永清MS4.3地震和廊坊MS3.0地震的发震构造研究

李赫, 董一兵, 王熠熙, 吴博洋, 彭钊

李赫, 董一兵, 王熠熙, 吴博洋, 彭钊. 2020: 永清MS4.3地震和廊坊MS3.0地震的发震构造研究. 地震学报, 42(4): 392-405. DOI: 10.11939/jass.20200021
引用本文: 李赫, 董一兵, 王熠熙, 吴博洋, 彭钊. 2020: 永清MS4.3地震和廊坊MS3.0地震的发震构造研究. 地震学报, 42(4): 392-405. DOI: 10.11939/jass.20200021
Li He, Dong Yibing, Wang Yixi, Wu Boyang, Peng Zhao. 2020: Seismogenic structure of Yongqing MS4.3 and Langfang MS3.0 earthquakes. Acta Seismologica Sinica, 42(4): 392-405. DOI: 10.11939/jass.20200021
Citation: Li He, Dong Yibing, Wang Yixi, Wu Boyang, Peng Zhao. 2020: Seismogenic structure of Yongqing MS4.3 and Langfang MS3.0 earthquakes. Acta Seismologica Sinica, 42(4): 392-405. DOI: 10.11939/jass.20200021

永清MS4.3地震和廊坊MS3.0地震的发震构造研究

基金项目: 地震科技星火计划(XH19005Y,XH20003Y,XH19004YSX)和中国地震局三结合课题(3JH-202001004)联合资助
详细信息
    通讯作者:

