基于波形拟合的日本南部及琉球岛弧下方滞留板片的形态结构研究

苏慧, 崔清辉, 李国辉, 尹迪, 周元泽

苏慧,崔清辉,李国辉,尹迪,周元泽. 2025. 基于波形拟合的日本南部及琉球岛弧下方滞留板片的形态结构研究. 地震学报,47(1):37−53. DOI: 10.11939/jass.20230150
引用本文: 苏慧,崔清辉,李国辉,尹迪,周元泽. 2025. 基于波形拟合的日本南部及琉球岛弧下方滞留板片的形态结构研究. 地震学报,47(1):37−53. DOI: 10.11939/jass.20230150
Su H,Cui Q H,Li G H,Yin D,Zhou Y Z. 2025. Morphological structure of stagnant slab under southern Japan and Ryukyu Island Arc based on seismic waveform fitting. Acta Seismologica Sinica47(1):37−53. DOI: 10.11939/jass.20230150
Citation: Su H,Cui Q H,Li G H,Yin D,Zhou Y Z. 2025. Morphological structure of stagnant slab under southern Japan and Ryukyu Island Arc based on seismic waveform fitting. Acta Seismologica Sinica47(1):37−53. DOI: 10.11939/jass.20230150

基于波形拟合的日本南部及琉球岛弧下方滞留板片的形态结构研究

基金项目: 国家自然科学基金(41874109,42074103,42374113,42074101)资助
详细信息
    作者简介:

    苏慧,在读博士研究生,主要从事地球内部结构与地震波传播方面的研究,e-mail:suhui17@mails.ucas.ac.cn

    通讯作者:

    周元泽,博士,教授,主要从事地球内部结构与地震波传播以及地震信号分析等方面的研究,e-mail:yzzhou@ucas.ac.cn

  • 中图分类号: P315.31

Morphological structure of stagnant slab under southern Japan and Ryukyu Island Arc based on seismic waveform fitting

  • 摘要:

    在日本南部及琉球岛弧地区,太平洋板块和菲律宾海板块共同向欧亚板块下方俯冲,形成复杂的双板块俯冲系统。滞留板片在地幔过渡带内的形态特征及其与地幔物质的相互作用影响着东海陆架盆地及中国大陆边缘的构造演化过程。本研究基于中国国家数字台网记录的发生于伊豆—小笠原地区的一次深源地震的宽频带波形资料,通过P波三重震相拟合,获得了日本南部及琉球岛弧下方660 km间断面附近的速度结构特征。结果显示,研究区域660 km间断面上方普遍存在高速异常体,其深度范围约为490—720 km,P波速度异常1.0%—3.0%;660 km间断面下沉深度为20—60 km,呈现出由南向北逐渐减小的趋势,速度跃变1.5%—3.0%。相较于前人基于地震活动性和层析成像的结果,本文高速异常体的存在位置要深于菲律宾海板块俯冲所能到达的地幔转换区上边界附近,因而其应为俯冲滞留的西太平洋俯冲板片物质,与菲律宾海板块俯冲物质无关;此外,660 km间断面较大的南北下沉深度变化应由俯冲板块带来的滞留物质及其引起的温度异常和相关的相变所导致。

    Abstract:

