, 12 site models are established, by means of drilling data from sites containing soft layers. The one-dimensional equivalent linearization site seismic response analysis is carried out under different input acceleration peak, and the influence of soft layer thickness, buried depth and input peak acceleration on site seismic response is discussed. The results show that under the same input acceleration peak, as the burial depth and thickness of soft layer increase, the characteristic period of the site acceleration response spectra gradually increases and the peak ground acceleration decreases. As the input peak acceleration increases, while the thickness and burial depth of the soft layer remain unchanged, the characteristic period of the site acceleration response spectra and the peak ground acceleration increases. Finally an adjustment method for the characteristic period of site acceleration response spectra with soft layers was proposed.
-
引言
地震是构造应力作用下岩体突然断裂和错动所致。在这个过程中,随着应力的不断加载,地壳介质的物性参数也不断变化。及至孕震晚期,震源区应力相对集中的地壳介质的电性结构会发生变化,从而引起大地电场的变化(毛桐恩等,1999),这种地电场变化已在多次中强地震前观测到,属于中短期异常(Varotsos,Alexopoulos,1984;黄清华,刘涛,2006;马钦忠,2008;田山等,2009;安张辉等,2017;席继楼,2019)。但由于电磁环境复杂,有效的地震电信号经常被淹没在各种干扰中,使得震前异常电信号提取面临较大困难。目前常规使用的地震电信号提取方法有长短极距比值法(田山等,2009)、极化方位计算法(毛桐恩等,1999)、常规波形分析法(钱复业,赵玉林,2005)、频谱分析法(范莹莹等,2010)等,利用上述方法处理1975年海城MS7.3地震、2006年文安MS5.1地震、2008年汶川MS8.0地震、2013年芦山MS7.0地震和2017年九寨沟MS7.0地震等多次中强地震的观测资料时,均提取到与地震有关的地电场异常变化,但这些方法在异常提取、机理解释和抗干扰性方面还存在一定的局限。因此在复杂电磁环境中提取相对较弱的地震电磁信号,亟需将数学、信号处理与地震电磁物理过程相结合,才能更好地降低或消除地电场数据中干扰成分对预测的影响(黄清华,2005)。
近年来,相关学者对大地电场的机理、特征、数值模拟以及大地电场的物理解析等方面进行了深入的研究(黄清华,刘涛,2006;叶青等,2007),特别是谭大诚等(2010,2011,2012,2013,2019)基于大地电场的潮汐机理,将源于空间电流系和潮汐作用的大地电场与岩体裂隙结构联系起来(陈全等,2019),建立了大地电场的岩体裂隙水(电荷)渗流(移动)模型,并逐步发展出地电场优势方位角分析方法,藉此探寻震中附近的岩体裂隙结构变化。谭大诚等(2019)和艾萨等(2020)利用地电场优势方位角分析方法,在近几年的部分中强地震前也提取到了显著的异常信息。尤其是在部分地震前会出现多个场地的优势方位角变化在时间上出现了准同步的异常现象,这也加强了异常信息的信度。此外,地电场优势方位角分析方法机理解释明确,并对一般空间电磁干扰、附近电磁环境干扰等具有一定程度的抗干扰性(辛建村等,2017;张波等,2020),故该方法具有较高的可靠性和较好的应用前景。
2021年5月22日青海省果洛州玛多发生MS7.4地震(34.59°N,98.34°E),震源深度为17 km,震中位于巴颜喀拉地块内部,是一次典型的左旋走滑地震事件,局部兼有正断分量,在地表形成了走向北西—南东、长约70 km的破裂面。该地震是2008年汶川MS8.0地震以来中国大陆发生的震级最大的一次地震,打破了青海地区56个月的M6平静以及10年的M7平静。大武台地电场场地距本次地震震中约172 km,为距震中最近的地球物理场观测台站,但大武台的原始观测资料并未呈显著的地电异常现象。为了探究玛多MS7.4地震前大武台地电场是否存在地震电信号,本文拟利用大地电场优势方位角方法来提取玛多地震前大武台地电场的异常变化,对异常特征进行分析研究,并结合该方法在大武台记录的以往震例中的应用,梳理出强震前地电场优势方位角的异常变化特征,归纳总结该方法在青海地区强震前的异常判定指标,旨在为未来大震前后地电场的观测分析和跟踪研判提供参考依据。
1. 观测台站及数据分析方法
1.1 大武地震台