    董一兵: e-mail:ybdong@heuet.edu.cn

  • 中图分类号: P315.01

Seismogenic structure of Yongqing MS4.3 and Langfang MS3.0 earthquakes

  • 摘要: 基于首都圈数字地震台网的宽频带资料,首先采用CAP方法确定了永清MS4.3地震和廊坊MS3.0地震的震源机制解:永清地震节面Ⅰ的走向、倾角和滑动角分别为52°,62°和−140°,节面Ⅱ的走向、倾角和滑动角分别为300°,55°和−35°;廊坊地震节面I的走向、倾角和滑动角分别为48°,57°和−147°,节面Ⅱ的走向、倾角和滑动角分别为299°,63°和−38°。两次地震的震源机制解较为一致,推测它们可能具有相同的发震断层。利用近震转换波获得两次地震的震源深度,分别为19 km和13 km。利用双差法对两次地震的主余震进行重新定位,结果显示:两个地震序列的震中均呈NE向分布,余震震源深度均浅于主震震源深度,震源深度分别集中在17—20 km和12—13 km范围内,两个序列的短轴剖面揭示了震源分布均呈现倾向SE,倾角陡立的特点。将地震序列的分布与震源机制解的结果进行对比,认为两个序列的水平展布方向与其对应的主震震源机制解中节面Ⅰ的走向比较接近,深度分布的高倾角特征也与节面Ⅰ比较相似,因此认为发震断层面均为节面Ⅰ。通过将震源机制解中节面Ⅰ的参数和地震序列的分布与区域活动断层的产状性质进行比较,取得了一些关于发震构造和地震成因的重要认识:① 永清MS4.3地震和廊坊MS3.0地震的发震构造不是上地壳的先存正断裂−河西务断裂,不排除与中下地壳的新生构造或深大断裂有关;② 永清、廊坊地震发生在13—19 km深度上,结合地壳结构、断裂构造以及区域流变结构等资料,推测该深度范围可能是廊固凹陷的壳内脆性−韧性转换区域,是地震孕育和发生的有利构造部位。
    Abstract: On February 12, 2018 and February 3, 2019, the MS4.3 and MS3.0 earthquakes occurred in Yongqing county and Langfang city, Hebei Province, and the two epicenters were less than 10 km apart. In order to study the seismogenic structure of these two earthquakes, based on the wide-band data of the digital seismic network of the Capital Circle, the focal mechanism solutions of the two earthquakes were determined by the CAP method first. For the Yongqing earthquake, the strikes, dip angle and rake angle of nodal plane I are 52°, 62° and −140° separately; and the strikes, dip angle and rake angle of nodal plane II are 300°, 55° and −35° separately; For the Langfang earthquake, the strike, tilt angle and slide angle of nodal plane I are 48°, 57° and −147° separately, and the direction, inclination and sliding angle of joint II are 299°, 63° and −38° separately. The focal mechanism solutions of the two earthquakes are relatively consistent, hence it is speculated that they may have the same seismogenic fault. The source depths of the two earthquakes obtained by converted waves of near earthquakes are 19 km and 13 km, respectively. The double-difference method was used to relocate the main and aftershocks of the two earthquakes. The results show that the epicenters of the two earthquake sequences are NE-directed, and the aftershocks all occur above the main shock. The focal depths are respectively concentrated in the range of 17−20 km and 12−13 km. Besides, the short-axis profiles of the two sequences reveal that the source distributions are characterized by SE tendency and steep dip angle. By comparing the seismic sequence distribution with the focal mechanism solutions, it found that the horizontal distribution direction of thesequences ars closer to the trend of the joint surface I in the focal mechanism solutions of the two earthquakes, and the high dip angle characteristics of the depth distribution are also similar to the joint surface I. Therefore, the seismogenic fault plane is considered to be nodal plane I. By comparing the parameters of nodal I from the focal mechanism solutions, the distribution of seismic sequences and the attitude properties of regional active faults, some important knowledge about the seismogenic structure and the origin of earthquakes was obtained: ① The seismogenic structure of the Yongqing MS4.3 earthquake and the langfang MS3.0 earthquake are not the pre-existing normal fault of the upper crust−the Hexiwu fault, and it may relate to the nascent structure of the middle and lower crust or deep faults. ② The Yongqing and Langfang earthquakes occurred at a depth of 13−19 km. Synthesize the crustal structure, fault structure and regional rheological structure, it is speculated that this depth range may be the intracrustal brittle-ductile transition area in the Langgu depression, which is favorable structural part for earthquake preparation and occurrence.
  • 据中国地震台网测定,2018年2月12日在河北省永清县发生MS4.3地震,震中距离北京不足100 km (图1),引起京津冀多地强烈震感,是该区近年来一次较大的地震事件。震后近一年,2019年2月3日在河北省廊坊市发生MS3.0地震,震中距离永清地震仅10 km。两次地震之间是否具有成因联系及其发震构造情况均是值得关注的问题。确定永清MS4.3地震和廊坊MS3.0地震的震源性质和发震构造,对分析未来可能的地震发展趋势以及该区域的构造活动等具有重要的科学意义。

    图  1  首都圈地震台站和永清MS4.3地震、廊坊MS3.0地震震中位置及断裂分布图
    (a) 地震台站与地震震中位置分布图;(b) 永清、廊坊地震震中附近断裂分布
    Figure  1.  Distribution map of Capital Circle stations and epicenters of Yongqing MS4.3 earthquake and Langfang MS3.0 earthquake along with the faluts around
    (a) Distribution of seismic stations and epicenters;(b) Faults distribution near the epicenters of Yongqing and Langfang earthquakes

    从地质构造上来看,永清MS4.3地震和廊坊MS3.0地震的震中均位于廊固凹陷内的河西务断裂西南端(图1)。廊固凹陷位于华北渤海湾盆地的次级构造单元−冀中坳陷中北部。该坳陷东至沧县隆起,西临太行山隆起,南抵邢衡隆起,北依燕山隆起,总体呈NE−SW走向(常健等,2016),其内部包含廊固、武清、霸县等13个凹陷(徐杰,计凤桔,2015)。廊固凹陷是一个NE走向的古近纪箕状断陷盆地,整体呈现出北断南超的箕状断陷,具有东高西低,南高北低的构造格局(李德生,1980桂宝玲,2011)。该凹陷处于NW向张家口—北京—蓬莱断裂带与NE向三河—涞水—灵寿断裂带这对共轭剪切活动构造带的相交部位(徐杰,计凤桔,2015)。