    Under southern Japan and Ryukyu Island Arc, the Pacific plate and the Philippine Sea plate both subducted under the Eurasian plate, forming a complex double-plate subduction system. Statistical results of seismic activity reflect that there are significant differences in the influence of the two subducted plates on the mantle transition zone. It is currently unclear whether the stagnant slab beneath this region is a single Pacific plate or a mixed stagnant body consisting of the Pacific plate and the Philippine Sea plate. The properties, geometric characteristics, and morphological changes, as well as its interaction with the mantle material, collectively affect the tectonic evolution of the East China Sea Shelf Basin and the Chinese continental margin. The accumulation of the stagnant slab within the mantle transition zone and its interaction with the mantle material can cause variations in the depth of the 660 km discontinuity at the bottom of the mantle transition zone. Cold stagnant slab material induces depression of the 660 km discontinuity. By studying the depth of the 660 km discontinuity and its nearby velocity structure, we can explore the depth variation characteristics of the stagnant slab in the mantle transition zone beneath the southern Japan and Ryukyu Island Arc, obtain the lateral differences of the plate subduction process. This will deepen our understanding of the integrity of plate subduction in the Northwest Pacific Ocean and contribute to the study of the geodynamic processes of plate subduction. When the seismic wave passes through the 660 km discontinuity, the triplicated seismic phases will be generated. Utilizing the arrival times and amplitude characteristics of the triplicated waveforms recorded by a dense seismic network, we can effectively constrain the morphology of the discontinuity and the velocity structure near it.

    In this study, we selected a deep earthquake that occurred in the Izu-Bonin recorded by the China National Seismic Network (CNSN). The earthquake had a focal depth of 472 km, which avoided the influence of the triplicated waveforms associated with the 410 km discontinuity. The surface projections of the P-wave turning points are located in the southern Japan and Ryukyu Island Arc, and the characteristics of the triplicated waveforms can be used to constrain the depth of the 660 km discontinuity and its nearby velocity structure. Through identification and analysis of the morphological characteristics in P-wave triplicated waveforms, we divided the study area into 13 profiles, delineating horizontal differences in velocity structures based on distinct features of triplicated waveforms features. Building upon previous research findings and the characteristics of observed waveforms, we constructed a foundational velocity structure model. Employing a grid search methodology, we generated various parameter models. Theoretical seismic waveforms were subsequently computed using reflectivity method and compared against observed waveforms. The optimal velocity structure was determined via maximization of cross-correlation coefficients. Specifically, during the fitting process of P-wave triplicated waveforms, we refined waveform selection to minimize interference from non-triplicated waveforms, thereby augmenting fitting precision.

    Our results reveal that: ① There is a high-velocity layer above the 660 km discontinuity with depth of 490−720 km and P-wave velocity anomaly of 1.0%−3.0%; ② The 660 km discontinuity depressed 20−60 km with velocity increment of 1.5%−3.0%, and the depression depth gradually decreases from south to north.

    Drawing on insights gleaned from seismic tomography and tele-seismic data, we propose that the thickness of the high-velocity anomaly layer above the 660 km discontinuity significantly surpasses that of the subducting Pacific slab. This discrepancy likely arises from the halting of the downward motion of the subducted oceanic slab within the mantle transition zone by the 660 km discontinuity. This interruption triggers a lateral shift in motion, leading to the entrapment and subsequent buildup of the slab material within the mantle transition zone. Moreover, compared to previous studies based on seismic activity and tomography, our findings position the high-velocity anomaly layer at a depth deeper than typically reachable by the subduction of the Philippine Sea Plate, suggesting its composition primarily comprises material from the stagnant western Pacific slab rather than from the Philippine Sea Plate. Additionally, the depression of the 660 km discontinuity ranges from 20 to 80 km, exceeding depths attributed solely to thermal anomalies. We suggest that this depression may also involve phase transformations within the stagnant material brought by the subducted slab. The gradual reduction in depression depth from south to north likely reflects variations in subduction dynamics along the north-south direction.

  • 图  1   本文所用地震事件位置和台站分布图

    黑色三角形为台站位置,按方位分布划分为13个剖面(AB,···,M),红色三角形为剖面H上观测到到时延迟的台站;红色圆点为P波射线拐点的地表投影,黑色虚线为俯冲太平洋板片与菲律宾海板片等深线(Gudmundsson,Sambridge,1998)。右下角插图为660 km间断面附近三重震相射线路径图,包括地震射线ABBCCD

