Tectonic feature and layered anisotropy on the northeastern margin of the Qinghai-Xizang Plateau
-
摘要:
本文综合前人在青藏高原东北缘利用不同方法不同资料得到的地震各向异性结果,对该地区断裂和应力等构造特征及分层各向异性进行了分析。结果表明,青藏高原东北缘以地壳缩短增厚变形为主,部分区域存在各向异性分层或壳内韧性层。XKS (SKS,PKS和SKKS震相的统称)分裂的快波方向整体呈NW或WNW向,与上地幔物质的流动有关。地壳的快波方向表明地壳变形会受到断裂及主压应力的影响。祁连造山带和海原断裂带的分层各向异性特征揭示了上地壳与中下地壳可能存在解耦。阿拉善地块东部至鄂尔多斯地块西部可能存在壳幔解耦现象,上下两层的变形机制不同。秦岭造山带表现为较强的壳幔耦合。松潘—甘孜地块的分层特征及其变形机制较为复杂,仍然存在争议。
Abstract:In this paper, we synthesize the seismic anisotropy results of the Qinghai-Xizang Plateau obtained by various methods and data from previous studies, and analyze the tectonic features and the layered anisotropy of the northeastern margin of the Qinghai-Xizang Plateau. The results of S wave splitting in the upper crust show that the fast-wave direction changes significantly in the Yinchuan graben as well as in the Haiyuan fault. The dominant direction of the second polarization in the Hexi Corridor and Qilian block is consistent with the strike of the active faults, especially in the domain of the Haiyuan fault, which exhibits an obvious along-strike rotation. The higher delay time at block junctions and block margin may reflect the increased strength of the upper crustal medium in these areas. Receiver function results often used to reflect the anisotropic characteristics of the whole crust. Previous studies have revealed that the Qilian-Haiyuan fault and the west Qinling northern margin fault and other deep and large fault cut through the crust, and the fast-wave directions show an obvious rotation along the strike of the fault. Among them, the fast-wave direction of the Haiyuan-Liupanshan fault shows obvious decoupling of the upper and lower crust, and the upper crust tends to be more aligned with the direction of the compressive stresses. Different anisotropy results between the Yinchuan graben and the northern part of the Ordos block, which may come from complex tectonic activities reflect the weaker anisotropy of the block. The XKS (SKS, PKS and SKKS shortly named XKS) wave splitting can clearly reflect the anisotropic characteristics of the lithosphere under the surface. The results show that the main fast-wave polarization directions in the studied area are NW and WNW, and the Haiyuan fault and the Longmenshan fault are NS and NE, respectively, which are different from the average directions in the studied area. Combined with the receiver function and XKS results, there are deviations of nearly 90° in the fast-wave direction in the eastern Alax block, the western Ordos block, the northern part of the Yinchuan graben, and the Longmenshan fault, and the deformation modes of the crust and the upper mantle in these regions may be different. The phase velocity results indicate that the causes of the large-scale low velocity anomalies are different for the Qilian and west Qinling. The low velocity zones in the Qilian orogen may be caused by crustal shortening, whereas for the low velocity zone in the Songpan-Garze area, large scale crustal channel flow does not seem to explain the lower vP/vS ratios and the more fragmented low-velocity layers in the receiver function results. Low velocity anomalies in the shallow part of the Ordos block may be related to surface sedimentation, and smaller delay time may indicate a steady state of lithospheric structure, but the northern part may have been influenced by tectonic activity of the Yinchuan graben. Summarizing the results, it is found that the fast wave directions of multiple methods in the Qilian orogen are close to each other, the S-wave splitting is more consistent with the upper layer fitted by the layered anisotropy, and the lower layer is more consistent with the anisotropic character of the upper mantle as reflected by the XKS results and the long-period surface wave results. The upper crust of the Haiyuan fault is more affected by the compressive stress, and the fast-wave direction is in the NE direction, but in the lower-middle crust and upper mantle, the directions of the fast waves were almost parallel in the anisotropy results of the long-period surface waves, the receiver functions, and XKS, and the directions of lattice-aligned dominance in the lower and middle crust and upper mantle may be the same. The difference in anisotropy between the crust and upper mantle in the Yinchuan graben reflects the NW- and WNW-oriented lattice orientations of the mantle lithosphere in the Qinghai-Xizang Plateau, while the NE-oriented crustal fast-wave direction may reflect simple shearing of faults in the Yinchuan graben, and there may be a difference in crust-mantle deformation. The receiver function and ambient noise results suggest that with the NE-directed thrusting of the Qinghai-Xizang Plateau in the western Qinling, the middle and lower crust may have been heated by mantle material and produced NE-directed channel flow or detachment, but the more similar splitting parameter of XKS and Pms and the lower vP/vS are contrary to the idea of large-scale crustal channel flow, and other scholars have suggested that the layered phenomenon found is a transition from brittle deformation of upper crust to ductile deformation of the middle and lower crust. Therefore, the layered characteristics of the west Qinling and Songpan-Garze blocks are still inconclusive. The crust and upper mantle of the Qinling orogen are in continuous deformation motion, and the mantle material is transported along the southern margin of the Ordos block and the middle of the northern margin of the South China block. The fast-wave directions shown by XKS and Pms indicate that the direction of crustal-mantle lattice dominance is aligned along the direction of material flow, and that the crust and mantle are strong coupled. Controlled by the complex tectonic features and the constraints of observatory station density, the exploration of shell-mantle deformation characteristics, shell-mantle coupling problems, anisotropic layering and dynamical features in the studied area still needs the incorporation of higher-quality and higher-density data as well as more accurate analytical methods.