    廊固凹陷沉积层厚度可达5—6 km (罗艳等,2008段永红等,2016),且地壳结构复杂(刘国栋等,19831984国家地震局 《深部物探成果》 编写组,1986嘉世旭,张先康,2005嘉世旭等,2009),对获得可靠的地震震源深度结果造成一定影响。震源深度是认识地壳脆性−韧性转换深度的关键指标,通常认为陆地地震大多发生于地壳中、上部的脆性区域,而在下地壳和上地幔的韧性区域则很少发生地震(马宗晋,薛峰,1983Stein,Wiens,1986丁志峰,曾融生,1990马宗晋等,1990张国民等,2002Scholz,2002)。因此,获取厚沉积层地区精确的震源深度对于挖掘孕育和产生地震的深部构造信息是十分关键的科学工作(罗艳等,2013)。此外,据中国地震台网正式测定,永清MS4.3地震和廊坊MS3.0地震的震源深度同为20 km,为下地壳地震。精确的地震震源深度,能够很大程度上揭示出该地区不同深度的构造活动及机理,对深刻了解该区地震危险性具有重要意义,因此尚需验证上述结果的准确性。

    地质学研究表明(徐杰,计凤桔,2015),渤海湾盆地在古近纪时地壳受到强烈的伸展作用,在上地壳形成了许多坡坪状正断层,控制了多个断陷盆地的发育,从而构成伸展构造体系;新构造时期受青藏高原东部地块碰撞推挤使得华北陆块产生北东东至近东西向挤压,形成了NW向左旋和NE向右旋的共轭走滑断裂体系。深地震反射资料显示,廊固凹陷上地壳浅部多数先存铲形正断裂归并于结晶基底;在永清地区附近发现一条切穿上、下地壳分界面以及莫霍面的新生超壳深断裂,具有右旋走滑正断性质,走向NE,倾角较陡近于直立,倾向SE,称为“新夏垫深断裂”(赵金仁等,2004刘保金等,2011赵成彬等,2013徐杰,计凤桔,2015李赫等,2020),该深断裂两侧存在地幔物质侵入的迹象,上地幔热物质侵入地壳可能是控制铲状正断层发育、低速异常体的形成以及导致渤海湾盆地中强地震发生的动力条件之一(曾融生等,1991赵成彬等,2013王椿镛等,2017)。在此地质构造背景下孕育了永清MS4.3地震和廊坊MS3.0地震。此次地震活动性质是否与区域构造应力场相符,发震构造与上述断裂是否存在关联等,这些问题的解答将对判断首都圈地区地震活动以及地震危险性具有重要意义。

    据此,本文拟选用首都圈数字地震台网的宽频带数据,首先采用CAP方法(Zhao,Helmberger,1994Zhu,Helmberger,1996)反演永清MS4.3地震和廊坊MS3.0地震震源机制解和矩心深度;然后利用结晶基底转换波(董一兵等,2018)获得更准确的震源深度结果;最后利用HYPODD (Waldhauser,Ellsworth,2000)对这两次地震序列进行精定位;在此基础上,结合地球物理探测等资料,分析永清、廊坊地震发震构造以及成因等,以期为研究区域地震孕震机理及构建该区地球动力学模型提供参考依据。

    利用首都圈数字地震台网提供的宽频带波形资料,根据波形数据信噪比以及台站分布等条件,选取震中距40—240 km范围内的25个台站波形数据进行处理。廊固凹陷具有地幔上隆、幔源物质上侵、地壳减薄、地表张裂下陷及巨幅沉积等特征(嘉世旭,张先康,2005),因此,参考Crust1.0速度结构模型,并结合本区已有研究成果(孙若昧,刘福田,1995孙若昧等,1996嘉世旭,张先康,2005黄建平等,2009嘉世旭等,2009),建立如图2所示的地壳速度模型。

