中国井下地震观测研究回顾与展望从井下到东海深井垂直地震台阵

徐纪人, 李海兵, 曾祥芝, 许健生, 赵志新

徐纪人,李海兵,曾祥芝,许健生,赵志新. 2024. 中国井下地震观测研究回顾与展望—从井下到东海深井垂直地震台阵. 地震学报,46(6):919−935. DOI: 10.11939/jass.20230158
引用本文: 徐纪人,李海兵,曾祥芝,许健生,赵志新. 2024. 中国井下地震观测研究回顾与展望—从井下到东海深井垂直地震台阵. 地震学报,46(6):919−935. DOI: 10.11939/jass.20230158
Xu J R,Li H B,Zeng X Z,Xu J S,Zhao Z X. 2024. Review and prospect of borehole seismic observation research in China:From borehole to Donghai borehole vertical seismic array. Acta Seismologica Sinica46(6):919−935. DOI: 10.11939/jass.20230158
Citation: Xu J R,Li H B,Zeng X Z,Xu J S,Zhao Z X. 2024. Review and prospect of borehole seismic observation research in China:From borehole to Donghai borehole vertical seismic array. Acta Seismologica Sinica46(6):919−935. DOI: 10.11939/jass.20230158

中国井下地震观测研究回顾与展望—从井下到东海深井垂直地震台阵

基金项目: 江苏东海大陆深孔地壳活动国家野外科学观测研究站业务建设费(J2405)
详细信息
    通讯作者:

    徐纪人,博士,研究员,主要从事地球物理学、地震学和大陆动力学方面的研究,e-mail:xujiren1125@hotmail.com

  • 中图分类号: P315.61

Review and prospect of borehole seismic observation research in China:From borehole to Donghai borehole vertical seismic array

  • 摘要:

    目前我国约有数百个井下地震观测台。井下观测可以避免地表噪声干扰和场地效应,填补在高噪声区域获取高精度地震资料的空白。增加井下观测台站可以弥补地表观测能力的不足,使观测台站的布局更加科学合理,从而也为地震学观测研究开辟新途径。井下台网观测波形有利于准确测定地震参数,建立高精度波速模型,探索地震成因,从而推动地震预报工作。唐山强震就发生在低速体与高速体之间,文安地震前波速出现了可信的地震前兆性降低异常。井下地震仪可观测到地表反射波,对研究地壳精细结构和资源评估均有重要意义。井下观测到的震级、矩震级以及拐角频率均小于地面台站观测结果。江苏东海大陆深井垂直地震台阵井下波形的平均信噪比为70 dB以上,在高噪声背景区可获得高保真度的地震波形,也为研究震源提供更直接的约束条件,有利于高可信度的震源理论研究,以及地震波传播的非线性效应和场地效应的研究,进而提高强地面运动预测的精确度。井下与地面观测的震级差异可能与上层介质的波形非线性增幅效应及波的频率有关,它们拐角频率差异可能与上层介质对不同频率波分量的影响有关。这些差异的成因也具有多重复杂性,有待于深入地科学研究和探索。我国近期将建设更多井下地震观测台站,井下观测网和垂直地震台阵观测研究是创新未来地球物理学发展的重要途径。

    Abstract:

    This paper summarizes the newly research achievements of the underground seismic observation networks and borehole vertical seismic arrays in China, and looks forward to the prospect of underground observation research in the future. There are hundreds of underground observation stations with excellent observation quality currently. The underground seismic observational network pioneers a new technical approach for the physics in the Earth's interior of observation and study in the depths.

    This analysis indicates that the underground observation can avoid the surface noise and site effects, and obtain high-quality seismic data. Therefore, it is possible for scientist to construct borehole stations scientifically in the earthquake monitoring areas, even if in the high noise background areas. Then the earthquake epicenter will be determined more accurately based on data observed from the reasonable station layout. The ability monitoring seismic activity is improved greatly. Simultaneously, the underground seismometer can record clear seismic wave near the epicenter because of avoiding the surface noise. The seismic waves observed near the epicenter retain more high-frequency components of waveforms which are essential data for study of the fine structure of the earth. It promotes the development of the seismological science.

    It also can reduce the average velocity differences of P and S waves between stations due to different ground station foundations for us to study the spatial heterogeneity of the seismic wave velocity distribution if we use underground observation velocities. The accuracy and reliability of the 3D velocity model can significantly be improved by employing the data that reduced velocity differences mentioned above. The research findings suggested that the Tangshan strong earthquake occurred between the low speed zone and high speed zone too. The study results on the temporal variation of wave velocity indicated that a credible precursor process of wave velocity reduction also appeared before the Wen’an MS5.1 earthquake.

    The surface reflected seismic waves near earthquakes have been surveyed through the underground observations. The accurate velocity structure of the crustal sedimentary layer can be established by employing the combination of incident waves and surface reflection waves. The high precision velocity models of the shallow layer are also of great significance to study the fine structure of the Earth’s interior.

    The seismic kinematic and dynamic parameters, such as arrival time, component frequency and amplitude of seismic waves can accurately be determined by employing the low noise waves by the underground observation. The reliable high-level research findings are likely achieved based on the accurate parameters. The low noise waves observed by borehole seismometer are actually reasonable constraint for the study on seismic source. It is beneficial for scientist to solve the precise seismic source parameters and to acquire highly reliable results about the source under the strict constraint condition. A large number of excellent results have already been achieved based on the data of underground observation today. The seismic moments and moment magnitudes calculated by employing seismic waveform data from the underground observations are less than that calculated using waveforms by the ground observation. The stress drops and average earthquake dislocations computed using the waveforms from the underground observation are both less than those computed from waveforms observed in the ground bedrock. The corner frequencies calculated by seismic waveforms observed at the underground platforms are also lower than that calculated using data from the ground observations. The high-frequency components of the source spectrum calculated by waveforms from underground observation are weak, and not as abundant as that calculated using waveforms observed on the ground. As mentioned above, the magnitude and moment magnitude of the underground observation are less than those observed in the surface bedrock. The differences between the two kinds of magnitudes may be attributed to the nonlinear amplification effect of the wave in the upper medium of the borehole seismograph and the frequencies of seismic waves. Relatively, the lower corner frequencies of underground observations compared with the surface observations may be attributed to the absorption and amplification effect for different frequency wave components by the upper medium of underground instruments. In addition, the site response of the surface layer also has a significant impact on the source spectral parameters. The majority of the site responses underground platform are greater than 1 at the low-frequency domain and less than 1 at the high frequency domain respectively. The different site response between high and low frequency domain may also cause the magnitude and corner frequency observed by underground stations to be lower than those observed on the ground. The causes of source parameter differences mentioned above may be generally multiple complexities. It is still an important topic of future scientific exploration.

    The underground seismometer recorded the surface reflection waves besides of the direct waves. The phenomenon is very valuable. So the nonlinear site effects and amplification characteristics of seismic wave propagation in sediment layers are solved accurately using the two types of data: Direct and reflected waves. Then the uncertainty of theoretical wave field solution can be reduced using the high-precision site effect results. The accuracy of strong ground motion prediction can surely be improved.

    The Donghai, Jiangsu Province, borehole vertical seismic array is the first vertical seismic array in China. The array is consisted of one station at surface and four stations established at different deep layers in the borehole over 5000 meters deep and another borehole station with multiple geophysical instruments about 500 m away from the 5000 m deep borehole. The array can observe more clearer waveforms of micro-earthquakes with zero or negative magnitudes and then improve the ability to monitor crustal and seismic activities. The signal-to-noise ratios of waveforms recorded at different depths in the borehole can provide valuable reference for the construction of underground stations currently. The signal-to-noise ratios of waveforms observed in the borehole are also all greater than or equal to 70 dB. The seismic waveforms with high fidelity were obtained in the high noise background areas by means of the vertical seismic array system. The precise three-dimensional seismic wave velocity model can be established using high-quality seismic waveforms, which contributes to comprehensive reveal of the tectonic movement of the earth. The waveforms without site response and noise observed by the vertical array system are more appropriate constraints for the study of seismic sources too. The innovative research achievements on seismic source theory are expectable by the study under above scientific constraint condition.