    Figure  1.   Location of the earthquake event and stations used in this study

    Black triangles denote the used stations,and the studied region is divided into 13 profiles (AB,···,M). Red triangles in the profile H are the stations with obvious observed time delay. Red dots are the surface projections of P-wave turning points. Contours shown in black dashed lines represent the Pacific and Philippine Sea slabs (Gudmundsson,Sambridge,1998). The bottom right inset shows ray paths of the triplication near the 660 km discontinuity,including the seismic rays ABBC and CD

    图  2   剖面A观测波形与模型参数定义图

    (a) 剖面A上的观测波形及与IASP91模型对应的走时曲线;(b) 前人参考模型M3.11 (Tajima,Grand,1995)及本文构建模型参数定义图。d1 (480—600 km)表示660上方高速异常体起始深度,d2 (490—720 km)表示最大速度异常所处深度,d3 (660—760 km)表示660深度,s2 (0—4%)表示高速异常最大速度异常扰动量,s3 (0—5%)表示660的速度异常跃变值

    Figure  2.   The observed waveforms of the profile A and the parameter definition diagrams of the model

    (a) The observed waveforms of the profile A and the travel time curves calculated with the IASP91;(b) Predecessor reference model M3.11 (Tajima,Grand,1995) and the parameter definition diagrams of the model used in the grid search procedure. d1 (480—600 km) is the starting depth of the high-velocity layer above the 660,d2 (490—720 km) is the depth at which the maximum velocity anomaly occurs,d3 (660—760 km) is the depth of the 660,s2 (0—4%) is the maximum velocity anomaly of the high-velocity layer,s3 (0—5%) is the velocity anomaly of the 660

    图  3   剖面A波形拟合结果及互相关系数等值线图

    (a) P波速度结构;(b) 波形拟合结果。绿线表示由最佳模型计算得到的走时曲线,紫虚线框标记用于计算互相关系数的波形;(c) 660 km间断面深度与速度异常的互相关系数等值线图。下同

    Figure  3.   Waveform fitting results and cross-correlation coefficients contour map of profile A

    (a) P-wave velocity structure;(b) Waveform fitting results. The green line represents travel time curve calculated with the best model. The purple dotted frame marks the waveforms used for calculating the cross-correlation coefficients;(c) Contour map of cross-correlation coefficients of the 660 km depth and velocity anomaly. The same below

    图  15   剖面M波形拟合结果及互相关系数等值线图

    Figure  15.   Waveform fitting results and cross-correlation coefficients contour map of profile M

    图  16   各剖面P波速度结构图

    地震层析成像结果来自Li等(2008),剖面SS′位置见图1,472 km为本研究所用地震事件的震源深度

    Figure  16.   The P-wave velocity structures of all profiles

    The tomography results are from Li et al2008). The position of profile SS′ is shown in fig.1,and 472 km is the source depth of the event used in this study

    图  4   剖面B波形拟合结果及互相关系数等值线图

    Figure  4.   Waveform fitting results and cross-correlation coefficients contour map of profile B

    图  5   剖面C波形拟合结果及互相关系数等值线图

    Figure  5.   Waveform fitting results and cross-correlation coefficients contour map of profile C

    图  6   剖面D波形拟合结果及互相关系数等值线图

    Figure  6.   Waveform fitting results and cross-correlation coefficients contour map of profile D

    图  7   剖面E波形拟合结果及互相关系数等值线图

    Figure  7.   Waveform fitting results and cross-correlation coefficients contour map of profile E

    图  8   剖面F波形拟合结果及互相关系数等值线图

    Figure  8.   Waveform fitting results and cross-correlation coefficients contour map of profile F

    图  9   剖面G波形拟合结果及互相关系数等值线图

    Figure  9.   Waveform fitting results and cross-correlation coefficients contour map of profile G

    图  11   剖面I波形拟合结果及互相关系数等值线图

    Figure  11.   Waveform fitting results and cross-correlation coefficients contour map of profile I

    图  12   剖面J波形拟合结果及互相关系数等值线图

    Figure  12.   Waveform fitting results and cross-correlation coefficients contour map of profile J