    图  2  永清—廊坊震源区地壳速度模型
    Figure  2.  Crustal velocity model of the Yongqing-Langfang source area

    基于上述地壳速度模型,采用CAP方法(Zhao,Helmberger,1994Zhu,Helmberger,1996)反演永清MS4.3地震和廊坊MS3.0地震的震源机制解和矩心深度,并将Pnl和面波的反演波段分别进行0.05—0.15 Hz和0.05—0.1 Hz的带通滤波。图34显示出,两次地震的理论地震图与观测波形拟合地较好。从表1可以看出,两次地震的震源性质较为一致,均呈现出拉张兼走滑的特征;P轴方位角分别为269° 和261°,表现为近ENE−SWS向,与渤海湾盆地构造应力场方向基本相同(徐锡伟等,2002徐杰,计凤桔,2015)。

    表  1  基于不同地壳模型的永清MS4.3地震和廊坊MS3.0地震震源机制解对比
    Table  1.  Comparison of the focal mechanism solutions of Yongqing MS4.3 earthquake and Langfang MS3.0 earthquake based on different crust models
    地震节面Ⅰ节面ⅡT B P 深度
    /km
    速度模型
    走向
    倾角
    滑动角
    走向
    倾角
    滑动角
    方位角
    仰角
    方位角
    仰角
    方位角
    仰角
    永清MS4.3
    5262−14030055−35175481432694719本文
    5362−14230357−34177384442684619谢祖军 (2013)
    廊坊MS3.0
    4857−14729963−38354488452614514本文
    4956−14229559−41353285412614914黄建平等 (2009)
    下载: 导出CSV 
    | 显示表格
    图  3  永清MS4.3地震震源机制解及理论波形(红色)与观测波形(黑色)对比图
    波形左侧数据依次为台站名、震中距 (单位:km)及方位角 (单位:°),波形下方的数字表示理论波形相对于实际波形的移动时间 (单位:s) 及二者的相关系数
    Figure  3.  Focal mechanism solutions and comparison diagram of the synthetic (red) and observed (black) waveforms for the Yongqing MS4.3 earthquake
    The station names are given on the left,and the numbers on right and below are epicentral distances (unit in km) and azimuths (unit in degree). Number below the traces are the time shift (unit in second) of the synthetic waveforms relative to the observed ones as well as the corresponding cross-correlation
    图  4  廊坊MS3.0地震震源机制解及理论波形(红色)与观测波形(黑色)对比图 (数据含义同图3)
    Figure  4.  Focal mechanism solutions and comparison diagram of the synthetic (red) and observed (black) waveforms for the Langfang MS3.0 earthquake
    Data meanings of the waveforms are the same as Fig.3

    同时基于不同地壳速度模型进行反演计算以验证震源机制解结果的可靠性,节面解及矩心深度等结果基本一致(表1)。由此可见,永清MS4.3地震与廊坊MS3.0地震的震源机制解和P轴方位角基本相同,推测它们具有相同的发震构造。图5揭示出永清MS4.3地震和廊坊MS3.0地震最佳拟合矩心深度分别为19 km和13 km。

    图  5  永清MS4.3地震(a)和廊坊MS3.0地震(b)震源机制解反演残差随深度的变化
    Figure  5.  Variation of fitting error with focal depth for the Yongqing MS4.3 earthquake (a) and the Langfang MS3.0 earthquake (b)