    The borehole seismic observation research not only have made significant contributions to earth science, but also is of great practical significance for the resource assessment, earthquake prediction and disaster prevention and mitigation of earthquakes.

    The underground observation net and vertical array observation research are the frontiers of scientific problem in the world currently. More underground observation networks and borehole vertical seismic arrays are being constructed to obtain more high-precision seismic data and research findings, which will continuously innovate the future development of earth science.

  • 液化问题是岩土地震工程研究的重要课题之一。由动荷载引起的砂土液化造成地基失效、喷砂冒水、建筑物破坏等现象,对国民经济和生命财产造成了巨大损失。我国上世纪六七十年代发生的海源、邢台、通海、海城、唐山等地震中均出现了砂土液化现象和液化震害,液化现象也逐渐引起了人们的重视,并开始收集和分析地震液化资料,建立了基于标准贯入锤击数基准值的液化判别公式。现场原位测试为砂土液化机制的研究和判别方法的建立提供了基础数据。

    杜修力(2011)将饱和砂土液化定性分析与评价的方法分为经验法或统计法、简化分析法和数值分析法三类。经验法,以地震现场的液化调查资料为基础,给出实际液化发生与否的判别条件和界限,并判别出场地的液化程度;简化分析法,以试验和土体反应分析作为基础来判别饱和砂土能否液化,例如希德简化方法、液化估计法、剪切波速法、标准贯入击数法以及静力触探方法;数值分析法,釆用某类本构模型进行动力计算和液化判别。上述各种评价方法主要考虑震级、峰值加速度、初始应力、地下水位、液化土层埋深、土体物理力学性质等因素,基于单个测点数据给出液化势评价结果。

    除了上述因素外,在液化过程中场地土层的排水条件或孔隙水渗流路径对液化有显著影响。排水条件是土层的透水程度、排渗路径及排渗边界条件,在多层地基中有易液化土层存在时,其它土层对易液化土层的影响主要表现在排渗能力和层位结构两方面。排渗能力取决于上下邻层土的渗透系数和厚度,渗透系数越大、厚度越小,排渗能力越强;而层位结构可以通过不同液化势的土层组成多层试样进行试验(王维铭,2013)。章守恭和李玉蓉(1980)的研究表明,一定程度的排水对降低液化势具有明显的促进作用。Sasaki 等(1992)依据振动台场地模型液化变形进行的一系列试验表明,液化后的砂土与流体“非常相似”,因此液化砂土流动特性的试验得以验证(陈育民等,20062009)。

    由于液化场地多属于河流冲积相,场地中不透水层或者弱透水层与易液化土层组成的二元结构、互层结构、黏土层透镜体和不透水层不连续分布之类的场地土层结构比较典型。以往砂土液化研究考虑土层结构对场地液化势的影响比较少,且在目前的砂土液化判别公式中,主要基于单一钻孔的原位测试数据进行判别,而实际场地土层结构可能会比较复杂,对液化过程中孔隙水的渗流路径影响显著,目前的判别方法均未考虑这一影响。因此,本文拟对松原地震和新西兰坎特伯雷地震中的液化点分布和场地资料进行分析,论证土层结构对场地液化点空间分布的影响规律,以期提高场地液化评价结果的准确性具有重要的参考意义。

    高弯度河流沉积相是一种河床坡缓、弯度大、水流较深、流态较稳定并以单向环流为主要特征的河流沉积模式,其三维空间结构形式如图1所示。此种相模式土体具有层状或硬软相间互层状结构的工程地质特征,天然堤和洪泛相的黏土、粉细砂稳定分布在此类土体中的软弱层。该层厚度为数十厘米至数米,呈层状产出,分布范围广。

    图  1  高弯度河流沉积三维空间结构形式(引自Burns等,2017
    Figure  1.  Three-dimensional spatial structure of meandering river deposit (after Burns et al,2017

    高弯度河流的河水在离心力作用下,不断冲刷凹岸,在河水单向环流上升段,水流速度和动力随着高度增加而递减,因此在凸岸区形成边滩相沉积,在垂直剖面上沉积物粒度由下而上逐渐变细,如图2所示,此类边滩相沉积物接近顶部的饱水粉细砂层,被上覆具有一定连续性的黏土层封闭后,形成二元结构,在外荷载尤其是地震荷载作用下,可造成砂土液化,并引起上覆土层沉陷。

    图  2  高弯度河流沉积相模式(引自董道涛,2021
    Figure  2.  Eluvial sedimentary facies model of the meandering river (after Dong,2021

    2018年5月28日吉林省松原市宁江区发生MS5.7地震,震中位于毛都站镇的牙木吐村附近(124.71°E,45.27°N)。防灾科技学院地震应急科考组现场调查共发现243处砂土液化喷出点,主要分布于第二松花江的左岸 Ⅰ 级阶地和河漫滩,如图3所示。 Ⅰ 级阶地地貌单元平坦开阔,海拔130—135 m,为第二松花江侧蚀作用形成冲积阶地。由于河流侧蚀作用在此处形成高弯度河曲,砂土液化的分布区主要位于凸岸堆积区,其形成机制如图4所示。 Ⅱ 级和Ⅲ级阶地主要分布在河道右岸,海拔135—145 m; Ⅱ 级阶地地形起伏较大,古河道牛轭湖发育;Ⅲ级阶地为低平原的顶部,表面堆积风成黄土,并有沙丘分布,地形略有起伏。

    图  3  松原地震砂土液化点分布
    Figure  3.  Distribution of sand liquefaction points in Songyuan earthquake
    图  4  高弯度河流边滩的形成机理(引自Allen,1970
    Figure  4.  Formation mechanism of high bend river bank ( after Allen,1970

    第二松花江河谷宽阔,心滩众多,流水散乱,水流平缓。河床内心滩密布,大小心滩交错分布,并且有向河流下游移动的趋势。低河漫滩普遍较为发育,特别在凸岸地带低河漫滩宽度更大,可达百余米。低河漫滩高出河床约1—2 m,地形平坦,地表组成物质为淤泥质粉砂或粉砂质淤泥,含有机质,河漫滩堆积水平层理发育,具有典型的二元结构,均为堆积河漫滩。高河漫滩表面组成物质为灰黑色粉砂质黏土,下伏有砂砾层和砂层等,高河漫滩堆积亦有明显的二元结构。地震应急科考组在液化场地进行了钻探作业,由现场典型钻孔揭示出的地层可以看出,场地土层上部为耕土和粉质黏土,下伏饱和松散的细砂,由于上覆粉质黏土不透水层,且细砂松散(李平等,2019),因此在地震动作用下非常有利于超孔隙水压累积。另外,由于河水单向环流作用形成的边滩砂土沉积层具有显著的斜层理、交错层理,这种土层结构有利于超孔隙水压向地表渗流,最终导致砂土液化和喷出地表。

    2010—2011年间新西兰的坎特伯雷地震序列起始于2010年9月4日的MW7.1的Darfield地震,震源深度为10 km,之后发生了一系列的余震,这一地震序列引发了基督城及其附近城镇大面积的砂土液化震害。砂土液化点主要分布于哈斯维尔河流的凸岸沉积区(图5),与松原MS5.7地震液化现场调查点分布特征一致,分布规律十分显著;而在凹岸侵蚀区,液化点分布非常少。图5地形底图的高程数据来源于激光雷达扫描,砂土液化点的分布是基于126张航空照片绘制而成。

    图  5  Canterbury 地震序列引起的砂土液化点分布(引自Bucci et al,2018
    Figure  5.  Distribution of liquefaction points of sand in Canterbury earthquake sequence (after Bucci et al,2018

    众多研究者利用已有的液化评价方法对坎特伯雷地震序列引起的砂土液化进行预测评价,结果表明,液化判别结果与液化场地的实际液化情况没有较好的对应关系(Bray,Macedo,2017)。Wotherspoon等(2015)基于基督城的强震动观测台站场址资料,对现有的液化势评价方法和液化严重性指数评价方法的有效性进行评估。对那些有明显地表液化现象的事件,现有方法能够准确地预测出液化发生的事件比例为85%—100%;对那些地表无液化证据的场地,现有的方法预测会发生液化的事件比例也介于77%—85%。可以看出,现有评价方法预测结果和场地实际液化情况的对应关系非常差。