大武地震台位于青海省果洛藏族自治州玛沁县大武镇,海拔3 800 m,距离镇区3 km。目前大武台有新旧两个地电观测场地,相距约36 km。旧的大武台地电场(以下简称为大武台(旧))地位于台站院内,新的大武台地电场(以下简称为大武台(新))位于甘德县青珍乡的一个草滩,两套地电场台站周围均无高大建筑物、水库、湖泊、河流和大型厂矿等重大环境干扰源,且分别位于东昆仑断裂带两侧约10 km和25 km (图1),而东昆仑活动断裂带是一条规模巨大、构造活动十分强烈的全新世活动断裂,自1900年以来沿该断裂带已发生了10余次M7强震,最大地震为1947年3月果洛达日M7.7地震。
大武台地电场(旧)使用ZD9A-2B地电场仪,采用“多方向、多极距”方法进行观测,布极方式为“L”型,分别为NS,EW和NE三个测向的长、短极距共六道测线,线路采用绝缘铠装电缆以地埋的方式架设。电极装置采用固体不极化电极,深度为3.5 m,电极和铠装电缆均埋设在地表冻土层以下的潮湿土壤中,地电场布极装置方式如图2所示。
1.2 分析方法
大地电场具有日变波形特征,目前大地电场来源于地球日月潮汐作用和空间地球电离层两部分。而地壳中岩体内总存在含水裂隙,这些裂隙水或水中的电荷以日为周期沿裂隙往返渗流或移动,建立了大地电场的日变化的岩体裂隙水(电荷)渗流(移动)模型。即地下介质的应力积累会导致岩体裂隙结构的变化,从而使大地电场的强度或方位发生改变,因此岩体裂隙结构的优势方位基本就是大地电场的优势方位。
在实际地电场观测中,设潮汐地电场(大地电场主要成分)为ET,场地裂隙水主体渗流方向为α,也称为地电场优势方位角。当台站地电场的NS测向与NW测向之间的相关性最高时,大地电场ET的优势方位角α(北偏东)的计算公式如下(谭大诚等,2012,2013,2019):
$$ \alpha {\text{≈}} {180}- \frac{180}{\pi} {{\rm{arctan}}}\left(\sqrt{2}\frac{\displaystyle\sum\limits _{i=1}^{10}{A}_{{\rm{NW}} ( i ) }}{\displaystyle\sum\limits _{i=1}^{10}{A}_{{\rm{NS}} ( i ) }}-1\right) ,$$ (1) 式中ANW(i)和ANS(i)分别为NW测向和NS测向的第i阶潮汐谐波振幅。应用谐波分析法对地电场分钟值数据(每天1 440个)开展信号处理,即对这些数据进行快速傅里叶变换,得到周期为24,12,8,6,4.8,4,3.4,3,2.7和2.4 h谐波的振幅(谭大诚等,2019)。
此外,本文分析数据采用原始分钟值数据,减少了预处理造成的干扰,真实地反映异常的变化情况。
2. 异常特征
利用大地电场优势方位角方法,基于2020年以来大武台地电场(新旧两台)观测数据,得到地电场优势方位角随时间的变化曲线如图3所示。由图可见:大武台(旧)得到的观测数据其优势方位角在2020年1—5月中旬变化不大,即Δα在20°以内跳变,而在2020年5月中旬以后,方位角跳变范围出现快速、持续偏转的趋势,其偏转范围最大接近45° (图3a),持续至2021年4月方位角跳变出现快速偏转回升,随后发生玛多MS7.4地震;大武台(新)得到的观测数据其优势方位角在2020年1—5月跳变范围稳定,即Δα跳动范围在10°以内,而在2020年5月中旬以后,方位角跳变范围也同步出现缓慢、持续偏转的趋势,其偏转范围增大接近90° (图3b),随后发震。从整个演化过程来看,两套地电场台的地电场优势方位角于2020年5月中旬同步出现显著的快速偏转现象,随后在震前两个月再次出现快速偏转回升至正常跳变范围,随后发震。
3. 分析与讨论
为进一步探求玛多MS7.4地震前大地电场优势方位角异常的空间演化特征,选取2020年以来玛多地震震中500 km范围内的八个地电场台站的观测资料进行分析。首先查阅各观测台站的工作日志,对资料进行核实和排查,确保异常的可信度;然后使用地电场优势方位角方法得到这八个地电台的地电场优势方位角变化,详见表1,从表中可见四川省甘孜台、甘肃玛曲台同时期的地电场优势方位角均出现较为同步的异常变化,如图4所示。可见:甘孜台地电场优势方位角在2020年6月初开始出现显著、快速、持续偏转的现象,其偏转范围最大接近90°,收缩成近直线,随后在震前两个月出现跳变增大现象(图4a);玛曲台在震前同时期也出现了异常现象,但因环境干扰较为严重,异常形态不显著,主要以持续突跳为主(图4b)。
表 1 玛多MS7.4地震前震中500 km内地电场优势方位角的变化特征Table 1. Variation characteristic of the dominant azimuth based on geoelectric field before MS7.4 Maduo earthquake within 500 km地电场台站 震中距/km 异常形态 异常出现日期
年-月-日开始观测日期
年-月-日大武(旧) 170 快速偏转,Δα≈45° 2020-05-10 2014-12-12 大武(新) 169 Δα增大至90° 2020-05-08 2020-01-01 玛曲 335 Δα增大至60° 2020-05-04 2014-03-22 甘孜 360 快速偏转,Δα≈90° 2020-05-15 2017-12-01 都兰 190 无异常 无 2014-12-01 白水河 355 无异常 无 2015-01-01 金银滩 256 无异常 无 2019-06-04 门源地电场 433 无异常 无 2020-01-01 通过上述分析可以看出,地震前出现大地电场优势方位角异常现象是真实存在的,并且时间上具有一定准同步性,但场地具有选择性,例如:都兰台虽然距玛多地震震中仅190 km,但震前无异常现象,对该台有记录以来的数据分析也显示都兰台地电场使用该方法在以往地震前均无异常变化,目前认为这可能与其处于应力不敏感地区有关。根据詹艳(2008)利用大地电磁方法对巴颜喀拉地块探测的研究,大武台所处的巴颜喀拉地块内部的地壳上地幔电性结构具有成层性,中、强地震的震中多位于壳内低阻层的地层层段,埋深约20 km,这与本次地震的震源深度相似。此外,优势方位角未呈现异常现象的都兰台、白水河台、门源台和金银滩台处于柴达木地块以及祁连地块,而出现异常的玛曲台、甘孜台则与玛多地震共处于巴颜喀拉地块,可见,在玛多地震的孕育过程中,所处的巴颜喀拉地块存在电性结构的改变,而柴达木地块和祁连地块均未记录到明显的电性结构变化。综合分析认为,地电场优势方位角的变化显著受到构造的影响,异常响应多出现在同一地块内部或边缘。