    对发生于沉积盆地中的地震,可采用近震Sp转换波来测定震源深度(董一兵等,2018)。通过对永清MS4.3地震和廊坊MS3.0地震的近台波形资料进行分析,观察到FHY台的记录可识别出比较清晰的直达P波、SP转换波、直达S波等震相。因此,为了获取FHY台不同深度处的合成地震图,首先采用频率-波数法(Zhu,Rivera,2002)计算其合成地震图;然后将合成地震图与实测波形进行比较(图6)。从图6中可以看出,在19 km和13 km深度上,P波、SP转换波、S波均拟合较好,表明永清MS4.3地震和廊坊MS3.0地震的深度分别为19 km和13 km。结合CAP方法反演得到的最佳拟合矩心深度,推测这两次地震的深度应当分别在19 km和13 km。

    图  6  利用基底SP转换波测定永清MS4.3地震(a)和廊坊MS3.0地震(b)的震源深度
    Figure  6.  Resolving focal depth for Yongqing MS4.3 earthquake (a) and Langfang MS3.0 earthquake (b) with SP wave

    永清MS4.3地震和廊坊MS3.0地震余震序列的地震活动存在较大差异,永清序列较活跃,而廊坊序列余震较少。采用图2中的地壳速度模型,利用双差精定位法(Waldhauser,Ellsworth,2000)中的奇异值分解法对这两个序列开展精定位,得到了地震序列的震中分布等(图7)。永清序列和廊坊序列的相对定位误差结果分别为:NS向71.6 m,52.9 m;EW向65.6 m,50.8 m;垂直向143.3 m,112.4 m。永清MS4.3地震和廊坊MS3.0地震震中位置分别为(39.38°N,116.63°E)和(39.42°N,116.67°E)。图7给出了两个地震序列的双差精定位结果,从图中可以看出,永清MS4.3地震和廊坊MS3.0地震的震源初始破裂深度分别为19.3 km和12.8 km,与其矩心深度基本一致;两次地震序列的震中分布均为NE向,震源深度分别集中在17—20 km和12—13 km范围内;在短轴A′ AC′ C剖面上,震源分布均呈现为倾向SE、近于直立的特征;另外余震均位于主震之上,表明地震破裂起源于深部,而后向浅部破裂。综上,我们认为永清MS4.3地震序列和廊坊MS3.0地震序列可能具有相同的发震构造,该构造具有走向NE、倾向SE、倾角陡立的特性。

    图  7  永清MS4.3地震序列和廊坊MS3.0地震序列双差精定位结果
    (a) 两次地震序列的震中分布图; (b) BB′ 剖面震源深度分布图; (c) A′ A剖面震源深度分布图; (d) C′ C剖面震源深度分布图
    Figure  7.  Relocated results of Yongqing MS4.3 and Langfang MS3.0 earthquake sequences by HYPODD
    (a) Epicenter distributions map of earthquake sequences;(b) Focal depth distribution of BB′ profile; (c) Focal depth distribution of A′ A profile;(d) Focal depth distribution of C′ C profile

    为了确定永清、廊坊两次地震的发震断层面,将地震序列的分布图像与主震的震源机制解进行对比,可以看出(图7):两个地震序列的水平展布方向与节面Ⅰ的走向比较一致,深度分布的高倾角特征也与节面Ⅰ比较相似,由此我们推测:永清地震和廊坊地震的发震断层面可能均为节面Ⅰ。另外,通过分析两次地震的震源机制解和精定位结果,表明它们可能具有相同的发震构造。从图1b可以看出,两次地震的震中距离河西务断裂均较近,为了确定该断裂是否为发震断裂,需要将发震断层面的特征与其产状性质进行比较。两次地震的震源机制解的节面Ⅰ揭示了发震断层的产状应为:走向NE,倾向SE,倾角较陡,震源错动类型为走滑兼具正断分量。综合地球物理探测结果和已有的研究资料显示(桂宝玲,2011赵成彬等,2013),河西务断裂走向NE,倾向SE,倾角约为65°,性质为正断,且上陡下缓,埋深约为10 km (图8)。通过对比可以看出,节面Ⅰ与河西务断裂的走向、倾角、倾向以及性质均比较一致,但是,地震重定位的结果表明,两个序列的地震深度分布在12—20 km范围内,而河西务断裂最大深度约为10 km,距震源存在一定距离,因此推测,永清MS4.3地震和廊坊MS3.0地震的发震断层并不是河西务断裂,而可能与上述地震震源区的深部地质构造有关。