    现有的液化判别方法大多依据单点测试数据静态地计算场地液化势,而忽略了在实际地震动作用下,由于土层结构和土体物理力学参数不均匀分布的影响,孔隙水压力分布会发生动态变化,孔隙水沿着土体结构面渗流,进而导致测试点液化势产生变化。在液化势判别中如何合理定量考虑这一影响,揭示场地土层结构的分布特性对液化势和地表液化特征的影响机制,对于准确评价整个场地的砂土液化具有重要意义。

    不透水层或者弱透水层与易液化土层互层分布是基督城液化场地的典型土层结构特征,这主要是因为基督城位于多条流经城区河流的冲积扇上。土层结构和土体参数的三维空间分布差异对场地的液化势空间分布差异产生显著影响,以位于基督城Palinurus路侧的一个液化场地为例,该影响的物理机制如下:在图6所示的场地中,12个静力触探测点中有9个测点所在位置处地表不存在砂土液化现象,其余3个测点地表存在砂土喷出,然而依据即液化场地一维重固结沉降评价方法(Zhang et al,2002)的计算结果Sv1D,场地所有测点均应该发生砂土液化,并且液化导致的地表沉降值在135—175 mm之间 (Brady,Macedo,2017);在图7所示的场地剖面图中,透水性差的粉土混合物土层(富含细粒成分)与易于液化的砂土混合物土层的互层结构特征显著,并且这种互层结构在静力触探点5465号和62759号之间存在尖灭构造,在尖灭构造的另一侧分布着砂土和砂土混合物。Thevanayagam (2001)在动三轴试验中得出,在相同的循环荷载作用下,粉土中由于剪切作用导致的孔隙水压力增长速度明显高于砂土。考虑到地表砂土液化现象分布特点与下伏土层的互层结构及尖灭构造特征,对具有这种土层结构的场地液化机制做如下推论:在地震荷载的作用下,互层结构中的粉土混合物土层孔隙水压力增长速度快于与之接触的砂土土层,在二者孔隙水压力差的作用下,粉土层中孔隙水进入砂土层,并加速了砂土层孔隙水压力累积速度,由于互层结构的竖向渗透性远低于水平方向,弱透水的粉土层对砂土中孔隙水的竖向渗流产生阻滞作用,继而导致孔隙水沿水平方向流向尖灭构造另一侧的砂土及其混合物,最终导致该处砂土的孔隙水压力增大;整个孔隙水的侧向渗流导致互层结构中的砂土层的液化势降低,却提高了尖灭构造另一侧的砂土层的液化势。上述推理分析能够合理地解释在图6中为什么静力触探测点5466号,57360号和5465号地表无砂土液化现象,而在62795号测点则出现了喷水冒砂的液化现象。

    图  6  2011年2月基督城地震引起的Palinurus 路边场地液化现象(引自Brady,2017
    Figure  6.  Liquefaction of Palinurus roadside site caused by the Christchurch earthquake in February 2011 (after Brady,2017
    图  7  基于静力触探数据绘制的Palinurus路场地AA′剖面(引自Brady,2017
    Ic为特性指数;qc为锥尖阻力;FS为侧壁阻力
    Figure  7.  AA′ section of Palinurus road site based on static cone penetration data (after Brady,2017
    Ic is index of classification;qc is cone tip resistance;FS is frictional resistance

    针对上述震例中高弯度河流沉积相中的边滩二元结构和基督城Palinurus路侧液化场地的土层互层结构,进行场地土层结构简化并建立相应模型,通过FLAC3D软件进行数值模拟计算,分析不同土层结构类型对液化过程中超孔隙水压累积和消散机制。选取日本Port Island液化场地效应竖向观测台阵中−83.0 m位置的实际地震动速度时程,经滤波和基线校正等处理后输入计算模型,地震动速度时程示于图8。在简化模型建立过程中,主要考虑不透水层或者弱透水层的尺寸、埋深,横向不连续分布间距,不透水层与易液化土层互层等因素,土体材料的物理力学参数列于表1。典型的液化场地土层结构简化模型和相应的数值模拟结果如图9所示。

    图  8  砂土液化数值计算模型选取的地震动时程
    Figure  8.  Time-history of ground motion selected by numerical calculation model of sand liquefaction
    表  1  模型中土体材料的物理力学参数
    Table  1.  Material parameters for the soil deposit in the model
    土体类型摩擦角φ内聚力C/kPa剪胀角Ψ渗透系数K/(m2·Pa−1·s)体积模量K/Pa剪切模量G/Pa
    粉细砂32006×10−93×1071×107
    黏土2890 05×10−133×1061×106
    下载: 导出CSV 
    | 显示表格
    图  9  不同土层结构模型(左)及其砂土液化超孔隙水压力的扩散过程(右)
    (a) 黏土层连续分布;(b) 黏土层2 m间断;(c) 黏土层6 m间断
    Figure  9.  The different site models (left) and the corresponding seepage paths of pore pressure (right)
    (a) Continuous clay layer;(b) Clay layer with 2 m gap;(c) Clay layer with 6 m gap
    图  9  不同土层结构模型(左)及其砂土液化超孔隙水压力的扩散过程(右)
    (d) 黏土层10 m间断;(e) 黏土层部分分布;(f) 互层黏土层6 m间断的模型
    Figure  9.  The different site models (left) and the corresponding seepage path of pore pressure (right)
    (d) Clay layer with 10 m gap;(e) Clay layer with discontinuous cap;(f) Interbedding clay layer with 6 m gap

    场地计算模型尺寸长宽高为30 m×1 m×14 m,网格尺寸为1 m×1 m×1 m,共计有420个网格单元和930个节点。在模型的静力分析阶段,采用的是摩尔-库仑(Mohr-Coulomb)本构关系,在动力和渗流的耦合分析阶段,采用的是Finn模型来描述砂土在动力作用下的孔压累积直至土体液化过程。Finn模型的实质是在摩尔-库仑模型的基础上增加了动孔压上升模式,并假定动孔压的上升与塑性体积应变增量相关(Soroush,Koohi,2004)。地震动荷载的施加位于计算模型的底部界面(z=−10 m)和左右两侧界面(x=0 m和x=30 m),施加荷载为x方向的剪切作用。

    基于场地结构模型在地震动荷载输入下的超孔隙水压力扩散过程,对液化砂土的迁移和引起地表的变形进行分析。图9a中的场地模型主要模拟的是高弯度河流凸岸边滩沉积的二元结构。从数值模拟结果来看,连续分布的不透水层对震动过程产生的超孔隙水向上渗流产生明显的阻碍作用,当不透水层厚度较大时,即使下伏砂土层发生液化,也不能喷出地表,在实际现场震害调查中,这种液化现象很难发现,但是通过现场钻探可以揭示此类液化现象,例如松原MS5.7地震钻探结果显示,由于下部砂土层液化在埋深16.3—17 m 的黏土层中留下了砂土的上升通道(李平等,2019)。

    在辫状(游荡型)河流沉积地层中,地层顶部的黏土层、淤泥质黏土层不连续分布特征尤为显著。另外,在地震动荷载作用下,上部连续的薄层黏土层也可能被拉裂形成裂隙。图9b−e的场地模型主要模拟的是上部不透水层不连续分布的结构特征,数值模拟结果表明,不透水层的间断处成为超孔隙水压力扩散的渗流通道,并且间断尺寸的不同,超孔隙水压扩散引起地表砂土层孔压变化和地表变形的影响范围和大小也有区别。不同土层结构模型的砂土液化引起的地表变形如图10所示,图10a图10b分别为黏土层连续分布和间断2 m分布的地表变形,可以看出二者变形模式十分相似,表明当黏土层间断尺寸较小时,虽然超孔隙水压向间断处渗流,但由于渗流通道狭窄,超孔隙水压力消散不畅,对地表引起的变形较小。通过对比图10b,c,d可以看出,黏土层间断尺寸不同,地表形变差异较大,在间断为6 m时,地表的形变量最大,在间断为2 m和10 m的时候,即:间断位置对应地表形变较小,表明黏土层间断的尺寸大小影响了该处的超孔隙水压力累积和扩散效果,即:间断过小,孔隙水压向上渗流不畅,产生阻滞效应;间断过大,孔隙水压消散面积增加,不利于超孔隙水压力的累积,最终均不会引起地表显著变形。只有当间断尺寸适当时,才既有利于超孔隙水压力累积,又不会阻滞向上渗流,最终可引起地表显著的变形。