大武台(旧)自2014年改造后,已经积累了近六年的地电场观测资料。通过梳理历史数据可知,大武台(旧)地电场对周边中强震以上的地震反应较为敏感,即在地震前出现明显的地电场优势方位角跳变异常现象。2015年以来,大武台(旧)500 km范围内共记录到MS5.5以上地震共四组,其相关的地电场优势方位角变化详见表2,可见:在四组中强地震前有三组出现了地电场优势方位角异常现象,异常比例为75%,说明大武地震台的地电场优势方位角预报效能较高。异常主要表现为方位角跳变范围出现准同步的大幅度突跳或收缩以及发生偏转等现象,且持续一段时间,在异常时间出现四个月或异常恢复后三个月内,震中附近500 km范围发生M6以上地震(或连续两次M5左右地震)的可能较大,若单台场地岩体出现剪裂(方位角跳变偏转45°或90°),异常信度则更高。
表 2 大武台周围500 km范围内MS5.5地震前地电场优势方位角的变化特征Table 2. Variation characteristic of dominant azimuth based on geoelectric field before MS5.5 earthquakes within 500 km of Dawu station台站 发震日期
年-月-日发震地点 MS 震中距/km 异常 异常出现月份
年-月备注 大武台 2016-01-21 门源 6.4 380 Δα增大 2015-10 多台同步 2016-10-17 杂多 6.2 500 震前2个月快速偏转恢复 2016-08 附近仅一台 2017-08-08 九寨沟 7.0 360 无 无 无 2019-10-28 夏河 5.7 240 快速偏转 2019-06 多台同步 2020-04-01 石渠县 5.6 200 震前3个月快速偏转恢复 2020-01 多台同步 孕震过程中应力不断变化,理论上岩体裂隙结构会因应力的变化而变化。在实际场地中,岩体结构差异会使其裂隙结构对应力变化的响应出现差异,这导致了不同场地裂隙优势方位角α异常具有场地选择性现象。在部分场地,应力积累过程会导致岩体裂隙结构发生剧烈变化,使得该场地的大地电场优势方位角α发生显著变化,例如:α出现大幅度持续突跳、范围收窄、偏转等,而当岩石受压破裂时,剪裂会导致Δα发生约45°的变化,共轭剪裂会导致Δα发生90°左右的变化。此次异常与以往异常特征相似,方位角跳变出现偏转45°或90°,且多台出现准同步异常现象。
4. 结论
通过大武台大地电场优势方位角计算和分析证实玛多MS7.4地震前多个场地出现准同步优势方位角跳变异常是真实存在的,真实反映了地下介质的变化,主要结论如下:
1) 大武台新、旧两套地电场在2020年1月至5月中旬大地电场优势方位角的跳变范围即Δα在10°—20°之内,至2020年5月中旬两套方位角出现或快或慢的持续偏转,其偏转范围最大接近45°或90°,2021年4月方位角跳变出现快速偏转回升过程。随后发生玛多MS7.4地震,两套资料的异常具有准同步性。
2) 对震中500 km范围内的八个地电场的优势方位角的计算表明,处于同一地块的甘孜台、玛曲台与大武台出现准同步异常现象,且异常形态相似,而其它地块的台站均无异常出现,说明地电场优势方位角异常受构造影响显著,异常响应多出现在同一地块内部或边缘。
3) 自2014年大武台地电场观测以来,台站周围500 km范围内共记录到MS5.5以上地震四组。地电场优势方位角计算显示,在四组中强地震前有三组出现了大武台地电场优势方位角异常现象,异常占比为75%,异常主要表现为方位角跳变范围出现准同步的大幅度突跳、或收缩以及发生偏转等现象。地震主要发生在异常出现后四个月或异常恢复后三个月内,台站附近400 km范围存在发生M6以上地震的可能(或连续两次M5地震)。
随着经济的发展和人类活动的加剧,地电场观测环境日益复杂,这使得从台站观测数据中识别相对较弱的地震电信号愈发困难,通过大地电场岩体裂隙水(电荷)渗流(移动)模型分析中强地震孕育前后附近场地岩体裂隙结构的变化特征,为异常提取提供了有效途径。但由于目前地电场场地稀疏且分布不均,导致样本量有限,不能完全真实地反映客观规律。今后随着地电观测的累积、震例的增加,应该加大对该方法的长期深入研究,从而更好地完善预测指标。
-
图 9 不同输入地震动下补充模型1、2与分析模型2场地相关加速度反应谱
(a) 输入PGA=25 cm/s2;(b) 输入PGA=50 cm/s2;(c) 输入PGA=100 cm/s2
Figure 9. The site-related acceleration response spectra of supplementary model 1,2 and analysis model 2 under different input ground motions
(a) Input PGA=25 cm/s2;(b) Input PGA=50 cm/s2;(c) Input PGA=100 cm/s2
图 8 弹簧−质量单自由度体系分析示意图
图中h,v和ρ分别表示土层厚度、剪切波速、密度;下标su,s,sd分别表示上覆土层、软弱夹层、下伏土层
Figure 8. Schematic diagram of spring mass single degree of freedom system analysis