    图  8  深地震反射探测剖面图
    F1:河西务断裂,F2:宝坻断裂,F3:夏垫断裂,FM:地壳深大断裂
    Figure  8.  The deep seismic reflection profile
    F1:Hexiwu fault;F2:Baodi fault;F3:Xiadian fault; FM:Deep crust fault

    地球物理探测等资料为判断永清MS4.3地震和廊坊MS3.0地震的发震构造提供了重要的参考依据。这些资料显示,永清、廊坊地震震源区附近构造特征为:上地壳厚约18 km,下地壳厚约16 km,低速高导层位于上、下地壳交界处;上地壳主要以脆性破裂为主,下地壳则以韧性变形为主;上地壳浅部多数先存正断裂归并于结晶基底,下地壳存在切穿上、下地壳分界面以及莫霍面的新生右旋走滑正断深断裂(图8)(徐锡伟等,2002赵金仁等;2004刘保金等,2011赵成彬等,2013徐杰,计凤桔,2015)。永清MS4.3地震以及廊坊MS3.0地震的发震断层面与该深断裂较为吻合,认为这两次地震的发震构造可能是新生地壳深断裂,即“新夏垫深断裂”(李赫等,2020)。另外受渤海湾盆地邢台MS7.2地震和唐山MS7.8地震发震构造认识的启示,上述大地震均是由中、下地壳深大断裂向地壳浅部发生贯通破裂所致(徐杰,计凤桔,2015王椿镛等,2017),精定位结果表明这两次地震序列均是由深部向浅部破裂,并且这两次地震的震源机制解结果也与渤海湾盆地区域构造应力场一致,据此我们推测永清MS4.3地震和廊坊MS3.0地震是因中、下地壳深大断裂向上地壳发生贯通破裂所引起的。

    从震源位置上看,永清、廊坊地震分别发生在19 km和13 km深度上,处于上、下地壳的过渡区域(徐锡伟等,2002赵成彬等,2013徐杰,计凤桔,2015);大量研究成果显示,廊固凹陷下方约15—19 km深处广泛分布着低速异常体,而低速体的埋深大致描述了地震活动深度的下界(刘国栋等,19831984张国民等,2002嘉世旭,张先康,2005王帅军等,2007嘉世旭等,2009徐亚等,2011姜文亮,张景发,2012赵博等,2013杨歧焱等,2018)。因此,这两次地震的发生不仅与地壳深大断裂相关,还与震源区的地壳构造背景等有关,其成因可能是:渤海湾盆地正处于挤压剪切构造变形应力环境下,有利于下地壳走滑断裂活动;同时,研究区上地幔的局部隆起有利于在地壳脆韧性过渡区域发生应力积累,当积累的应力超过了地壳的屈服强度,就会引起岩石的失稳破坏(徐锡伟等,2002赵成彬等,2013徐杰,计凤桔,2015王椿镛等,2017)。综上所述,结合地壳结构(刘国栋等,19831984张国民等,2002嘉世旭,张先康,2005王帅军等,2007嘉世旭等,2009徐亚等,2011姜文亮,张景发,2012赵博等,2013杨歧焱等,2018)、断裂构造(赵成彬等,2013徐杰,计凤桔,2015)以及区域流变结构(孙玉军等,2013)等资料,推测廊固凹陷下方13—19 km深度范围可能是壳内脆性−韧性转换区域,为地震孕育和发生的有利构造部位。