-
-
图 2 青藏高原东北缘近震S波分裂结果
GPS速度场数据引自Wang和Shen (2020),其中张艺和高原(2017)的研究结果并没有对时间延迟归一化,因此在本研究中只采用其快波方向
Figure 2. S-wave splitting results at the NE margin of the Qinghai-Xizang Plateau
GPS velocity field data are from Wang and Shen (2020). The results of Zhang and Gao (2017) did not normalize the delay time parameters,so only the fast wave polarization direction results were used in this study
图 3 接收函数示意图(修改自Ammon et al,1990)
Figure 3. Schematic diagram of receiver functions (Modified from Ammon et al,1990)
图 6 海原断裂到银川地堑双层各向异性模型示意图(引自沈胜意等,2022)
地表的黑色粗线为块体边界,白色曲线为海原断裂。深蓝色线段表示上层各向异性,红色线段表示下层各向异性,红色箭头指示地幔物质运动的方向
Figure 6. Two-layer anisotropic model beneath the Haiyuan fault and Yinchuan graben (after Shen et al,2022)
The thick black line on the surface is the block boundary,and the Haiyuan fault is shown in white. The dark blue line indicates the anisotropy of the upper layer,the red line indicates the anisotropy of the lower layer,and the red arrow indicates the direction of mantle material movement
-
常利军,王椿镛,丁志峰. 2011. 鄂尔多斯块体及周缘上地幔各向异性研究[J]. 中国科学:地球科学,41(5):686–699. Chang L J,Wang C Y,Ding Z F. 2011. Upper mantle anisotropy in the Ordos Block and its margins[J]. Science China Earth Sciences,54(6):888–900. doi: 10.1007/s11430-010-4137-2
崔笃信,王庆良,胡亚轩,王文萍,梁伟锋. 2009. 青藏高原东北缘岩石圈变形及其机理[J]. 地球物理学报,52(6):1490–1499. Cui D X,Wang Q L,Hu Y X,Wang W P,Liang W F. 2009. Lithosphere deformation and deformation mechanism in northeastern margin of Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics,52(6):1490–1499 (in Chinese).
冯兵,郝明,张志朋,张晓瞳,朱飞鸿,朱良玉,王文青,柴旭超,惠航. 2022. 青藏高原东北缘及其周边地区现今构造应力场及地震活动性[J]. 大地测量与地球动力学,42(10):1067–1073. Feng B,Hao M,Zhang Z P,Zhang X T,Zhu F H,Zhu L Y,Wang W Q,Chai X C,Hui H. 2022. Current tectonic stress field and seismic activity in northeastern Tibetan Plateau and its surrounding areas[J]. Journal of Geodesy and Geodynamics,42(10):1067–1073 (in Chinese).
付媛媛,肖卓. 2020. 青藏高原东北缘及邻区Rayleigh和Love波背景噪声层析成像[J]. 地球物理学报,63(3):860–870. Fu Y Y,Xiao Z. 2020. Ambient noise tomography of Rayleigh and Love wave in Northeast Tibetan Plateau and adjacent regions[J]. Chinese Journal of Geophysics,63(3):860–870 (in Chinese).
高锐,齐蕊,黄兴富,陈宣华,熊小松,郭晓玉,刘晓惠,廖杰. 2022. 青藏高原东北缘祁连山中部精细地壳结构研究[J]. 地球物理学报,65(8):2857–2871. doi: 10.6038/cjg2022P0907 Gao R,Qi R,Huang X F,Chen X H,Xiong X S,Guo X Y,Liu X H,Liao J. 2022. Disclosure of high-resolution crustal structure beneath the central region of Qilian Shan,northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,65(8):2857–2871 (in Chinese).
高原,郑斯华,冯德益. 1993. 剪切波的多级分裂:概念的提出与初步分析[J]. 东北地震研究,9(4):1–10. Gao Y,Zheng S H,Feng D Y. 1993. Shear wave multiple-splitting:Proposal of concept and preliminary analysis[J]. Seismological Research of Northeast China,9(4):1–10 (in Chinese).