In the figure,h,v and ρ respectively represent soil layer thickness,shear wave velocity, and density;subscriptsu,s and sd represent the overlying soil layer,weak interlayer,and underlying soil layer respectively
图 10 不同输入地震动下含一层 (a) 和含两层 (b) 淤泥的各分析模型场地反应谱特征周期随软弱土层厚度及埋深的变化关系
Figure 10. Variation of the characteristic period of the site response spectrum with the thickness and burial depth of the weak soil layer for the analysis models with one-layer (a) and two-layer (b) silt under different input ground motions
表 1 分析模型1和模型7的剖面和力学特性参数
Table 1 Profile and mechanical characteristic parameters of Analysis model 1
模型 土层
序号岩土名称 土类号 层底深度
/m层厚
/m剪切波速
/(m·s−1)密度
/(kg·m−3)模型1 1 淤泥 1 5.0 5.0 112 1580 2 粉质黏土 3 9.5 4.5 160 1860 3 粉质黏土 4 13.0 3.5 165 1870 4 粉质黏土 5 17.0 4.0 199 1880 5 粉质黏土 6 21.0 4.0 212 1960 6 粉质黏土 7 24.0 3.0 242 1980 7 圆砾 8 27.0 3.0 258 2200 8 全风化安山岩 8 30.0 3.0 393 2250 9 计算基底 9 516 2650 模型7 1 淤泥 1 5.0 5.0 112 1580 2 淤泥 2 10.0 5.0 112 1660 3 粉质黏土 3 14.5 4.5 160 1860 4 粉质黏土 4 18.0 3.5 165 1870 5 粉质黏土 5 22.0 4.0 199 1880 6 粉质黏土 6 26.0 4.0 212 1960 7 粉质黏土 7 29.0 3.0 242 1980 8 圆砾 8 32.0 3.0 258 2200 9 全风化安山岩 8 35.0 3.0 393 2250 10 计算基底 9 516 2650 表 2 各土层不同剪应变水平下的动力剪切非线性参数
Table 2 Nonlinear parameters of dynamic shear of all soils under different shear strain levels
土类号 土层名称 参数 剪应变/(10−4) 0.05 0.1 0.5 1 5 10 50 100 1 淤泥 模量比G/Gmax 0.990 2 0.9808 60.910 5 0.835 8 0.504 5 0.337 4 0.092 3 0.048 3 阻尼比ζ 0.017 3 0.024 4 0.052 5 0.071 1 0.123 6 0.142 9 0.167 2 0.171 2 2 淤泥 模量比G/Gmax 0.991 3 0.982 7 0.918 9 0.850 0 0.531 3 0.361 7 0.101 8 0.053 6 阻尼比ζ 0.008 8 0.013 5 0.035 6 0.052 5 0.107 3 0.130 3 0.161 5 0.166 9 3 粉质黏土 模量比G/Gmax 0.991 8 0.983 8 0.924 1 0.858 8 0.548 9 0.378 3 0.108 5 0.057 3 阻尼比ζ 0.013 8 0.019 9 0.045 9 0.064 1 0.120 1 0.142 8 0.173 5 0.178 8 4 粉质黏土 模量比G/Gmax 0.992 5 0.985 1 0.929 6 0.868 4 0.568 9 0.397 5 0.116 6 0.061 9 阻尼比ζ 0.012 3 0.017 6 0.040 2 0.056 1 0.105 3 0.125 8 0.154 2 0.159 2 5 粉质黏土 模量比G/Gmax 0.993 9 0.987 8 0.941 9 0.890 3 0.618 7 0.447 9 0.139 6 0.075 0 阻尼比ζ 0.015 7 0.021 8 0.046 1 0.062 6 0.113 6 0.135 6 0.167 7 0.173 6 6 粉质黏土 模量比G/Gmax 0.994 3 0.988 7 0.946 0 0.897 5 0.636 5 0.466 8 0.149 0 0.080 5 阻尼比ζ 0.018 1 0.024 9 0.051 2 0.068 8 0.123 4 0.147 3 0.182 7 0.189 4 7 粉质黏土 模量比G/Gmax 0.995 0 0.990 1 0.952 4 0.909 2 0.666 9 0.500 3 0.166 8 0.091 0 阻尼比ζ 0.010 6 0.015 2 0.034 2 0.047 8 0.093 6 0.115 4 0.150 4 0.157 0 8 圆砾及卵石 模量比G/Gmax 0.990 0.970 0.900 0.850 0.700 0.550 0.320 0.200 阻尼比ζ 0.004 0.006 0.019 0.030 0.075 0.090 0.110 0.120 9 基岩 模量比G/Gmax 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 阻尼比ζ 0.004 0.008 0.010 0.015 0.021 0.030 0.036 0.046 表 3 各分析模型地表峰值加速度和地震反应动力放大系数