    图  13   剖面K波形拟合结果及互相关系数等值线图

    Figure  13.   Waveform fitting results and cross-correlation coefficients contour map of profile K

    图  14   剖面L波形拟合结果及互相关系数等值线图

    Figure  14.   Waveform fitting results and cross-correlation coefficients contour map of profile L

    图  10   剖面H波形拟合结果及互相关系数等值线图

    Figure  10.   Waveform fitting results and cross-correlation coefficients contour map of profile H

    表  1   各剖面速度模型

    Table  1   The velocity models of each profile

    剖面 高速异常体
    起始深度/km
    高速异常体最大
    速度异常深度/km
    高速异常体最大
    速度异常
    660 km间断面
    深度/km
    660 km间断面
    速度跃变
    A 600 650 1.0% 710 2.0%
    B 540 640 1.0% 720 3.0%
    C 600 680 2.0% 720 3.0%
    D 580 670 2.0% 710 3.0%
    E 580 680 2.0% 710 3.0%
    F 560 560 1.0% 700 2.0%
    G 490 640 1.0% 710 2.0%
    H 600 610 2.0% 705 1.5%
    I 550 550 2.0% 705 1.5%
    J 560 600 3.0% 690 1.0%
    K 490 630 1.0% 685 2.5%
    L 530 650 1.0% 680 3.0%
    M 530 660 1.0% 680 3.0%
    下载: 导出CSV
  • 崔辉辉,周元泽. 2016. 基于三重震相方法探测日本海俯冲区地幔转换带的速度结构[J]. 地震学报,38(5):659–670. doi: 10.11939/jass.2016.05.001

    Cui H H,Zhou Y Z. 2016. Detecting the structure of the mantle transition zone in Japan subduction zone from the waveform triplications[J]. Acta Seismologica Sinica,38(5):659–670 (in Chinese).

    崔辉辉,周元泽,石耀霖,王晓冉,李国辉. 2016. 华北克拉通东部滞留板块下方低速异常的地震三重震相探测[J]. 地球物理学报,59(4):1309–1320.

    Cui H H,Zhou Y Z,Shi Y L,Wang X R,Li G H. 2016. Seismic detection of a low-velocity anomaly under the stagnant slab beneath the eastern North China Craton with P-wave triplication[J]. Chinese Journal of Geophysics,59(4):1309–1320 (in Chinese).

    地震科学国际数据中心. 2022. 地震科学国际数据中心[DB/OL]. [2023−11−25]. http://www.esdc.ac.cn:8080/static/frontSharePage.html.

    International Earthquake Science Data Center. 2022. International Earthquake Science Data Center[DB/OL]. [2023−11−25]. http://www.esdc.ac.cn:8080/static/frontSharePage.html (in Chinese).

    瞿辰,周蕙兰,赵大鹏. 2007. 使用纵波和横波走时层析成像研究菲律宾海板块西边缘带和南海地区的深部结构[J]. 地球物理学报,50(6):1757–1768.

    Qu C,Zhou H L,Zhao D P. 2007. Deep structure beneath the west margin of Philippine Sea Plate and South China Sea from P and S wave travel time tomography[J]. Chinese Journal of Geophysics,50(6):1757–1768 (in Chinese).

    苏慧,魏荣强,周元泽,崔清辉,李国辉. 2023. 东北亚边缘地区地幔过渡带内滞留太平洋板片上界面的三重震相研究[J]. 地球物理学报,66(6):2431–2444.

    Su H,Wei R Q,Zhou Y Z,Cui Q H,Li G H. 2023. Upper interface of the Pacific slab stagnant in the mantle transition zone beneath Northeast Asia edge derived from triplicated waveforms[J]. Chinese Journal of Geophysics,66(6):2431–2444 (in Chinese).

    眭怡,周元泽. 2015. 利用三重震相探测中国东部海域410km深度低速层[J]. 地震学报,37(1):1–14.