    图  10  不同土层结构模型的砂土液化引起的地表位移变形
    (a) 黏土层连续分布;(b) 黏土层2 m间断分布;(c) 黏土层6 m间断分布;(d) 黏土层10 m间断分布;(e) 黏土层部分分布;(f) 互层黏土层6 m间断分布
    Figure  10.  surface deformation due to sand liquefaction in different soil layer structure models
    (a) Continuous clay layer;(b) Clay layer with 2 m gap;(c) Clay layer with 6 m gap;(d) Clay layer with 10 m gap;(e) Clay layer with partial distribution;(f) Clay layer with 6 m gap of interlayer clay layer

    基于场地模型主要模拟黏土层部分分布的地层结构(图9e),可以看出,由于上部黏土层的阻滞效应,超孔隙水压力明显向无上覆黏土层的区域渗流迁移,并引起了该区域地表显著的变形(图10e),这种地层结构容易引起地表的不均匀沉降,进而导致建筑发生失稳破坏。

    图9f的场地模型主要模拟的是基督城Palinurus路侧液化场地的土层结构,其特征是不透水层与易液化土层的互层分布,并在空间上不连续分布,由数值模拟结果可以看出,对于黏土和砂土互层结构,由于上下黏土层的阻滞效应,夹在中间的砂土层孔隙水压累积效应更为显著,同时沿着渗透系数大的水平方向渗流,然后在黏土层的间断处向上渗流,最终引起地表变形。这可以对Palinurus路侧场地的液化现象给出合理的解释。

    以黏土层2 m间断的场地模型为例,单元监测点编号如图11所示,对每个单元分别进行孔隙水压力时程和加速度时程的监测,结果显示,无论在间断位置还是在不透水层下方,超孔隙水压力都是随着深度的减小而降低,进而导致孔隙水在压力差作用下由下而上渗流(图12a,b);虽然276号和285号单元处于相同深度,但是276号单元上覆不透水层,有利于孔隙水压力累积,并大于处于间断位置的285号单元,因此不透水层下方孔隙水均向该位置渗流,246号和255号单元亦是如此(图12c);而345号和315号单元两处位置的地震动时程在12.0 s以后出现明显的“简谐波”振动形态,这与实际液化场地的强震动记录特征一致(图12d)。

    图  11  黏土层2 m间断的模型单元监测点编号
    Figure  11.  Series number of observing zones in the model with 2 m gap of clay layer
    图  12  黏土层2 m间断分布模型中不同监测单元的孔隙水压力(a—c)和加速度(d)曲线
    Figure  12.  The observation value of pore pressure (a−c) and acceleration (d) in model with 2 m gap of clay layer

    由松原和新西兰地震中实际调查液化点的分布,揭示高弯度河流沉积相地层易于发生砂土液化;结合高弯度河流沉积相的土层结构特点,分析了该位置易于发生砂土液化的原因,得出河流的水动力作用和沉积作用形成的场地土层结构对砂土液化有显著的影响。针对河流不同沉积相的地层结构建立简化场地模型,基于FLAC3D软件进行了数值模拟分析,揭示了不同地层结构中超孔隙水压的累积和渗流过程机制,分析了砂土液化引起的地表变形规律。

    1) 地震中砂土液化点的分布与不同的河流沉积相模式显著相关。对于高弯度河流沉积相模式,河水在凹岸侧蚀,并在单向环流作用下,将侵蚀物质搬运沉积至凸岸,由于水动力作用由下到上逐渐变弱,引起土层沉积的粒度逐渐变细,形成典型的二元结构,即上覆黏土、淤泥质黏土等不透水层,下伏饱和粉细砂、细砂等易液化土层。对于辫状(游荡型)河流沉积相模式,河床不稳定、弯度小、水浅、流态不稳,容易导致沉积回旋的上部的黏土层呈透镜体状等不连续分布特征。

    2) 场地土层结构对于液化过程中孔隙水的渗流影响显著。针对两种不同河流沉积相形成的土层结构建立场地简化模型,通过数值模拟分析发现,上覆不透水层的连续分布容易引起超孔隙水压累积并阻滞向上渗流喷出地表。不透水层或者弱透水层的不连续分布、透镜体、尖灭等分布特征往往改变孔隙水渗流路径,并产生孔压重分布。受孔压影响,孔隙水在土层不同区域的流出和流入将会导致相应位置液化势的变化。

    3) 目前相关规范中对于砂土液化的判别通常采用一定数量的原位试验(比如标准贯入试验、静力触探等)测试点,依据这些测试点的采集数据进行判定,由于测试数据只能反映测点所在位置局部范围的土体信息,这些数据有可能无法全面有效地反映整个场地的工程地质条件,尤其是土层结构。因此如何合理考虑场地土层结构对砂土液化判别的影响尚需进一步研究。

  • 图  1   中国大陆地区部分井下地震台站分布简图

    Figure  1.   A distribution diagram of some underground seismic stations in Chinese mainland

    图  2   东海垂直地震台阵的地面及井下仪器记录的2019年9月22日烟台ML3.1地震

    G0:地表宽频地震仪;G1:400 m深宽频地震仪;G3:3 km深短周期地震仪

    Figure  2.   The September 22,2019,Yantai ML3.1 earthquake recorded by surface and underground instruments of Donghai

    vertical seismic array G0:Surface broadband seismograph;G1:400 m deep broadband seismograph; G3:3 km deep short period seismometer

    图  3   同一地震井下与地面观测的震级比较

    Figure  3.   Comparison of seismic magnitude between underground and surface observation for the same earthquake

    表  1   我国部分井下观测台站基本情况

    Table  1   Basic information of some underground observation stations in China

    台站名 井深/m 地震仪型 参考文献 台站名 井深/m 地震仪型 参考文献
    首都圈台网 150—480 宽、甚频 短周期 刘渊源等(2 011 上海东滩 421 FSS-3DBH 裴晓等(2 012
    北京市台网 宽、甚频 短周期 兰从欣等(2 005 上海金泽 305 FSS-3DBH
    首都圈白家疃 257 韦士忠和李玉萍(1 990 上海上戏 370 FSS-3DBH
    首都圈文安 266 上海南汇 280 JDF-2
    首都圈东三旗 250 上海大新中学 375 FSS-3DBH
    首都圈大兴 110 上海竹园 317 JDF-1
    首都圈雄县 358 上海虹桥 651 768
    首都圈龙门庄 447 上海八角厅 780 JDF-1
    吉林松原 384 FSS-3DBH 韦庆海等(2 015 上海张江 350 KS-2000M 裴晓等(2 013
    吉林松原 243 FSS-3DBH 陈闯等(2 022 上海崇明 463 李伟等(2 013
    大庆新台 708 JD-2 韦庆海等(2 015 江苏宝应 460 CMG-3TB 仇中阳等(2 014
    河北赵县 260 BBVS-60 郑德高等(2 018 江苏高邮 440 CMG-3TB
    河北唐海 480 短周期 郑德高等(2 018 江苏淮安 315 JDF-2
    河北涿县 320 768 李彦林和郑淑兰(1 989 江苏涟水 400 CMG-3TB
    河北邯郸 400 JD-2 张新东(2 002 江苏射阳 380 CMG-3TB
    河北肥乡 400 JD-2 江苏盐城 445 CMG-3TB
    河北临漳 440 JD-2 江苏金湖 447 GL-S60B 宫杰等(2 019
    天津静海 371 768 赵惠君等(1 991 江苏滨海 470 GL-S60B
    天津芦台 276 768 江苏丹阳 175 GL-S60B
    天津武清 450 768 江苏响水 410 GL-S60B
    内蒙赤峰 90 GL-S120B 郭延杰等(2 020 江苏高邮 458 GL-S60B
    甘肃天水 337 短周期 蔡耐芳(1 990 江苏建湖 443 GL-S60B
    新疆喀什 283 GL-S60B 赵瑞胜等(2 021 江苏启东 410 GL-S60B
    山西太原 500 JD-2 张少泉等(1 988 江苏盐城 436 GL-S60B
    陕西定边 300 BBSV-60BH 李少睿等(2 016 江苏泰兴 425 GL-S60B
    宁夏灵武 248 JDF-2 江苏东台 458 GL-S60B
    宁夏陶乐 245 JDF-2 江苏溧阳 83 CMG-DM24 mk3 胡米东(2 014
    河南安阳 393 FSS-3DBH 江苏盐城 445 CMG-DM24 mk3
    河南清丰 308 FSS-3DBH 江苏南通 105 CMG-DM24 mk3
    四川泸州 95 CMG-3TB 江苏大丰 366 短周期 徐元耀(1 994
    山东荷泽 370 768 周焕鹏(1 986 江苏淮阴 325 井下摆
    安徽六安 126 GL-S60B 石英杰等(2 021 江苏海安 420 JD-2
    安徽霍邱 150 GL-S60B 石英杰等(2 021 云南昆明 2 02 GL-S60B 李雷等(2 018
    浙江景宁 68 FSS-3DBH 张明等(2 019 云南昆明 452 JD-2 修济刚(1 988
    浙江北仑 86 FSS-3DBH 云南大寨 375 井下仪 王芳等(2 017
    浙江南麂岛 110 GL-60DBH 广东汕头 2 00 TBG-60B 郭德顺等(2 014
    上海普陀 564 768 叶世元和柳国华(1 987 江苏东海 4050 宽频 短周期 Xu等(2 016
    上海海运 600 768 叶世元和柳国华(1 987
    下载: 导出CSV