Table 3 The peak acceleration and dynamic amplification coefficient for surface seismic response of each analysis model
模型 输入不同峰值加速度的地表水平向峰值加速度/(cm·s−2) 模型 输入不同峰值加速度的地表水平向地震反应动力放大系数 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 模型1 53.1 97.1 193.2 模型1 2.124 1.942 1.932 模型2 43.8 86.5 152.3 模型2 1.752 1.73 1.523 模型3 41.2 72.4 118.7 模型3 1.648 1.448 1.187 模型4 38.7 58.2 109.9 模型4 1.548 1.164 1.099 模型5 36.4 52.6 100.6 模型5 1.456 1.052 1.006 模型6 30.6 45 87.4 模型6 1.224 0.900 0.874 模型7 48.9 96 174.2 模型7 1.956 1.92 1.742 模型8 38.7 62.6 110.1 模型8 1.548 1.252 1.101 模型9 33.7 55.2 102.8 模型9 1.348 1.104 1.028 模型10 31.1 53.9 83.9 模型10 1.244 1.078 0.839 模型11 30.4 48.2 69.4 模型11 1.216 0.964 0.694 模型12 29.6 46.4 64.6 模型12 1.184 0.928 0.646 表 4 分析模型的场地参数及场地类别
Table 4 Site parameters and categories of analysis models
分析
模型覆盖层
厚度/m等效剪切
波速/m·s−1场地
类别分析
模型覆盖层
厚度/m等效剪切
波速/m·s−1场地
类别模型1 30 156.0 Ⅱ 模型7 35 134.5 Ⅲ 模型2 30 156.0 Ⅱ 模型8 35 134.5 Ⅲ 模型3 30 156.0 Ⅱ 模型9 35 134.5 Ⅲ 模型4 30 156.0 Ⅱ 模型10 35 142.0 Ⅲ 模型5 30 161.3 Ⅱ 模型11 35 161.3 Ⅱ 模型6 30 182.4 Ⅱ 模型12 35 182.4 Ⅱ 表 5 各分析模型场地规准反应谱特征周期Tg
Table 5 The characteristic periodic values of site standard response spectrum of each analysis model
模型 输入不同峰值加速度各模型的反应谱特征周期 模型 输入不同峰值加速度各模型的反应谱特征周期 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=25 cm/s PGA=50 cm/s2 PGA=100 cm/s2 模型1 0.5 0.55 0.6 模型7 0.7 0.75 0.95 模型2 0.6 0.65 0.8 模型8 0.9 0.95 1.2 模型3 0.7 0.75 0.85 模型9 1 1.05 1.35 模型4 0.75 0.8 1.05 模型10 1.1 1.2 1.45 模型5 0.8 0.9 1.1 模型11 1.15 1.3 1.5 模型6 0.85 0.95 1.2 模型12 1.25 1.35 1.65 表 6 输入不同地震动水平下模型1—6的反应谱特征周期Tg
Table 6 Characteristic periods Tg of model 1−6 under different input ground motion
分析模型 不同地震动输入水平下的反应谱特征周期 PGA=25 cm/s2 PGA=50 cm/s2 PGA=100 cm/s2 PGA=150 cm/s2 PGA=200 cm/s2 PGA=300 cm/s2 模型1 0.50 0.55 0.60 0.65 0.70 0.75 模型2 0.60 0.65 0.70 0.75 0.80 0.90 模型3 0.70 0.75 0.80 0.85 0.90 0.95 模型4 0.75 0.80 0.85 0.90 0.95 1.00 模型5 0.80 0.85 0.90 0.95 1.00 1.05 模型6 0.85 0.90 0.95 1.00 1.05 1.20 注:输入峰值加速度25 cm/s2的各模型特征周期来自于表5 表 7 原分析模型剖面和力学特性参数
Table 7 The original analysis model
序号 土层名称 土类号 层底深度
/m层厚
/m剪切波速
/(m·s−1)密度
/(kg·m−3)1 粉质黏土 3 4.5 4.5 160 1860 2 淤泥 1 9.5 5.0 112 1580 3 粉质黏土 4 13.0 3.5 165 1870 4 粉质黏土 5 17.0 4.0 199 1880 5 粉质黏土 6 21.0 4.0 212 1960 6 粉质黏土 7 24.0 3.0 242 1980 7 圆砾 8 27.0 3.0 258 2200 8 全风化安山岩 8 30.0 3.0 393 2250 9 计算基底 9 516 2650 表 8 补充分析模型1
Table 8 The supplementary analysis model 1
土层序号 土层名称 土类号 层底深度
/m层厚
/m剪切波速
/(m·s−1)密度