    Sui Y,Zhou Y Z. 2015. Low-velocity anomaly around 410 km beneath the Yellow and East China Seas with P wave triplications[J]. Acta Seismologica Sinica,37(1):1–14 (in Chinese).

    叶玲玲,李娟. 2012. 东北地区660km间断面附近波速结构研究[J]. 地震学报,34(2):137–146.

    Ye L L,Li J. 2012. Detecting velocity structure around 660-km discontinuity beneath northeastern China[J]. Acta Seismologica Sinica,34(2):137–146 (in Chinese).

    张炎,钮凤林,宁杰远. 2022. 基于程函方程与三维速度模型的中国东北地区地幔过渡带接收函数研究[J]. 地球物理学报,65(8):2945–2959.

    Zhang Y,Niu F L,Ning J Y. 2022. Mantle transition zone beneath northeast China imaged by receiver function data using fast marching Eikonal solver based 3-D migration[J]. Chinese Journal of Geophysics,65(8):2945–2959 (in Chinese).

    周春银,金振民,章军锋. 2010. 地幔转换带:地球深部研究的重要方向[J]. 地学前缘,17(3):90–113.

    Zhou C Y,Jin Z M,Zhang J F. 2010. Mantle transition zone:An important field in the studies of Earth’s deep interior[J]. Earth Science Frontiers,17(3):90–113 (in Chinese).

    Bird P. 2003. An updated digital model of plate boundaries[J]. Geochem Geophys Geosyst,4(3):1027.

    Buland R,Chapman C H. 1983. The computation of seismic travel times[J]. Bull Seismol Soc Am,73(5):1271–1302.

    Cammarano F,Goes S,Vacher P,Giardini D. 2003. Inferring upper-mantle temperatures from seismic velocities[J]. Phys Earth Planet Inter,138(3/4):197–222.

    Chu R S,Schmandt B,Helmberger D V. 2012. Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms[J]. Geochem Geophys Geosyst,13(2):Q0AK04.

    Chu R S,Zhu L P,Ding Z F. 2019. Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms[J]. Earth and Planetary Physics,3(5):445–459. doi: 10.26464/epp2019045

    Courtier A M,Bagley B,Revenaugh J. 2007. Whole mantle discontinuity structure beneath Hawaii[J]. Geophys Res Lett,34(17):L17304.

    Deuss A. 2007. Seismic observations of transition-zone discontinuities beneath hotspot locations[M]//Plates,Plumes,and Planetary Processes. Boulder:Geological Society of America:121−136.

    Dziewoński A M,Chou T A,Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res Solid Earth,86(B4):2825–2852. doi: 10.1029/JB086iB04p02825

    Ekström G,Nettles M,Dziewoński A M. 2012. The global CMT project 2004−2010:Centroid-moment tensors for 13,017 earthquakes[J]. Phys Earth Planet Inter,200-201:1–9. doi: 10.1016/j.pepi.2012.04.002

    Engdahl E R,Van Der Hilst R,Buland R. 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination[J]. Bull Seismol Soc Am,88(3):722–743. doi: 10.1785/BSSA0880030722

    Fei Y,Van Orman J,Li J,van Westrenen W,Sanloup C,Minarik W,Hirose K,Komabayashi T,Walter M,Funakoshi K. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications[J]. J Geophys Res Solid Earth,109(B2):B02305.

    Fossen H. 2010. Structural Geology[M]. Cambridge:Cambridge University Press:79-83.

    Fukao Y,Widiyantoro S,Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region[J]. Rev Geophys,39(3):291–323. doi: 10.1029/1999RG000068

    Fukao Y,Obayashi M. 2013. Subducted slabs stagnant above,penetrating through,and trapped below the 660 km discontinuity[J]. J Geophys Res Solid Earth,118(11):5920–5938. doi: 10.1002/2013JB010466

    Gao Y,Suetsugu D,Fukao Y,Obayashi M,Shi Y T,Liu R F. 2010. Seismic discontinuities in the mantle transition zone and at the top of the lower mantle beneath eastern China and Korea:Influence of the stagnant Pacific slab[J]. Phys Earth Planet Inter,183(1/2):288–295.