    表  2   江苏东海垂直地震台阵地面与井下观测能力比较

    Table  2   Comparison of observation ability between surface and underground of vertical seismic array in Jiangsu Donghai

    ML 震中距
    Δ/km
    地面观测宽频
    带地震仪
    井下观测
    井深/m 仪器 观测效果
    −1.3 64 无法识别 2545 短周期 图像清晰
    −0.5 71 无法识别 2545 短周期 图像清晰
    0.8 97 无法识别 3500 短周期 图像清晰
    3.1 492 无法识别 400 宽频 图像清晰
    下载: 导出CSV
  • 卞真付,姚兰予,庞群英. 2005. 利用井下数字地震记录反演非弹性衰减系数震源参数和场地响应[J]. 西北地震学报,27(增刊):58–64.

    Bian Z F,Yao L Y,Pang Q Y. 2005. The inversion of non-elasticity attenuation coefficient,source parameters and site response using borehole digital seismic recordings[J]. Northwestern Seismological Journal,27(S1):58–64 (in Chinese).

    蔡耐芳. 1990. 兰州电传台网天水台井下摆记录特征[J]. 地震地磁观测与研究,11(5):51–55.

    Cai N F. 1990. Characteristics of seismograms recorded by borehole pendulums at Tianshui Station of the Lanzhou Telemetered Seismic Network[J]. Seismological and Geomagnetic Observation and Research,11(5):51–55 (in Chinese).

    陈闯,危自根,张璇,高金哲. 2022. 井下、地表地震计记录波形对比:以松原地震台为例[J]. 地震地磁观测与研究,43(1):99–105.

    Chen C,Wei Z G,Zhang X,Gao J Z. 2022. Comparison and analysis of waveforms recorded by borehole and ground seismometers:Taking Songyuan Seismic Station as an example[J]. Seismological and Geomagnetic Observation and Research,43(1):99–105 (in Chinese).

    陈宏水,付迺珍. 1987. 井下地震计的遥控装置[J]. 地震地磁观测与研究,8(5):45–49.

    Chen H S,Fu D Z. 1987. A remote control device for borehole seismographs[J]. Seismological and Geomagnetic Observation and Research,8(5):45–49 (in Chinese).

    陈吉锋,陈军辉,刘洋君,张明. 2014. 浙江岛屿深井地震台防雷接地系统设计[J]. 地震地磁观测与研究,35(3/4):220–224.

    Chen J F,Chen J H,Liu Y J,Zhang M. 2014. Design of lightning protection and grounding system for the islands of Zhejiang deep seismic stations[J]. Seismological and Geomagnetic Observation and Research,35(3/4):220–224 (in Chinese).

    丁海平,任琼洁,于彦彦. 2014. 基于竖向台阵地震记录的场地地震响应分析[J]. 地震工程与工程振动,34(2):12–18.

    Ding H P,Ren Q J,Yu Y Y. 2014. Site seismic response analysis based on vertical borehole array records[J]. Earthquake Engineering and Engineering Dynamics,34(2):12–18 (in Chinese).

    高龙生. 1986. 井下地震波学术讨论会暨工作会议于1986年5月在天津举行[J]. 地震学报,8(4):444.

    Gao L S. 1986. The conference on observation by means of borehole seismographs and the related working meeting were held in Tianjin in May of 1986[J]. Acta Seismologica Sinica,8(4):444 (in Chinese).

    宫杰,胡米东,康清清,张敏. 2019. 江苏地区同频带井下地震计地震监测能力对比[J]. 地震地磁观测与研究,40(6):93–99.

    Gong J,Hu M D,Kang Q Q,Zhang M. 2019. Comparative analysis of monitoring capability of underground seismometer in the same frequency band in Jiangsu[J]. Seismological and Geomagnetic Observation and Research,40(6):93–99 (in Chinese).

    郭德顺,陈建涛,谢剑波,叶春明. 2014. 汕头试验井地面与井下环境地噪声对比测试分析[J]. 华南地震,34(3):57–64.

    Guo D S,Chen J T,Xie J B,Ye C M. 2014. The comparison test analysis of environment seismic noise on ground surface and underground at Shantou pilot hole[J]. South China Journal of Seismology,34(3):57–64 (in Chinese).

    郭延杰,于章棣,齐彬彬,屈楠,范东海,黄瑞滨,刘继伟. 2020. 赤峰中心地震台地面与井下地震观测系统监测能力对比分析[J]. 地震地磁观测与研究,41(4):100–104.

    Guo Y J,Yu Z D,Qi B B,Qu N,Fan D H,Huang R B,Liu J W. 2020. Comparative analysis of monitoring capacities of the ground and underground observation systems at Chifeng Center Seismic Station[J]. Seismological and Geomagnetic Observation and Research,41(4):100–104 (in Chinese).

    胡米东. 2014. 江苏省部分井下地震计监测能力差异初探[J]. 四川地震,(4):31–34.

    Hu M D. 2014. Primary study on the monitoring ability of underground seismometers in Jiangsu Province[J]. Earthquake Research in Sichuan,(4):31–34 (in Chinese).

    兰从欣,刘杰,郑斯华,马士振,李菊珍. 2005. 北京地区中小地震震源参数反演[J]. 地震学报,27(5):498–507.

    Lan C X,Liu J,Zheng S H,Ma S Z,Li J Z. 2005. Inversion of source parameters for moderate and small earthquakes in Beijing region[J]. Acta Seismologica Sinica,27(5):498–507 (in Chinese).

    李慧民,朱元清,章纯. 1992. 利用深井地震速度记录确定震级的初步研究[J]. 地震地磁观测与研究,13(5):11–15.

    Li H M,Zhu Y Q,Zhang C. 1992. A primary study on magnitude determination by using the records of deep-hole velocity seismometer[J]. Seismological and Geomagnetic Observation and Research,13(5):11–15 (in Chinese).

    李雷,邓存华,黄瑶,钱文品,谭文正. 2018. 昆明地震台地面与井下地震计地震记录震级偏差[J]. 地震地磁观测与研究,39(4):96–108.

    Li L,Deng C H,Huang Y,Qian W P,Tan W Z. 2018. Analysis of seismic magnitude bias calculated based on the records of the ground and borehole seismometer at Kunming Seismic Station[J]. Seismological and Geomagnetic Observation and Research,39(4):96–108 (in Chinese).