/(kg·m−3)1 粉质黏土 3 4.5 4.5 160 1860 2 粉质黏土 3 9.5 5.0 160 1860 3 粉质黏土 4 13.0 3.5 165 1870 4 粉质黏土 5 17.0 4.0 199 1880 5 粉质黏土 6 21.0 4.0 212 1960 6 粉质黏土 7 24.0 3.0 242 1980 7 圆砾 8 27.0 3.0 258 2200 8 全风化安山岩 8 30.0 3.0 393 2250 9 计算基底 9 516 2650 表 9 补充分析模型2
Table 9 The supplementary analysis model 2
土层序号 土层名称 土类号 层底深度
/m层厚
/m剪切波速
/(m·s−1)密度
/(kg·m−3)1 粉质黏土 3 4.5 4.5 160 1860 2 粉质黏土 4 9.5 5.0 165 1870 3 粉质黏土 4 13.0 3.5 165 1870 4 粉质黏土 5 17.0 4.0 199 1880 5 粉质黏土 6 21.0 4.0 212 1960 6 粉质黏土 7 24.0 3.0 242 1980 7 圆砾 8 27.0 3.0 258 2200 8 全风化安山岩 8 30.0 3.0 393 2250 9 计算基底 9 516 2650 表 10 不同输入地震动水平下场地反应谱特征周期拟合结果
Table 10 Fitting results of characteristic period of site response spectrum under different input ground motions
输入地震动/(cm·s−2) 模型1—6 输入地震动/(cm·s−2) 模型7—12 a b R2 a b R2 25 0.838 −0.066 0.999 80 25 0.972 −0.297 0.999 12 50 0.941 −0.166 0.999 05 50 1.050 −0.410 0.999 64 100 1.231 −0.270 0.999 72 100 1.246 −0.223 0.999 38 表 11 不同输入水平下模型1−模型6的反应谱特征周期拟合结果
Table 11 Fitting results of characteristic periods of model 1−6 at different input ground motions
分析模型 α β R2 模型1 0.501 5 0.000 9 0.962 4 模型2 0.588 4 0.001 0 0.993 7 模型3 0.701 5 0.000 9 0.962 4 模型4 0.751 5 0.000 9 0.962 4 模型5 0.801 5 0.000 9 0.962 4 模型6 0.825 4 0.001 2 0.995 3 -
薄景山,李琪,齐文浩,王玉婷,赵鑫龙,张毅毅. 2021. 场地条件对地震动和震害影响的研究进展与建议[J]. 吉林大学学报(地球科学版),51(5):1295–1305. Bo J S,Li Q,Qi W H,Wang Y T,Zhao X L,Zhang Y Y. 2021. Research progress and discussion of site condition effect on ground motion and earthquake damage[J]. Journal of Jilin University (Earth Science Edition),51(5):1295–1305 (in Chinese).
曹志翔. 2006. 土层性质对SH波场地放大效应的影响[J]. 沈阳理工大学学报,25(3):88–91. doi: 10.3969/j.issn.1003-1251.2006.03.024 Cao Z X. 2006. Influence of properties of soil layer on site amplification effect for SH waves[J]. Transactions of Shenyang Ligong University,25(3):88–91 (in Chinese).
迟明杰,李小军,陈学良,马笙杰. 2021. 场地划分中存在的问题及建议[J]. 地震学报,43(6):787–803. doi: 10.11939/jass.20200177 Chi M J,Li X J,Chen X L,Ma S J. 2021. Problems and suggestions on site classification[J]. Acta Seismologica Sinica,43(6):787–803 (in Chinese).
高秋英,王丽丽,王荣忠. 2021. 最小二乘法曲线拟合及优化算法研究[J]. 工业控制计算机,34(11):100–101. doi: 10.3969/j.issn.1001-182X.2021.11.040 Gao Q Y,Wang L L,Wang R Z. 2021. Research on least square curve fitting and optimization algorithm[J]. Industrial Control Computer,34(11):100–101 (in Chinese).
高武平,高孟潭,陈学良. 2012. 天津滨海软土场地的大震远场作用[J]. 地震学报,34(2):235–243. doi: 10.3969/j.issn.0253-3782.2012.02.010 Gao W P,Gao M T,Chen X L. 2012. Far-field strong earthquake effect in Tianjin coastal soft site[J]. Acta Seismologica Sinica,34(2):235–243 (in Chinese).