高原,吴晶,易桂喜,石玉涛. 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系[J]. 科学通报,55(29):2837–2843. Gao Y,Wu J,Yi G X,Shi Y T. 2010. Crust-mantle coupling in North China:Preliminary analysis from seismic anisotropy[J]. Chinese Science Bulletin,55(31):3599–3605. doi: 10.1007/s11434-010-4135-y
郭桂红,张智,程建武,董治平,闫建萍,马亚维. 2015. 青藏高原东北缘地壳各向异性的构造含义[J]. 地球物理学报,58(11):4092–4105. doi: 10.6038/cjg20151117 Guo G H,Zhang Z,Cheng J W,Dong Z P,Yan J P,Ma Y W. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication[J]. Chinese Journal of Geophysics,58(11):4092–4105 (in Chinese).
郭桂红,武澄泷,唐国彬,侯爵,张明辉,贺志洪,张智,蒲举,刘旭宙,陈继峰,程建武. 2019. 青藏高原东北缘壳幔各向异性研究:基于SKS和Pms震相分析[J]. 地球物理学报,62(5):1650–1662. Guo G H,Wu C L,Tang G B,Hou J,Zhang M H,He Z H,Zhang Z,Pu J,Liu X Z,Chen J F,Cheng J W. 2019. Seismic anisotropy of the northeastern margin of the Tibetan Plateau derived from analysis of SKS and Pms seismic phases[J]. Chinese Journal of Geophysics,62(5):1650–1662 (in Chinese).
国家地震科学数据中心. 2016. 中国历史地震目录[EB/OL]. [2023−06−01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz. National Earthquake Data Center. 2016. Chinese Historical Earthquake Catalog[EB/OL]. [2023−06−01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz (in Chinese).
黄臣宇,常利军. 2021. 基于横波分裂的青藏高原多圈层各向异性研究进展[J]. 地球与行星物理论评,52(2):164–181. Huang C Y,Chang L J. 2021. Reviews on seismic anisotropy based on shear-wave splitting in the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics,52(2):164–181 (in Chinese).
江在森,张希,崔笃信,胡亚轩,陈文胜,王双绪,陈兵. 2001. 青藏块体东北缘近期水平运动与变形[J]. 地球物理学报,44(5):636–644. Jiang Z S,Zhang X,Cui D X,Hu Y X,Chen W S,Wang S X,Chen B. 2001. Recent horizontal movement and deformation in the northeast margin of Qinghai-Tibet block[J]. Chinese Journal of Geophysics,44(5):636–644 (in Chinese).
李传友,张培震,张剑玺,袁道阳,王志才. 2007. 西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率[J]. 第四纪研究,27(1):54–63. Li C Y,Zhang P Z,Zhang J X,Yuan D Y,Wang Z C. 2007. Late-Quaternary activity and slip rate of the western Qinling fault at Huangxianggou[J]. Quaternary Sciences,27(1):54–63 (in Chinese).
李蕙琳,黄兴富,高锐,叶卓. 2022. 青藏高原东北缘祁连山西段与东段岩石圈结构差异研究[J]. 地球物理学报,65(5):1581–1594. Li H L,Huang X F,Gao R,Ye Z. 2022. The lithospheric structure differences between the western and eastern Qilian in the northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,65(5):1581–1594 (in Chinese).
李伦,蔡晨,付媛媛,方洪健. 2023. 多种面波层析成像方法及其在青藏高原的应用与对比[J]. 地球与行星物理论评(中英文),54(2):174–196. Li L,Cai C,Fu Y Y,Fang H J. 2023. Multiple surface wave tomography methods and their applications to the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics,54(2):174–196 (in Chinese).
李秋生,高原,王绪本,赵俊猛. 2020. 青藏高原地球物理与大陆动力学研究的新进展[J]. 地球物理学报,63(3):789–801. Li Q S,Gao Y,Wang X B,Zhao J M. 2020. New research progress in geophysics and continental dynamics of the Tibetan Plateau[J]. Chinese Journal of Geophysics,63(3):789–801 (in Chinese).
李莹,高原. 2021. 青藏高原东南缘地质构造基本形态与地震各向异性基本特征[J]. 地震,41(4):15–45. doi: 10.12196/j.issn.1000-3274.2021.04.002 Li Y,Gao Y. 2021. Basic characteristics of tectonics and seismic anisotropy in the southeastern margin of the Qinghai-Tibet Plateau[J]. Earthquake,41(4):15–45 (in Chinese).
李永华,吴庆举,安张辉,田小波,曾融生,张瑞青,李红光. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报,49(5):1359–1368. Li Y H,Wu Q J,An Z H,Tian X B,Zeng R S,Zhang R Q,Li H G. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions[J]. Chinese Journal of Geophysics,49(5):1359–1368 (in Chinese).
刘庚,高原,石玉涛. 2017. 秦岭造山带及其两侧区域地壳剪切波分裂[J]. 地球物理学报,60(6):2326–2337. Liu G,Gao Y,Shi Y T. 2017. Shear-wave splitting in Qinling Orogen and its both sides[J]. Chinese Journal of Geophysics,60(6):2326–2337 (in Chinese).
刘金瑞,任治坤,张会平,李传友,张竹琪,郑文俊,李雪梅,刘彩彩. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论[J]. 地球物理学报,61(4):1281–1297. doi: 10.6038/cjg2018L0364 Liu J R,Ren Z K,Zhang H P,Li C Y,Zhang Z Q,Zheng W J,Li X M,Liu C C. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault and its tectonic implications[J]. Chinese Journal of Geophysics,61(4):1281–1297 (in Chinese).