    李少睿,毛国良,王党席,罗治国. 2016. 井下地震计方位角检测技术应用研究[J]. 地球物理学报,59(1):299–310. doi: 10.6038/cjg20160125

    Li S R,Mao G L,Wang D X,Luo Z G. 2016. Research on the application of borehole seismometer azimuth detection technology[J]. Chinese Journal of Geophysics,59(1):299–310 (in Chinese).

    李伟,赵文舟,尹继尧. 2013. 上海深井地震综合观测地磁资料分析[J]. 地震地磁观测与研究,8(3/4):89–95.

    Li W,Zhao W Z,Yin J Y. 2013. Analysis of multi-component geomagnetic data observed in deep borehole in Shanghai[J]. Seismological and Geomagnetic Observation and Research,8(3/4):89–95 (in Chinese).

    李稳,刘伊克,刘保金. 2016. 基于稀疏分布特征的井下微地震信号识别与提取方法[J]. 地球物理学报,59(10):3869–3882. doi: 10.6038/cjg20161030

    Li W,Liu Y K,Liu B J. 2016. Downhole microseismic signal recognition and extraction based on sparse distribution features[J]. Chinese Journal of Geophysics,59(10):3869–3882 (in Chinese).

    李小军,荣棉水,喻烟. 2020. 场地土层模型参数的地震动记录反演方法[J]. 地球物理学报,63(1):236–246. doi: 10.6038/cjg2020M0491

    Li X J,Rong M S,Yu Y. 2020. Inversion for velocity structure of soil layers by seismic acceleration records[J]. Chinese Journal of Geophysics,63(1):236–246 (in Chinese).

    李彦林,郑淑兰. 1989. 涿县台地面与井下地震观测[J]. 华北地震科学,7(1):95–97.

    Li Y L,Zheng S L. 1989. Ground and underground seismic observation at Zhuoxian Station[J]. North China Earthquake Sciences,7(1):95–97 (in Chinese).

    林云松. 1989. 深井观测中的地面反射波震相[J]. 地震地磁观测与研究,10(3):12–20.

    Lin Y S. 1989. Phases of ground surface reflection waves observed in deep well[J]. Seismological and Geomagnetic Observation and Research,10(3):12–20 (in Chinese).

    刘瑞丰,高景春,陈运泰,吴忠良,黄志斌,徐志国,孙丽. 2008. 中国数字地震台网的建设与发展[J]. 地震学报,30(5):533–539. doi: 10.3321/j.issn:0253-3782.2008.05.012

    Liu R F,Gao J C,Chen Y T,Wu Z L,Huang Z B,Xu Z G,Sun L. 2008. Construction and development of digital seismograph networks in China[J]. Acta Seismologica Sinica,30(5):533–539 (in Chinese).

    刘渊源,崇加军,倪四道. 2011. 基于井下摆天然地震数据测量首都圈近地表波速结构[J]. 地震学报,33(3):342–350. doi: 10.3969/j.issn.0253-3782.2011.03.007

    Liu Y Y,Cong J J,Ni S D. 2011. Near surface wave velocity structure in Chinese capital region based on borehole seismic records[J]. Acta Seismologica Sinica,33(3):342–350 (in Chinese).

    罗诚,谢俊举,温增平. 2018. 熊本MW7.0地震近场地表与井下地震动对比研究[J]. 地震学报,40(1):108–120. doi: 10.11939/jass.20170111

    Luo C,Xie J J,Wen Z P. 2018. Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake[J]. Acta Seismologica Sinica,40(1):108–120 (in Chinese).

    毛华锋,张义德,仇中阳,陈健. 2014. 江苏部分测震台井下与地面观测震源参数对比[J]. 四川地震,(3):43–47.

    Mao H F,Zhang Y D,Qiu Z Y,Chen J. 2014. Comparison between the seismic source parameters of borehole observation and ground observation in northern Jiangsu Province[J]. Earthquake Research in Sichuan,(3):43–47 (in Chinese).

    裴晓,尹继尧,杨庭春. 2012. 上海遥测台网各类型台基背景噪声分析[J]. 地球物理学进展,27(5):1897–1903.

    Pei X,Yin J Y,Yang T C. 2012. Shanghai telemetry station network analysis of the various types of background noise pedestal[J]. Progress in Geophysics,27(5):1897–1903 (in Chinese).

    裴晓,尹继尧,杨庭春. 2013. 张江台地表与深井地震观测对比分析[J]. 地震工程学报,35(2):366–371.

    Pei X,Yin J Y,Yang T C. 2013. Comparative analysis of Zhangjiang Station surface and deep seismic observation[J]. China Earthquake Engineering Journal,35(2):366–371 (in Chinese).

    齐诚,赵大鹏,陈颙,陈棋福,王宝善. 2006. 首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J]. 地球物理学报,49(3):805–815.

    Qi C,Zhao D P,Chen Y,Chen Q F,Wang B S. 2006. 3-D P and S wave velocity structures and their relationship to strong earthquakes in the Chinese capital region[J]. Chinese Journal of Geophysics,49(3):805–815 (in Chinese).

    仇中阳,毛华峰,陈健,胡米东. 2014. 苏北测震台网地面和井下地震记录波形频谱分析[J]. 地震地磁观测与研究,35(3/4):105–111.

    Qiu Z Y,Mao H F,Chen J,Hu M D. 2014. Feature analysis on seismic wave spectrum from ground and underground records by seismic stations in Jiangsu Province[J]. Seismological and Geomagnetic Observation and Research,35(3/4):105–111 (in Chinese).

    沈伟森,罗艳,倪四道,崇加军,陈颙. 2010. 天然地震频率范围内首都圈地区近地表S波速度结构[J]. 地震学报,32(2):137–146.

    Shen W S,Luo Y,Ni S D,Chong J J,Chen Y. 2010. Resolving near surface S velocity structure in natural earthquake frequency band:A case study in Beijing region[J]. Acta Seismologica Sinica,32(2):137–146 (in Chinese).

    石英杰,龙剑锋,赵楠. 2021. 安徽六安井下地震计与地表地震计观测质量对比[J]. 地震地磁观测与研究,42(5):141–144.

    Shi Y J,Long J F,Zhao N. 2021. Comparison of observation quality between downhole seismometer and surface seismometer in Lu’an area[J]. Seismological and Geomagnetic Observation and Research,42(5):141–144 (in Chinese).

    王芳,李丽,王宝善. 2017. 普洱大寨深井噪声压制效果及井孔附近波场特征研究[J]. 地震学报,39(6):831–847.

    Wang F,Li L,Wang B S. 2017. Ability of decreasing noise and the characteristics of near-surface wave field around Dazhai borehole in Pu'er[J]. Acta Seismologica Sinica,39(6):831–847 (in Chinese).

    王俊国,卫鹏飞,吴晓芝. 1988. 井下与地面地震波记录特征的对比研究[J]. 地震学报,10(3):270–279.

    Wang J G,Wei P F,Wu X Z. 1988. Comparative study between the characteristics of seismic waves recorded downhole and on ground surface[J]. Acta Seismologica Sinica,10(3):270–279 (in Chinese).

    王林瑛,郭永霞,刘芳,蒋长胜. 2008. 文安地震前后首都圈分区波速比时变特征[J]. 地震学报,30(3):240–253.

    Wang L Y,Guo Y X,Liu F,Jiang C S. 2008. Temporal vp/vS variation characteristics in different zones of China’s Capital area before and after 2006 Wen’an earthquake[J]. Acta Seismologica Sinica,30(3):240–253 (in Chinese).

    王晓蕾,薛兵,朱小毅,崔仁胜. 2021. 深井共点观测地震波形数据处理技术初探[J]. 地震地磁观测与研究,42(增刊):212–214.

    Wang X L,Xue B,Zhu X Y,Cui R S. 2021. The data processing technology of collocated seismic waveform observed in deep boreholes[J]. Seismological and Geomagnetic Observation and Research,42(S1):212–214 (in Chinese).

    韦庆海,孟宪森,杨家亮,高东辉,郝永梅,刁桂苓,孟令蕾,佟艳英. 2015. 松嫩盆地井下摆记录到的地方震地表反射波[J]. 中国地震,31(2):432–438.