    Goes S,Agrusta R,Van Hunen J,Garel F. 2017. Subduction-transition zone interaction:A review[J]. Geosphere,13(3):644–664. doi: 10.1130/GES01476.1

    Gorbatov A,Kennett B L N. 2003. Joint bulk-sound and shear tomography for Western Pacific subduction zones[J]. Earth Planet Sci Lett,210(3/4):527–543.

    Gudmundsson Ó,Sambridge M. 1998. A regionalized upper mantle (RUM) seismic model[J]. J Geophys Res Solid Earth,103(B4):7121–7136. doi: 10.1029/97JB02488

    Hall R,Ali J R,Anderson C D,Baker S J. 1995. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics,251(1/2/3/4):229–250.

    Huang J L,Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res Solid Earth,111(B9):B09305.

    Ito E,Takahashi E. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications[J]. J Geophys Res Solid Earth,94(B8):10637–10646. doi: 10.1029/JB094iB08p10637

    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x

    Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton[J]. J Geophys Res Solid Earth,117(B6):B06313.

    Li C,Van Der Hilst R D,Engdahl E R,Burdick S. 2008. A new global model for P wave speed variations in Earth’s mantle[J]. Geochem Geophys Geosyst,9(5):Q05018.

    Li G H,Bai L,Zhou Y Z,Wang X R,Cui Q H. 2017. Velocity structure of the mantle transition zone beneath the southeastern margin of the Tibetan Plateau[J]. Tectonophysics,721:349–360. doi: 10.1016/j.tecto.2017.08.009

    Li G H,Bai L,Zhang H,Xu Q,Zhou Y Z,Gao Y,Wang M J S,Li Z H. 2022. Velocity anomalies around the mantle transition zone beneath the Qiangtang Terrane,Central Tibetan Plateau from triplicated P waveforms[J]. Earth Space Sci,9(2):e2021EA002060. doi: 10.1029/2021EA002060

    Li J,Wang X,Wang X J,Yuen D A. 2013. P and SH velocity structure in the upper mantle beneath Northeast China:Evidence for a stagnant slab in hydrous mantle transition zone[J]. Earth Planet Sci Lett,367:71–81. doi: 10.1016/j.jpgl.2013.02.026

    Li W L,Wei R Q,Cui Q H,Li G H,Zhou Y Z. 2020. P-wave velocity anomalies atop and in the mantle transition zone beneath the northern South China Sea from triplicated waveforms[J]. J Asian Earth Sci,197:104379. doi: 10.1016/j.jseaes.2020.104379

    Miller M S,Kennett B L N,Toy V G. 2006. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin[J]. J Geophys Res Solid Earth,111(B2):B02401.

    Niu F L,Levander A,Ham S,Obayashi M. 2005. Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions[J]. Earth Planet Sci Lett,239(1/2):9–17.

    Obayashi M,Sugioka H,Yoshimitsu J,Fukao Y. 2006. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity[J]. Earth Planet Sci Lett,243(1/2):149–158.

    Tajima F,Grand S P. 1995. Evidence of high velocity anomalies in the transition zone associated with southern Kurile subduction zone[J]. Geophys Res Lett,22(23):3139–3142. doi: 10.1029/95GL03314

    Tajima F,Grand S P. 1998. Variation of transition zone high-velocity anomalies and depression of 660 km discontinuity associated with subduction zones from the southern Kuriles to Izu-Bonin and Ryukyu[J]. J Geophys Res Solid Earth,103(B7):15015–15036. doi: 10.1029/98JB00752

    Tonegawa T,Hirahara K,Shibutani T. 2005. Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses[J]. Earth Planets Space,57(1):5–14. doi: 10.1186/BF03351801

    Wang B S,Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China[J]. J Geophys Res,115(B6):B06308.