刘同振,高原. 2023. 青藏高原东北缘地壳地震各向异性研究进展[J]. 中国地震,39(2):225–242. doi: 10.3969/j.issn.1001-4683.2023.02.001 Liu T Z,Gao Y. 2023. Reviews on the crustal seismic anisotropy in the northeast margin of the Tibetan Plateau[J]. Earthquake Research in China,39(2):225–242 (in Chinese).
鲁来玉,何正勤,丁志峰,王椿镛. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报,57(3):822–836. doi: 10.6038/cjg20140312 Lu L Y,He Z Q,Ding Z F,Wang C Y. 2014. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics,57(3):822–836 (in Chinese).
吕晋妤,沈旭章,金睿智,黄柳婷. 2022. 青藏高原东北缘地壳介质各向异性非均匀特征及其构造意义[J]. 地球物理学报,65(6):1980–1990. Lü J Y,Shen X Z,Jin R Z,Huang L T. 2022. Laterally heterogeneous crustal anisotropy in the northeastern margin of Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics,65(6):1980–1990 (in Chinese).
马禾青,丁志峰,常利军,高武平,蔡新华. 2010. 宁夏地区上地幔地震各向异性特征[J]. 地震学报,32(5):507–516. doi: 10.3969/j.issn.0253-3782.2010.05.001 Ma H Q,Ding Z F,Chang L J,Gao W P,Cai X H. 2010. Seismic anisotropy of the upper mantle in Ningxia region[J]. Acta Seismologica Sinica,32(5):507–516 (in Chinese).
孟文,郭祥云,李永华,韩立波,张重远. 2022. 青藏高原东北缘构造应力场及动力学特征[J]. 地球物理学报,65(9):3229–3251. Meng W,Guo X Y,Li Y H,Han L B,Zhang C Y. 2022. Tectonic stress field and dynamic characteristics in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,65(9):3229–3251 (in Chinese).
闵伟,张培震,邓起东. 2000. 区域古地震复发行为的初步研究[J]. 地震学报,22(2):163–170. Min W,Zhang P Z,Deng Q D. 2000. Primary study on regional paleoearthquake recurrence behavior[J]. Acta Seismologica Sinica,22(2):163–170 (in Chinese).
钱旗伟,吴晶,刘庚,沙成宁,马建新,白占孝,赵燕杰,刘小梅. 2017. 青藏高原东北缘中上地壳介质各向异性及其构造意义[J]. 地球物理学报,60(6):2338–2349. doi: 10.6038/cjg20170625 Qian Q W,Wu J,Liu G,Sha C N,Ma J X,Bai Z X,Zhao Y J,Liu X M. 2017. Anisotropy of middle-upper crust derived from shear-wave splitting in the northeastern Tibetan Plateau and tectonic implications[J]. Chinese Journal of Geophysics,60(6):2338–2349 (in Chinese).
邵若潼,沈旭章,张元生. 2019. 青藏高原东北缘甘东南地区地壳各向异性特征及构造意义[J]. 地球物理学报,62(9):3340–3353. doi: 10.6038/cjg2019M0635 Shao R T,Shen X Z,Zhang Y S. 2019. Crustal anisotropy and tectonic implications beneath southeastern Gansu Province in northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,62(9):3340–3353 (in Chinese).
沈胜意,高原,刘同振. 2022. 剪切波分裂揭示的青藏高原东北缘分层各向异性形态:从海原断裂至银川地堑[J]. 地球物理学报,65(5):1595–1611. doi: 10.6038/cjg2022O0340 Shen S Y,Gao Y,Liu T Z. 2022. Two-layer anisotropy revealed by shear wave splitting beneath the NE margin of Tibetan Plateau:From Haiyuan fault to Yinchuan Garben[J]. Chinese Journal of Geophysics,65(5):1595–1611 (in Chinese).
盛书中,万永革,黄骥超,卜玉菲,李祥. 2015. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J]. 地球物理学报,58(2):436–452. doi: 10.6038/cjg20150208 Sheng S Z,Wan Y G,Huang J C,Bu Y F,Li X. 2015. Present tectonic stress field in the Circum-Ordos region deduced from composite focal mechanism method[J]. Chinese Journal of Geophysics,58(2):436–452 (in Chinese).
石富强,邵志刚,占伟,丁晓光,朱琳,李玉江. 2018. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报,61(9):3651–3663. doi: 10.6038/cjg2018L0631 Shi F Q,Shao Z G,Zhan W,Ding X G,Zhu L,Li Y J. 2018. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,61(9):3651–3663 (in Chinese).