    Wei Q H,Meng X S,Yang J L,Gao D H,Hao Y M,Diao G L,Meng L L,Tong Y Y. 2015. The surface reflection wave of local earthquake record by underground seismographs in the Songnen basin[J]. Earthquake Research in China,31(2):432–438 (in Chinese).

    韦士忠,李玉萍. 1990. 深井观测对测定地震波谱和震源参数的可能影响[J]. 地震地磁观测与研究,11(5):56–62.

    Wei S Z,Li Y P. 1990. Possible effect of deep borehole observation on the determination of seismic spectrum and focal parameters[J]. Seismological and Geomagnetic Observation and Research,11(5):56–62 (in Chinese).

    吴晶,高原,陈运泰,黄金莉. 2007. 首都圈西北部地区地壳介质地震各向异性特征初步研究[J]. 地球物理学报,50(1):209–220. doi: 10.3321/j.issn:0001-5733.2007.01.027

    Wu J,Gao Y,Chen Y T,Huang J L. 2007. Seismic anisotropy in the crust in northwestern capital area of China[J]. Chinese Journal of Geophysics,50(1):209–220 (in Chinese).

    乌统昱,赵惠君. 1992. 井下记录的PP和SS震相[J]. 地震地磁观测与研究,13(2):20–26.

    Wu T Y,Zhao H J. 1992. PP and SS seismic phases recorded from borehole[J]. Seismological and Geomagnetic Observation and Research,13(2):20–26 (in Chinese).

    修济刚. 1988. 我国井下地震观测研究概述[J]. 国际地震动态,(6):1–4.

    Xiu J G. 1988. An outline of research on borehole seismic observations in China[J]. Recent Developments in World Seismology,(6):1–4 (in Chinese).

    徐纪人,赵志新. 2006. 深井地球物理长期观测的最新进展及其前景[J]. 地球科学(中国地质大学学报),31(4):557–563.

    Xu J R,Zhao Z X. 2006. Advances and prospects for long-term geophysical observation in deep borehole[J]. Earth Science:Journal of China University of Geosciences,31(4):557–563 (in Chinese).

    徐纪人,赵志新. 2009. 深井地球物理观测的最新进展与中国大陆科学钻探长期观测[J]. 地球物理学进展,24(4):1176–1182. doi: 10.3969/j.issn.1004-2903.2009.04.003

    Xu J R,Zhao Z X. 2009. Recent advance of borehole geophysical observation and Chinese continental scientific drilling long-term observatory at depth[J]. Progress in Geophysics,24(4):1176–1182 (in Chinese).

    徐纪人,李海兵,曾祥芝,赵志新. 2022. 江苏东海深井观测地震波形及其信噪比研究[J]. 地震学报,44(6):1007–1018. doi: 10.11939/jass.20220195

    Xu J R,Li H B,Zeng X Z,Zhao Z X. 2022. Seismic waveforms and their signal-to-noise ratios of borehole observation in Donghai station,Jiangsu Province[J]. Acta Seismologica Sinica,44(6):1007–1018 (in Chinese).

    徐永林,熊里军,章纯,赵志光. 2002. 用强震仪记录资料研究上海地表土层的地震动放大反应[J]. 地震学报,24(6):662–666.

    Xu Y L,Xiong L J,Zhang C,Zhao Z G. 2002. A study on amplification response of soil ground motion in Shanghai using strong-motion accelerogaph records[J]. Acta Seismologica Sinica,24(6):662–666 (in Chinese).

    徐元耀. 1994. 苏北平原井下摆观测效果的讨论[J]. 地震地磁观测与研究,15(6):31–35.

    Xu Y Y. 1994. The analysis of the efficiency of borehole pendulum observation in the North Jiangsu Plate[J]. Seismological and Geomagnetic Observation and Research,15(6):31–35 (in Chinese).

    叶世元,柳国华. 1987. 上海电信传输地震台网部分深井观测点躁声背景分析[J]. 地震地磁观测与研究,8(2):30–33.

    Ye S Y,Liu G H. 1987. Analysis of the noise background of a part of the deep-well observation points in Shanghai telemeter seismic station network[J]. Seismological And Geomagnetic Observation And Research,8(2):30–33 (in Chinese).

    叶世元,周生良,姜伟荣. 1988. 深井地震观测中地脉动谱的作用[J]. 地震地磁观测与研究,9(1):55–58.

    Ye S Y,Zhou S L,Jiang W R. 1988. The effect of spectrum of earth tremors on seismic observation in deep holes[J]. Seismological and Geomagnetic Observation and Research,9(1):55–58 (in Chinese).

    于湘伟,陈运泰,王培德. 2003. 京津唐地区中上地壳三维P波速度结构[J]. 地震学报,25(1):1–14.

    Yu X W,Chen Y T,Wang P D. 2003. Three-dimensional P wave velocity structure in Beijing-Tianjin-Tangshan area[J]. Acta Seismologica Sinica,25(1):1–14 (in Chinese).

    袁卫红,戴佩新,杜江,朱镇,王宇. 2012. 大庆地震台网近震震级偏差分析与校正[J]. 地震地磁观测与研究,33(2):27–31.

    Yuan W H,Dai P X,Du J,Zhu Z,Wang Y. 2012. Analysis and adjustment of regional seismology magnitude deviation in Daqing Seismic Network[J]. Seismological and Geomagnetic Observation and Research,33(2):27–31 (in Chinese).

    张阿瑶,范广超,王敏超,沈旭峰,张诚鎏,卢娜,崔甲甲. 2018. 不同深度布设台站的噪声及信号幅值特征分析[J]. 地震学报,40(4):440–447. doi: 10.11939/jass.20170150

    Zhang A Y,Fan G C,Wang M C,Shen X F,Zhang C L,Lu N,Cui J J. 2018. Amplitude characteristic analysis of noise and signal from the stations deployed at different depths[J]. Acta Seismologica Sinica,40(4):440–447 (in Chinese).

    章纯,朱元清,李慧民. 1992. 利用深井观测速度型记录的最大振幅测定近震震级的一种方法[J]. 地震地磁观测与研究,13(6):51–59.

    Zhang C,Zhu Y Q,Li H M. 1992. A method to determine the local magnitude using the maximum amplitude of bore-hole velocity records[J]. Seismological and Geomagnetic Observation and Research,13(6):51–59 (in Chinese).

    张明,陈军辉,严俊峰,尹晶飞,戴陈兵. 2019. 浙江省测震观测台网井下地震计方位角检测与校正[J]. 地震地磁观测与研究,40(4):125–129.

    Zhang M,Chen J H,Yan J F,Yin J F,Dai C B. 2019. Detection and correction of azimuth of borehole seismograph in Zhejiang Seismic Network[J]. Seismological and Geomagnetic Observation and Research,40(4):125–129 (in Chinese).

    张寿康,张碧晖,左素军. 1986. 井下与地面地震观测对比研究[J]. 华北地震科学,4(4):79–84.

    Zhang S K,Zhang B H,Zuo S J. 1986. Comparative study in borehole and surface seismic observations[J]. North China Earthquake Sciences,4(4):79–84 (in Chinese).

    张少泉,李凤杰,林云松,郭建明,王博文. 1988. 井下记录振幅随深度变化的对数模型(上)[J]. 地震地磁观测与研究,9(2):77–90.

    Zhang S Q,Li F J,Lin Y S,Guo J M,Wang B W. 1988. A logarithmic model for the change in amplitude of seismic wave with depth recorded in a bore-hole (1)[J]. Seismological and Geomagnetic Observation and Research,9(2):77–90 (in Chinese).

    张少泉,杨懋源,郭建民,朱元清,林云松,王俊国,卫鹏飞,韦世忠. 1992. 深井观测地震波的研究[J]. 中国地震,8(1):83–94.

    Zhang S Q,Yang M Y,Guo J M,Zhu Y Q,Lin Y S,Wang J G,Wei P F,Wei S Z. 1992. A study on the propagation of seismic wave observed by downhole seismometer[J]. Earthquake Research in China,8(1):83–94 (in Chinese).