    为了探析永清MS4.3地震和廊坊MS3.0地震的发震构造。选用首都圈数字地震台网的宽频带记录,采用CAP方法计算得到这两次地震的震源机制解和矩心深度,利用近震转换波,获得了准确的矩心深度;结合HYPODD方法获得两个地震序列的重定位结果;通过将地震序列的分布与震源机制解的结果以及地球物理探测等资料进行对比分析,形成了关于这两次地震发震构造和成因的一些初步认识,主要认识如下:

    1) 两次地震的震源机制解结果分别为:永清MS4.3地震节面Ⅰ的走向、倾角、滑动角分别为52°,62°,−140°,节面Ⅱ的走向、倾角、滑动角分别为300°,55°,−35°;廊坊MS3.0地震节面I的走向、倾角、滑动角分别为48°,57°,−147°,节面Ⅱ的走向、倾角、滑动角分别为299°,63°,−38°。两次地震的震源机制解结果基本相同,故推测它们发生在同一条断层上。结合基底转换波SP测定深度结果,确定两次地震的矩心深度分别为19 km和13 km。

    2) 永清MS4.3地震和廊坊MS3.0地震震中位置分别为(39.38°N,116.63°E)和(39.42°N,116.67°E);两个地震序列的震中分布呈NE向;永清、廊坊地震震源初始破裂深度分别为19.3 km和12.8 km,余震震源深度分别分布在17—20 km和12—13 km范围内;余震均位于主震上部;两个序列的短轴剖面均揭示了发震断层面具有倾向SE、倾角陡立的特征。基于重定位后的震中分布和主震震源机制解,推测这两次地震的同震破裂面均为节面Ⅰ。结合地球物理探测等有关材料,认为这两次地震的发震构造不是上地壳的先存正断裂−河西务断裂,不排除与中下地壳的新生构造或深大断裂有关。

    3) 永清、廊坊地震发生在13—19 km深度上,结合地壳结构、断裂构造以及区域流变结构等资料,推测该深度范围可能是廊固凹陷的壳内脆性−韧性转换区域,是地震孕育和发生的有利构造部位。

  • 图  1   首都圈地震台站和永清MS4.3地震、廊坊MS3.0地震震中位置及断裂分布图

    (a) 地震台站与地震震中位置分布图;(b) 永清、廊坊地震震中附近断裂分布

    Figure  1.   Distribution map of Capital Circle stations and epicenters of Yongqing MS4.3 earthquake and Langfang MS3.0 earthquake along with the faluts around

    (a) Distribution of seismic stations and epicenters;(b) Faults distribution near the epicenters of Yongqing and Langfang earthquakes

    图  2   永清—廊坊震源区地壳速度模型

    Figure  2.   Crustal velocity model of the Yongqing-Langfang source area

    图  3   永清MS4.3地震震源机制解及理论波形(红色)与观测波形(黑色)对比图

    波形左侧数据依次为台站名、震中距 (单位:km)及方位角 (单位:°),波形下方的数字表示理论波形相对于实际波形的移动时间 (单位:s) 及二者的相关系数

    Figure  3.   Focal mechanism solutions and comparison diagram of the synthetic (red) and observed (black) waveforms for the Yongqing MS4.3 earthquake

    The station names are given on the left,and the numbers on right and below are epicentral distances (unit in km) and azimuths (unit in degree). Number below the traces are the time shift (unit in second) of the synthetic waveforms relative to the observed ones as well as the corresponding cross-correlation

    图  4   廊坊MS3.0地震震源机制解及理论波形(红色)与观测波形(黑色)对比图 (数据含义同图3)

    Figure  4.   Focal mechanism solutions and comparison diagram of the synthetic (red) and observed (black) waveforms for the Langfang MS3.0 earthquake

    Data meanings of the waveforms are the same as Fig.3

    图  5   永清MS4.3地震(a)和廊坊MS3.0地震(b)震源机制解反演残差随深度的变化

    Figure  5.   Variation of fitting error with focal depth for the Yongqing MS4.3 earthquake (a) and the Langfang MS3.0 earthquake (b)