史克旭,张瑞青,肖勇. 2020. 利用虚拟地震测深法约束青藏高原东北缘及周边地区地壳厚度[J]. 地球物理学报,63(12):4369–4381. doi: 10.6038/cjg2020N0128 Shi K X,Zhang R Q,Xiao Y. 2020. Constraints on the crustal thickness in the northeastern Tibetan Plateau and adjacent regions from virtual deep seismic sounding[J]. Chinese Journal of Geophysics,63(12):4369–4381 (in Chinese).
宋婷,沈旭章,梅秀苹,焦煜媛,李敏娟,苏小芸,季婉婧. 2022. 利用接收函数频率特征研究青藏高原东北缘地区的莫霍面性质[J]. 地震地质,44(5):1290–1312. doi: 10.3969/j.issn.0253-4967.2022.05.013 Song T,Shen X Z,Mei X P,Jiao Y Y,Li M J,Su X Y,Ji W J. 2022. Constraining Moho characteristics in the north-eastern margin of Tibet Plateau with frequency-dependence of receiver function[J]. Seismology and Geology,44(5):1290–1312 (in Chinese).
王琼,高原. 2012. 噪声层析成像在壳幔结构研究中的现状与展望[J]. 地震,32(1):70–81. doi: 10.3969/j.issn.1000-3274.2012.01.007 Wang Q,Gao Y. 2012. Present state and prospect of ambient noise tomography in the study of crust mantle structure[J]. Earthquake,32(1):70–81 (in Chinese).
王琼,高原. 2018. 基于背景噪声研究青藏高原东北缘瑞利波相速度和方位各向异性[J]. 地球物理学报,61(7):2760–2775. doi: 10.6038/cjg2018L0509 Wang Q,Gao Y. 2018. Rayleigh wave phase velocity and azimuthal anisotropy in the northeastern margin of the Tibetan Plateau derived from seismic ambient noise[J]. Chinese Journal of Geophysics,61(7):2760–2775 (in Chinese).
王琼,高原,石玉涛,吴晶. 2013. 青藏高原东北缘上地幔地震各向异性:来自SKS、PKS和SKKS震相分裂的证据[J]. 地球物理学报,56(3):892–905. doi: 10.6038/cjg20130318 Wang Q,Gao Y,Shi Y T,Wu J. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet Plateau:Evidence from shear wave splitting of SKS,PKS and SKKS[J]. Chinese Journal of Geophysics,56(3):892–905 (in Chinese).
王伟涛,张培震,郑德文,庞建章. 2014. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘,21(4):266–274. Wang W T,Zhang P Z,Zheng D W,Pang J Z. 2014. Late Cenozoic tectonic deformation of the Haiyuan fault in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers,21(4):266–274 (in Chinese).
吴庆举,田小波,张乃铃,李卫平,曾融生. 2003. 计算台站接收函数的最大熵谱反褶积方法[J]. 地震学报,25(4):382–389. doi: 10.3321/j.issn:0253-3782.2003.04.005 Wu Q J,Tian X B,Zhang N L,Li W P,Zeng R S. 2003. Receiver function estimated by maximum entropy deconvolution[J]. Acta Seismologica Sinica,25(4):382–389 (in Chinese).
吴逸影,邓斯壮,钮凤林,贺巍,吴汉宁. 2021. 秦岭造山带上地幔各向异性及相关的壳幔耦合型式[J]. 地球物理学报,64(5):1608–1619. Wu Y Y,Deng S Z,Niu F L,He W,Wu H N. 2021. Crust-mantle coupling mechanism beneath the Qinling Orogen Belt revealed by SKS-wave splitting[J]. Chinese Journal of Geophysics,64(5):1608–1619 (in Chinese).
谢振新,吴庆举,张瑞青. 2017. 青藏高原东北缘地壳各向异性及其动力学意义[J]. 地球物理学报,60(6):2315–2325. doi: 10.6038/cjg20170623 Xie Z X,Wu Q J,Zhang R Q. 2017. Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications[J]. Chinese Journal of Geophysics,60(6):2315–2325 (in Chinese).
许英才,高原,石玉涛,王琼,陈安国. 2019. 鄂尔多斯块体西缘地壳介质各向异性:从银川地堑到海原断裂带[J]. 地球物理学报,62(11):4239–4258. doi: 10.6038/cjg2019M0309 Xu Y C,Gao Y,Shi Y T,Wang Q,Chen A G. 2019. Crustal seismic anisotropy in the west margin of the Ordos block:From the Yinchuan graben to the Haiyuan fault zone[J]. Chinese Journal of Geophysics,62(11):4239–4258 (in Chinese).
许志琴,杨经绥,嵇少丞,张泽明,李海兵,刘福来,张建新,吴才来,李忠海,梁凤华. 2010. 中国大陆构造及动力学若干问题的认识[J]. 地质学报,84(1):1–29. Xu Z Q,Yang J S,Ji S C,Zhang Z M,Li H B,Liu F L,Zhang J X,Wu C L,Li Z H,Liang F H. 2010. On the continental tectonics and dynamics of China[J]. Acta Geologica Sinica,84(1):1–29 (in Chinese). doi: 10.1111/j.1755-6724.2010.00164.x
许忠淮,汪素云,裴顺平. 2003. 青藏高原东北缘地区Pn波速度的横向变化[J]. 地震学报,25(1):24–31. doi: 10.3321/j.issn:0253-3782.2003.01.003 Xu Z H,Wang S Y,Pei S P. 2003. Lateral variation of Pn velocity beneath northeastern marginal region of Qingzang Plateau[J]. Acta Seismologica Sinica,25(1):24–31 (in Chinese).