    Wang B S,Niu F L. 2011. Spatial variations of the 660-km discontinuity in the western Pacific subduction zones observed from CEArray triplication data[J]. Earthquake Science,24(1):77–85. doi: 10.1007/s11589-011-0771-9

    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions[J]. Bull Seismol Soc Am,89(3):733–741. doi: 10.1785/BSSA0890030733

    Wang T,Chen L. 2009. Distinct velocity variations around the base of the upper mantle beneath northeast Asia[J]. Phys Earth Planet Inter,172(3/4):241–256.

    Wang Y,Wen L X,Weidner D,He Y M. 2006. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia[J]. J Geophys Res,111(B7):B07305.

    Wang Z,Huang R Q,Huang J L,He Z H. 2008. P-wave velocity and gradient images beneath the Okinawa Trough[J]. Tectonophysics,455(1/2/3/4):1–13.

    Wei W,Zhao D P,Xu J D,Wei F X,Liu G M. 2015. P and S wave tomography and anisotropy in Northwest Pacific and East Asia:Constraints on stagnant slab and intraplate volcanism[J]. J Geophys Res Solid Earth,120(3):1642–1666. doi: 10.1002/2014JB011254

    Weston J,Engdahl E R,Harris J,Di Giacomo D,Storchak D A. 2018. ISC-EHB:Reconstruction of a robust earthquake data set[J]. Geophys J Int,214(1):474–484. doi: 10.1093/gji/ggy155

    Yamamoto Y,Takahashi T,Ishihara Y,Kaiho Y,Arai R,Obana K,Nakanishi A,Miura S,Kodaira S,Kaneda Y. 2018. Modeling the geometry of plate boundary and seismic structure in the southern Ryukyu trench subduction zone,Japan,using amphibious seismic observations[J]. J Geophys Res Solid Earth,123(2):1793–1809. doi: 10.1002/2017JB015330

    Yao Z W,Li C F,He G Y,Tao T S,Zheng X L,Zhang T,Tang X J,Zhao T L. 2020. Cenozoic sill intrusion in the central and southern East China Sea Shelf Basin[J]. Mar Petrol Geol,119:104465. doi: 10.1016/j.marpetgeo.2020.104465

    Zhang R Q,Gao Z Y,Wu Q J,Xie Z X,Zhang G C. 2016. Seismic images of the mantle transition zone beneath Northeast China and the Sino-Korean Craton from P-wave receiver functions[J]. Tectonophysics,675:159–167. doi: 10.1016/j.tecto.2016.03.002

    Zhao D P. 2004. Global tomographic images of mantle plumes and subducting slabs:Insight into deep Earth dynamics[J]. Phys Earth Planet Inter,146(1/2):3–34.

    Zhao D P,Tian Y,Lei J S,Liu L,Zheng S H. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia:Role of big mantle wedge above the stagnant Pacific slab[J]. Phys Earth Planet Inter,173(3/4):197–206.

    Zhao D P,Yanada T,Hasegawa A,Umino N,Wei W. 2012. Imaging the subducting slabs and mantle upwelling under the Japan Islands[J]. Geophys J Int,190(2):816–828. doi: 10.1111/j.1365-246X.2012.05550.x

    Zhao D P,Liu X,Hua Y Y. 2018. Tottori earthquakes and Daisen volcano:Effects of fluids,slab melting and hot mantle upwelling[J]. Earth Planet Sci Lett,485:121–129. doi: 10.1016/j.jpgl.2017.12.040

    Zhao D P,Wang J,Huang Z C,Liu X. 2021. Seismic structure and subduction dynamics of the western Japan arc[J]. Tectonophysics,802:228743. doi: 10.1016/j.tecto.2021.228743

图(16)  /  表(1)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  11
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-24
  • 修回日期:  2024-05-24
  • 录用日期:  2024-05-28
  • 网络出版日期:  2025-01-02
  • 刊出日期:  2025-01-29

目录

    /

    返回文章
    返回