    张尉,陈棋福,丘学林,陈颙. 2009. 首都圈数字地震台网对微弱爆破信号的检测能力[J]. 地球物理学报,52(3):681–690.

    Zhang W,Chen Q F,Qiu X L,Chen Y. 2009. Weak explosion signal detection by the Beijing metropolitan digital Seismic Network[J]. Chinese Journal of Geophysics,52(3):681–690 (in Chinese),.

    张新东. 2002. 邯郸台网深井摆与地面摆记录分析对比[J]. 地震地磁观测与研究,23(1):65–69.

    Zhang X D. 2002. The analysis and comparison of the record of deep-well pendulum seismgraph and surface pendulum seismgraph of Handan Seismic Station Net[J]. Seismological and Geomagnetic Observation and Research,23(1):65–69 (in Chinese).

    赵惠君,田真丽,乌统昱. 1991. 天津遥测地震台网井下地震波地动位移与地动速度记录的对比分析[J]. 地震地磁观测与研究,12(2):54–60.

    Zhao H J,Tian Z L,Wu T Y. 1991. Comparative analysis between ground motion displacement of seismic waves and records of seismic velocity from borehole of the Tianjin Telemetered Seismic Network[J]. Seismological and Geomagnetic Observation and Research,12(2):54–60 (in Chinese).

    赵瑞胜,危自根,闫新义,黄瑜. 2021. 喀什基准台宽频带井下和地表地震计记录数据对比研究[J]. 中国地震,37(4):898–907. doi: 10.3969/j.issn.1001-4683.2021.04.015

    Zhao R S,Wei Z G,Yan X Y,Huang Y. 2021. Earthquake waveform comparison of broadband records between borehole and ground seismometers in Kashi seismic station[J]. Earthquake Research in China,37(4):898–907 (in Chinese).

    郑德高,倪四道,杨卓欣,刘志. 2018. 井下地震计的P波接收函数正演计算及其稳定性研究:以首都圈地区为例[J]. 地球物理学报,61(10):3964–3979. doi: 10.6038/cjg2018M0027

    Zheng D G,Ni S D,Yang Z X,Liu Z. 2018. Stability of receiver function from borehole seismometer from forward modeling and case study of waveform data in China Capital Region[J]. Chinese Journal of Geophysics,61(10):3964–3979 (in Chinese).

    周焕鹏. 1986. 深井摆与地面摆的记录差异[J]. 地震地磁观测与研究,7(6):65–72.

    Zhou H P. 1986. Differences between recordings made by deep well pendulum and ground pendulum[J]. Seismological and Geomagnetic Observation and Research,7(6):65–72 (in Chinese).

    朱音杰,刘丽,杜航,丁成,刘檀,石磊. 2020. 利用井下摆近震记录研究华北盆地沉积层速度结构[J]. 华北地震科学,38(3):44–48.

    Zhu Y J,Liu L,Du H,Ding C,Liu T,Shi L. 2020. Velocity structure of sedimentary layer in North China basin based on downhole seismic records[J]. North China Earthquake Sciences,38(3):44–48 (in Chinese).

    朱雅山,李永勤. 1992. 淮阴台井下测震震级偏差初探[J]. 地震地磁观测与研究,13(6):39–42.

    Zhu Y S,Li Y Q. 1992. The preliminary investigation to the deviation of the magnitude for bore-hole seismometry records in Huaiying Seismic Station[J]. Seismological and Geomagnetic Observation and Research,13(6):39–42 (in Chinese).

    Abercrombie R E. 1997. Near-surface attenuation and site effects from comparison of surface and deep borehole recordings[J]. Bull Seismol Soc Am,87(3):731–744.

    Aster R C,Shearer P M. 1991. High-frequency borehole seismograms recorded in the San Jacinto fault zone,southern California. Part 1. Polarizations[J]. Bull Seismol Soc Am,81(4):1057–1080. doi: 10.1785/BSSA0810041057

    Baisch S,Bohnhoff M,Ceranna L,Tu Y M,Harjes H P. 2002. Probing the crust to 9-km depth:Fluid-injection experiments and induced seismicity at the KTB superdeep drilling hole,Germany[J]. Bull Seismol Soc Am,92(6):2369–2380. doi: 10.1785/0120010236

    Hollender F,Theodoulidis N,Mariscal A,Chaudat T,Steidl J,Bard P Y,Roumelioti Z. 2023. The “Glass Beads” coupling solution for borehole and posthole accelerometers:Shaking table tests and field retrievability[J]. Seismol Res Lett,94(2A):925–934.

    Hung R J,Ma K F,Song T R A,Lin Y Y,Weingarten M. 2022. Observation of temporal variations in seismic anisotropy within an active fault-zone revealed from the Taiwan Chelungpu-fault Drilling Project Borehole seismic array[J]. J Geophys Res:Solid Earth,127(4):e2021JB023050. doi: 10.1029/2021JB023050

    Lay V,Buske S,Bodenburg S B,Townend J,Kellett R,Savage M K,Schmitt D R,Constantinou A,Eccles J D,Bertram M,Hall K,Lawton D,Gorman A R,Kofman R S. 2020. Seismic P wave velocity model from 3-D surface and borehole seismic data at the Alpine fault DFDP-2 drill site (Whataroa,New Zealand)[J]. J Geophys Res:Solid Earth,125(4):e2019JB018519. doi: 10.1029/2019JB018519

    Ma K F. 2021. A review of the 1999 Chi-Chi,Taiwan,earthquake from modeling,drilling,and monitoring with the Taiwan Chelungpu-fault Drilling Project[M]//Earthquake Geology and Tectonophysics around Eastern Tibet and Taiwan. Singapore:Springer:63−82.

    Oye V,Chavarria J A,Malin P E. 2004. Determining SAFOD area microearthquake locations solely with the Pilot Hole seismic array data[J]. Geophys Res Lett,31(12):L12S10.

    Riga E,Hollender F,Roumelioti Z,Bard P Y,Pitilakis K. 2019. Assessing the applicability of deconvolution of borehole records for determining near-surface shear-wave attenuation[J]. Bull Seismol Soc Am,109(2):621–635. doi: 10.1785/0120180298

    Shearer P M,Abercrombie R E. 2021. Calibrating spectral decomposition of local earthquakes using borehole seismic records:Results for the 1992 big Bear aftershocks in Southern California[J]. J Geophys Res:Solid Earth,126(3):e2020JB020561. doi: 10.1029/2020JB020561

    Stephenson W J,Louie J N,Pullammanappallil S,Williams R A,Odum J K. 2005. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley:Implications for earthquake ground-motion assessment[J]. Bull Seismol Soc Am,95(6):2506–2516. doi: 10.1785/0120040240

    Takahashi H,Hamada K. 1975. Deep borehole observation of the Earth's crust activities around Tokyo-introduction of the Iwatsuki observatory[J]. Pure Appl Geophys,113(1):311–320. doi: 10.1007/BF01592920

    Xu J R,Zhao Z X,Zeng X Z,Pi J Y. 2016. Long-term geophysical observations and analysis of the world’s deepest borehole[J]. Acta Geologica Sinica (English Edition),90(3):1061–1062.

    Yamauchi T,Ishii H,Asai Y,Okubo M,Matsumoto S,Azuma S I. 2005. Development of deep borehole instruments for both multi-component observation and in situ stress measurement,and some interesting results obtained[J]. Zisin (J Seismol Soc Japan. 2nd Ser.),58(1):1–14.

    Zeng X Z,Yang W C. 2021. Impact of post-earthquake seismic waves on the terrestrial environment[J]. Appl Sci,11(14):6606. doi: 10.3390/app11146606

    Zhao Z X,Xu J R,Ryuji K. 2004. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake[J]. Chinese Science Bulletin,49(22):2405–2414. doi: 10.1007/BF03183430

    Zoback M,Hickman S,Ellsworth W,The SAFOD Science Team. 2011. Scientific drilling into the San Andreas fault zone:An overview of SAFOD's first five years[J]. Sci Dril,11:14–28.

图(3)  /  表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  46
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-05-17
  • 录用日期:  2024-05-19
  • 网络出版日期:  2024-12-17
  • 刊出日期:  2024-11-19

目录

/

返回文章
返回