杨少博,王炳文,高级,张海江. 2022. 东祁连山北缘断裂带基于深度学习的密集台阵地震事件快速检测与定位研究[J]. 震灾防御技术,17(1):38–45. doi: 10.11899/zzfy20220104 Yang S B,Wang B W,Gao J,Zhang H J. 2022. Rapid earthquake detection and location for dense array data in the fault zone of the northern margin of the east Qilian Mountains based on deep learning[J]. Technology for Earthquake Disaster Prevention,17(1):38–45 (in Chinese).
张怀惠,张志诚,李建锋,唐建洲. 2021. 青藏高原东北缘中新生代构造演化:来自磷灰石和锆石裂变径迹的证据[J]. 地球物理学报,64(6):2017–2034. doi: 10.6038/cjg2021O0297 Zhang H H,Zhang Z C,Li J F,Tang J Z. 2021. Meso-Cenozoic tectonic evolution in the northeastern margin of the Tibetan Plateau:Evidence from apatite and zircon fission tracks[J]. Chinese Journal of Geophysics,64(6):2017–2034 (in Chinese).
张辉,高原,石玉涛,刘小凤,王熠熙. 2012. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J]. 地球物理学报,55(1):95–104. Zhang H,Gao Y,Shi Y T,Liu X F,Wang Y X. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics,55(1):95–104 (in Chinese).
张培震,闵伟,邓起东,毛凤英. 2003. 海原活动断裂带的古地震与强震复发规律[J]. 中国科学:地球科学,33(8):705–713. Zhang P Z,Min W,Deng Q D. Mao F Y. 2005. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault,northwestern China fault zone[J]. Science in China:Earth Sciences,48(3):364–375. doi: 10.1360/02yd0464
张艺,高原. 2017. 中国地震科学台阵两期观测资料近场记录揭示的南北地震带地壳剪切波分裂特征[J]. 地球物理学报,60(6):2181–2199. Zhang Y,Gao Y. 2017. The characteristics of crustal shear-wave splitting in North-South seismic zone revealed by near field recordings of two observation periods of ChinArray[J]. Chinese Journal of Geophysics,60(6):2181–2199 (in Chinese).
郑斯华,高原. 1994. 中国大陆岩石层的方位各向异性[J]. 地震学报,16(2):131–140. Zheng S H,Gao Y. 1994. The orientation anisotropy of rock stratum in Chinese mainland[J]. Acta Seismologica Sinica,16(2):131–140 (in Chinese).
朱琳,戴勇,石富强,邵辉成. 2022. 祁连—海原断裂带库仑应力演化及地震危险性[J]. 地震学报,44(2):223–236. doi: 10.11939/jass.20220012 Zhu L,Dai Y,Shi F Q,Shao H C. 2022. Coulomb stress evolution and seismic hazards along the Qilian-Haiyuan fault zone[J]. Acta Seismologica Sinica,44(2):223–236 (in Chinese).
Ammon C J,Randall G E,Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. J Geophys Res:Solid Earth,95(B10):15303–15318. doi: 10.1029/JB095iB10p15303
An M J,Shi Y L. 2006. Lithospheric thickness of the Chinese continent[J]. Phys Earth Planet Inter,159(3/4):257–266.
Bao X W,Song X D,Eaton D W,Xu Y X,Chen H L. 2020. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J]. Geophys Res Lett,47(3):e2019GL085721. doi: 10.1029/2019GL085721
Ben Ismaı̈l W,Mainprice D. 1998. An olivine fabric database:An overview of upper mantle fabrics and seismic anisotropy[J]. Tectonophysics,296(1/2):145–157.
Bostock M G. 1998. Mantle stratigraphy and evolution of the Slave Province[J]. J Geophys Res:Solid Earth,103(B9):21183–21200. doi: 10.1029/98JB01069
Chang L J,Ding Z F,Wang C Y,Flesch L M. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan Plateau using GPS and shear-wave splitting data[J]. Tectonophysics,699:93–101. doi: 10.1016/j.tecto.2017.01.025
Chen Y,Zhang Z J,Sun C Q,Badal J. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Res,24(3/4):946–957.