李美娟,夏雄. 2017. 软土夹层厚度对场地地震反应特征影响研究[J]. 工程抗震与加固改造,39(5):149–153. Li M J,Xia X. 2017. Research on the effect of soft clay interlayer thickness on ground seismic response characteristics[J]. Earthquake Resistant Engineering and Retrofitting,39(5):149–153 (in Chinese).
李平,薄景山,肖瑞杰,张宇东. 2018. 地震动河谷场地效应研究[J]. 震灾防御技术,13(2):331–341. doi: 10.11899/zzfy20180208 Li P,Bo J S,Xiao R J,Zhang Y D. 2018. The study of effect by the valley site on ground motion[J]. Technology for Earthquake Disaster Prevention,13(2):331–341 (in Chinese).
李平,薄景山,齐文浩,刘德东,肖瑞杰. 2012. 土层结构对汉源烈度异常的影响[J]. 地震学报,34(6):851–857. doi: 10.3969/j.issn.0253-3782.2012.06.011 Li P,Bo J S,Qi W H,Liu D D,Xiao R J. 2012. Effects of soil structure on abnormal intensity in Hanyuan old town[J]. Acta Seismologica Sinica,34(6):851–857 (in Chinese).
李伟华,赵成刚. 2015. 地下水位变化对地震地面运动的影响[J]. 地震学报,37(3):482–492. doi: 10.11939/jass.2015.03.011 Li W H,Zhao C G. 2015. Effects of the groundwater level variation on earthquake ground motions[J]. Acta Seismologica Sinica,37(3):482–492 (in Chinese).
刘帅,潘超,周志光. 2018. 对人造地震动反应谱求解及拟合的几个相关问题探讨[J]. 地震学报,40(4):519–530. Liu S,Pan C,Zhou Z G. 2018. Discussions on the response spectral solution and fitting of spectrum-compatible artificial seismic waves[J]. Acta Seismologica Sinica,40(4):519–530 (in Chinese).
荣棉水,李小军,卢滔,黄雅虹,吕悦军. 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议[J]. 地震学报,35(2):262–271. doi: 10.3969/j.issn.0253-3782.2013.02.012 Rong M S,Li X J,Lu T,Huang Y H,Lü Y J. 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers[J]. Acta Seismologica Sinica,35(2):262–271 (in Chinese).
田守岐. 2013. 软弱土层对场地地震反应的影响分析[J]. 中国科技信息,(16):39. doi: 10.3969/j.issn.1001-8972.2013.16.006 Tian S Q. 2013. Analysis of influence of soft soil layer on seismic response of site[J]. China Science and Technology Information,(16):39 (in Chinese).
王海云. 2011. 渭河盆地中土层场地对地震动的放大作用[J]. 地球物理学报,54(1):137–150. doi: 10.3969/j.issn.0001-5733.2011.01.015 Wang H Y. 2011. Amplification effects of soil sites on ground motion in the Weihe basin[J]. Chinese Journal of Geophysics,54(1):137–150 (in Chinese).
王竞,王世元,潘勇杰,宴金旭. 2022. 基于理想场地模型的不同位置软夹层对场地地震反应的影响研究[J]. 防灾科技学院学报,24(1):33–41. doi: 10.3969/j.issn.1673-8047.2022.01.004 Wang J,Wang S Y,Pan Y J,Yan J X. 2022. Influence of soft interlayer at different depth on seismic site response based on ideal site model[J]. Journal of Institute of Disaster Prevention,24(1):33–41 (in Chinese).
王伟,刘必灯,刘培玄,王振宇,刘欣. 2016. 基于台阵记录的局部场地条件地震动效应分析[J]. 地震学报,38(2):307–317. doi: 10.11939/jass.2016.02.014 Wang W,Liu B D,Liu P X,Wang Z Y,Liu X. 2016. Analyses on the effect of the local site conditions on the strong motion based on the array records[J]. Acta Seismologica Sinica,38(2):307–317 (in Chinese).
王亚红,孙点峰,魏东星. 2019. 软夹层埋深对地表地震动参数的影响[J]. 甘肃科技,35(9):65–67. doi: 10.3969/j.issn.1000-0952.2019.09.024 Wang Y H,Sun D F,Wei D X. 2019. Influence of buried depth of soft interlayer on ground motion parameters[J]. Gansu Science and Technology,35(9):65–67 (in Chinese).
徐国栋,史培军,周锡元. 2010. 基于目标功率谱和包线的地震动合成[J]. 地震工程与工程振动,30(2):1–9. Xu G D,Shi P J,Zhou X Y. 2010. Artificial ground motion based on target power spectra and envelope[J]. Journal of Earthquake Engineering and Engineering Vibration,30(2):1–9 (in Chinese).
许建聪,简文彬,尚岳全. 2005. 深厚软土地层地震破坏的作用机理研究[J]. 岩石力学与工程学报,24(2):313–320. doi: 10.3321/j.issn:1000-6915.2005.02.022 Xu J C,Jian W B,Shang Y Q. 2005. Study on the seismic failure mechanism of the thick soft soil foundation[J]. Chinese Journal of Rock Mechanics and Engineering,24(2):313–320 (in Chinese).