Clark M K,Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8):703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
Crampin S. 1978. Seismic-wave propagation through a cracked solid:Polarization as a possible dilatancy diagnostic[J]. Geophys J Int,53(3):467–496. doi: 10.1111/j.1365-246X.1978.tb03754.x
Crampin S. 1981. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion,3(4):343–391. doi: 10.1016/0165-2125(81)90026-3
Crampin S,Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth[J]. Wave Motion,41(1):59–77. doi: 10.1016/j.wavemoti.2004.05.006
Deng Y F,Tesauro M. 2016. Lithospheric strength variations in Mainland China:Tectonic implications[J]. Tectonics,35(10):2313–2333. doi: 10.1002/2016TC004272
Deng Y F,Li J T,Song X D,Zhu L P. 2018. Joint inversion for lithospheric structures:Implications for the growth and deformation in northeastern Tibetan Plateau[J]. Geophys Res Lett,45(9):3951–3958. doi: 10.1029/2018GL077486
Dewey J F,Shackleton R M,Chang C F,Sun Y Y. 1988. The tectonic evolution of the Tibetan Plateau[J]. Philos Trans Roy Soc A:Math,Phys Eng Sci,327(1594):379–413.
Dong H,Wei W B,Ye G F,Jin S,Jones A G,Jing J N,Zhang L T,Xie C L,Zhang F,Wang H. 2014. Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area:Evidence of regional lithospheric modification[J]. Geochem Geophys Geosyst,15(6):2414–2425. doi: 10.1002/2014GC005270
England P,Houseman G. 1986. Finite strain calculations of continental deformation,2. Comparison with the India-Asia collision zone[J]. J Geophys Res:Solid Earth,91(B3):3651–3676. doi: 10.1029/JB091iB03p03651
Gan W J,Zhang P Z,Shen Z K,Niu Z J,Wang M,Wan Y G,Zhou D M,Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res:Solid Earth,112(B8):B08416.
Huang Z C,Tilmann F,Xu M J,Wang L S,Ding Z F,Mi N,Yu D Y,Li H. 2017. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting[J]. Earth Planet Sci Lett,478:66–75. doi: 10.1016/j.jpgl.2017.08.030
Kaviani A,Rümpker G,Weber M,Asch G. 2011. Short-scale variations of shear-wave splitting across the Dead sea basin:Evidence for the effects of sedimentary fill[J]. Geophys Res Lett,38(4):L04308.
Kong F S,Wu J,Liu K H,Gao S S. 2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas[J]. Earth Planet Sci Lett,442:72–79. doi: 10.1016/j.jpgl.2016.03.003
Kong F S,Wu J,Liu L,Liu K H,Song J G,Li J B,Gao S S. 2018. Azimuthal anisotropy and mantle flow underneath the southeastern Tibetan Plateau and northern Indochina Peninsula revealed by shear wave splitting analyses[J]. Tectonophysics,747-748:68–78. doi: 10.1016/j.tecto.2018.09.013
Li S L,Guo Z,Yu Y,Wu X Y,Chen Y J. 2022. Imaging the northeastern crustal boundary of the Tibetan Plateau with radial anisotropy[J]. Geophys Res Lett,49(23):e2022GL100672. doi: 10.1029/2022GL100672
Li S Y,Gao Y,Jin H L. 2023a. Upper crustal deformation characteristics in the northeastern Tibetan Plateau and its adjacent areas revealed by GNSS and anisotropy data[J]. Earthquake Science,36(4):297–308. doi: 10.1016/j.eqs.2023.05.003
Li Y,Chen Z,Sun A H,Liu Z F,Caracausi A,Martinelli G,Lu C. 2023b. Geochemical features and seismic imaging of the tectonic zone between the Tibetan Plateau and Ordos Block,central northern China[J]. Chem Geol,622:121386. doi: 10.1016/j.chemgeo.2023.121386
Li Y C,Shan X J,Qu C Y,Zhang Y F,Song X G,Jiang Y,Zhang G H,Nocquet J M,Gong W Y,Gan W J,Wang C S. 2017. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault,northeastern Tibetan Plateau[J]. J Asian Earth Sci,150:87–97. doi: 10.1016/j.jseaes.2017.10.010
Liu J,Wu J P,Wang W L,Fang L H,Chang K. 2020. Seismic anisotropy beneath the eastern margin of the Tibetan Plateau from SKS splitting observations[J]. Tectonophysics,785:228430. doi: 10.1016/j.tecto.2020.228430
McNamara D E,Owens T J. 1993. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using moho Ps converted phases[J]. J Geophys Res:Solid Earth,98(B7):12003–12017. doi: 10.1029/93JB00711
Meissner R,Mooney W D,Artemieva I. 2002. Seismic anisotropy and mantle creep in young orogens[J]. Geophys J Int,149(1):1–14. doi: 10.1046/j.1365-246X.2002.01628.x
Royden L H,Burchfiel B C,King R W,Wang E,Chen Z L,Shen F,Liu Y P. 1997. Surface deformation and lower crustal flow in Eastern Tibet[J]. Science,276(5313):788–790. doi: 10.1126/science.276.5313.788
Royden L H,Burchfiel B C,van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau[J]. Science,321(5892):1054–1058. doi: 10.1126/science.1155371
Rümpker G,Silver P G. 1998. Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy[J]. Geophys J Int,135(3):790–800. doi: 10.1046/j.1365-246X.1998.00660.x
Rümpker G,Kaviani A,Latifi K. 2014. Ps-splitting analysis for multilayered anisotropic media by azimuthal stacking and layer stripping[J]. Geophys J Int,199(1):146–163. doi: 10.1093/gji/ggu154
Savage M K. 1999. Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?[J]. Rev Geophys,37(1):65–106. doi: 10.1029/98RG02075
Shapiro N M,Ritzwoller M H,Molnar P,Levin V. 2004. Thinning and flow of Tibetan crust constrained by seismic anisotropy[J]. Science,305(5681):233–236. doi: 10.1126/science.1098276
Shen S Y,Gao Y. 2021. Research progress on layered seismic anisotropy:A review[J]. Earthquake Research Advances,1(1):100005. doi: 10.1016/j.eqrea.2021.100005
Shen X Z,Yuan X H,Ren J S. 2015. Anisotropic low-velocity lower crust beneath the northeastern margin of Tibetan Plateau:Evidence for crustal channel flow[J]. Geochem,Geophys,Geosyst,16(12):4223–4236.
Shen X Z,Liu M,Gao Y,Wang W J,Shi Y T,An M J,Zhang Y S,Liu X Z. 2017. Lithospheric structure across the northeastern margin of the Tibetan Plateau:Implications for the plateau’s lateral growth[J]. Earth Planet Sci Lett,459:80–92. doi: 10.1016/j.jpgl.2016.11.027
Sherrington H F,Zandt G,Frederiksen A. 2004. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters[J]. J Geophys Res:Solid Earth,109(B2):B02312.
Shi Y T,Gao Y,Shen X Z,Liu K H. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault[J]. Tectonophysics,774:228274. doi: 10.1016/j.tecto.2019.228274
Shi Y T,Gao Y,Lu L Y. 2021. Receiver function structures beneath the Haiyuan fault on the northeastern margin of the Tibetan Plateau[J]. Earthquake Science,34(4):367–377. doi: 10.29382/eqs-2020-0055
Silver P G,Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. J Geophys Res:Solid Earth,96(B10):16429–16454. doi: 10.1029/91JB00899
Silver P G,Savage M K. 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers[J]. Geophys J Int,119(3):949–963. doi: 10.1111/j.1365-246X.1994.tb04027.x
Tapponnier P,Peltzer G,Le Dain A Y,Armijo R,Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tian X B,Liu Z,Si S K,Zhang Z J. 2014. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics,634:198–207. doi: 10.1016/j.tecto.2014.07.001
Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774. doi: 10.1029/2019JB018774
Wang Q,Niu F L,Gao Y,Chen Y T. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data[J]. Geophys J Int,204(1):167–179. doi: 10.1093/gji/ggv420
Wang W L,Cai G Y,Wu J P,Fang L H. 2023. The lithospheric S-wave velocity structure beneath the NE Tibetan Plateau and its surrounding craton basins[J]. Frontiers in Earth Science,10:1066265. doi: 10.3389/feart.2022.1066265
Xu X M,Niu F L,Ding Z F,Chen Q F. 2018. Complicated crustal deformation beneath the NE margin of the Tibetan Plateau and its adjacent areas revealed by multi-station receiver-function gathering[J]. Earth Planet Sci Lett,497:204–216. doi: 10.1016/j.jpgl.2018.06.010
Ye Z,Li Q S,Gao R,Zhang H S,Shen X Z,Liu X Z,Gong C. 2016. Anisotropic regime across northeastern Tibet and its geodynamic implications[J]. Tectonophysics,671:1–8. doi: 10.1016/j.tecto.2016.01.011
Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Planet Sci,28:211–280. doi: 10.1146/annurev.earth.28.1.211
Zhang C,Guo Z,Yu Y,Yang T,Chen Y J. 2022. Distinct lithospheric structures of the Ordos block and its margins from P and S receiver functions and its implications for the Cenozoic lithospheric reworking[J]. Geophys Res Lett,49(6):e2021GL097680. doi: 10.1029/2021GL097680
Zhang H S,Teng J W,Tian X B,Zhang Z J,Gao R,Liu J Q. 2012. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements[J]. Geophys J Int,191(3):1285–1294.
Zhang S Q,Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature,375(6534):774–777. doi: 10.1038/375774a0
Zhao P P,Chen J H,Li Y,Liu Q Y,Chen Y F,Guo B,Yin X Z. 2021. Growth of the northeastern Tibetan Plateau driven by crustal channel flow:Evidence from high-resolution ambient noise imaging[J]. Geophys Res Lett,48(13):e2021GL093387. doi: 10.1029/2021GL093387
Zheng T,Gao S S,Ding Z F,Liu K H,Chang L J,Fan X P,Kong F S,Yu Y Q. 2021. Crustal azimuthal anisotropy and deformation beneath the northeastern Tibetan Plateau and adjacent areas:Insights from receiver function analysis[J]. Tectonophysics,816:229014. doi: 10.1016/j.tecto.2021.229014
Zhu R X,Yang J H,Wu F Y. 2012. Timing of destruction of the North China Craton[J]. Lithos,149:51–60. doi: 10.1016/j.lithos.2012.05.013