张海,李克强,尤红兵,周泽辉. 2016. 硬夹层埋深对场地地震动参数的影响[J]. 地震工程学报,38(6):935–941. Zhang H,Li K Q,You H B,Zhou Z H. 2016. Influence of the buried depth of hard interlayer on ground-motion parameters[J]. China Earthquake Engineering Journal,38(6):935–941 (in Chinese).
中国建筑科学研究院. 2016. GB 50011—2010 建筑抗震设计规范[S]. 北京:中国建筑工业出版社:1−249 . China Academy of Building Research. 2016. GB 50011−2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press:1−249 (in Chinese).
周正华,张艳梅,孙平善,杨柏坡. 2003. 断层对震害影响的研究[J]. 自然灾害学报,12(4):20–24. doi: 10.3969/j.issn.1004-4574.2003.04.004 Zhou Z H,Zhang Y M,Sun P S,Yang B P. 2003. Study on effect of fault on seismic damage[J]. Journal of Natural Disasters,12(4):20–24 (in Chinese).
周正华,李玉萍,周游,李小军,陈柳,苏杰,董青,王亚飞. 2019. 硬夹层厚度对场地地震反应的影响[J]. 地震地质,41(5):1254–1265. doi: 10.3969/j.issn.0253-4967.2019.05.012 Zhou Z H,Li Y P,Zhou Y,Li X J,Chen L,Su J,Dong Q,Wang Y F. 2019. The effect of hard interlayer thickness on the site seismic response[J]. Seismology and Geology,41(5):1254–1265 (in Chinese).
周正华,陈柳,周游,李小军,苏杰,董青,钟康明,李玉萍. 2020. 地表硬盖层厚度对场地地震反应的影响分析[J]. 应用基础与工程科学学报,28(2):321–330. Zhou Z H,Chen L,Zhou Y,Li X J,Su J,Dong Q,Zhong K M,Li Y P. 2020. The effect of surface hard cover on the site earthquake response[J]. Journal of Basic Science and Engineering,28(2):321–330 (in Chinese).
闫孔明,刘飞成,朱崇浩,王志佳,张建经. 2017. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究[J]. 岩石力学与工程学报,36(11):2686–2698. Yan K M,Liu F C,Zhu C H,Wang Z J,Zhang J J. 2017. Dynamic responses of slopes with intercalated soft layers under seismic excitations[J]. Chinese Journal of Rock Mechanics and Engineering,36(11):2686–2698 (in Chinese).
Su J,Zhou Z H,Zhou Y,Li X J,Dong Q,Wang Y F,Li Y P,Chen L. 2020. The characteristics of seismic response on hard interlayer sites[J]. Adv Civil Eng:1425969.
Thráinsson H,Kiremidjian A S. 2002. Simulation of digital earthquake accelerograms using the inverse discrete Fourier transform[J]. Earthq Eng Struct Dyn,31(12):2023–2048. doi: 10.1002/eqe.198
Yao E L,Li W C,Miao Y,Ye L,Yang Z W. 2022. Study on the influence of a soft soil interlayer on spatially varying ground motions[J]. Appl Sci,12(3):1322. doi: 10.3390/app12031322
-
期刊类型引用(9)
1. 张丽琼,高曙德,李娜. 积石山M_S6.2地震前地电场异常特征. 大地测量与地球动力学. 2025(04): 367-372 . 百度学术
2. 刘伟,柴宁娇,王耀临,李东,冯雪东. 乌加河地电场优势方位角地震前后变化特征. 地震地磁观测与研究. 2025(01): 71-77 . 百度学术
3. 周瀚琳,赵玉红,徐恺晖,李国英. 格尔木地磁观测数据与中强地震关系研究. 高原地震. 2024(01): 39-45 . 百度学术
4. 刘海洋,饶文,徐衍刚,艾萨·伊斯马伊力. 2024年1月23日乌什M_S7.1地震前新疆地电优势方位角变化特征分析. 内陆地震. 2024(02): 182-193 . 百度学术
5. 孙召华,李军辉,李君,孙亮亮,张洋,张钧琪. 2015年安徽阜阳4.3级地震前地电场方位角异常分析. 中国地震. 2024(03): 690-699 . 百度学术
6. 郭雨帆,杜晓辉,董磊,汤兰荣,赵爱平,王甘娇. 基于张衡一号卫星监测的2021年青海玛多7.4级地震前电离层效应. 地震. 2023(02): 85-102 . 百度学术
7. 席继楼,赵家骝,高尚华,王晓蕾,李国佑,孟凡博. 长周期地电场变化特征及机理——以都兰地震台为例. 地震地质. 2023(05): 1092-1111 . 百度学术
8. 赵玉红,李霞,冯丽丽,刘磊,张朋涛,卢嘉沁,孙玺皓. 2次门源地震前地电场优势方位角异常特征研究. 地震地磁观测与研究. 2023(S1): 199-202 . 百度学术
9. 格根,张帆,陈立峰,梁沙沙,王磊. 内蒙古乌加河地电场异常特征研究. 地震地磁观测与研究. 2023(S1): 226-228 . 百度学术
其他类型引用(0)