    图  6   利用基底SP转换波测定永清MS4.3地震(a)和廊坊MS3.0地震(b)的震源深度

    Figure  6.   Resolving focal depth for Yongqing MS4.3 earthquake (a) and Langfang MS3.0 earthquake (b) with SP wave

    图  7   永清MS4.3地震序列和廊坊MS3.0地震序列双差精定位结果

    (a) 两次地震序列的震中分布图; (b) BB′ 剖面震源深度分布图; (c) A′ A剖面震源深度分布图; (d) C′ C剖面震源深度分布图

    Figure  7.   Relocated results of Yongqing MS4.3 and Langfang MS3.0 earthquake sequences by HYPODD

    (a) Epicenter distributions map of earthquake sequences;(b) Focal depth distribution of BB′ profile; (c) Focal depth distribution of A′ A profile;(d) Focal depth distribution of C′ C profile

    图  8   深地震反射探测剖面图

    F1:河西务断裂,F2:宝坻断裂,F3:夏垫断裂,FM:地壳深大断裂

    Figure  8.   The deep seismic reflection profile

    F1:Hexiwu fault;F2:Baodi fault;F3:Xiadian fault; FM:Deep crust fault

    表  1   基于不同地壳模型的永清MS4.3地震和廊坊MS3.0地震震源机制解对比

    Table  1   Comparison of the focal mechanism solutions of Yongqing MS4.3 earthquake and Langfang MS3.0 earthquake based on different crust models

    地震节面Ⅰ节面ⅡT B P 深度
    /km
    速度模型
    走向
    倾角
    滑动角
    走向
    倾角
    滑动角
    方位角
    仰角
    方位角
    仰角
    方位角
    仰角
    永清MS4.3
    5262−14030055−35175481432694719本文
    5362−14230357−34177384442684619谢祖军 (2013)
    廊坊MS3.0
    4857−14729963−38354488452614514本文
    4956−14229559−41353285412614914黄建平等 (2009)
    下载: 导出CSV
  • 常健,邱楠生,赵贤正,许威,徐秋晨,金凤鸣,韩春元,马学峰,董雄英,梁小娟. 2016. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报,59(3):1003–1016. doi: 10.6038/cjg20160322

    Chang J,Qiu N S,Zhao X Z,Xu W,Xu Q C,Jin F M,Han C Y,Ma X F,Dong X Y,Liang X J. 2016. Present-day geothermal regime of the Jizhong depression in Bohai Bay basin,East China[J]. Chinese Journal of Geophysics,59(3):1003–1016 (in Chinese).

    丁志峰,曾融生. 1990. 京津唐地区震源深度分布初探[J]. 地震学报,12(2):242–247.

    Ding Z F,Zeng R S. 1990. A preliminary study of focal depth distribution in the Beijing-Tianjin-Tangshan area[J]. Acta Seismologica Sinica,12(2):242–247 (in Chinese).

    董一兵,倪四道,李志伟,孟立朋,朱音杰,刘新. 2018. 基于近震转换波的沉积层地区震源深度测定方法[J]. 地球物理学报,61(1):199–215. doi: 10.6038/cjg2018L0184

    Dong Y B,Ni S D,Li Z W,Meng L P,Zhu Y J,Liu X. 2018. Resolving focal depth based on local converted seismic waves in sedimentary regions[J]. Chinese Journal of Geophysics,61(1):199–215 (in Chinese).

    段永红,王夫运,张先康,林吉焱,刘志,刘保峰,杨卓欣,郭文斌,魏运浩. 2016. 华北克拉通中东部地壳三维速度结构模型(HBCrust1.0)[J]. 中国科学:地球科学,46(6):845–856.

    Duan Y H,Wang F Y,Zhang X K,Lin J Y,Liu Z,Liu B F,Yang Z X,Guo W B,Wei Y H. 2016. Three dimensional crustal velocity structure model of the middle-eastern North China Craton (HBCrust1.0)[J]. Scientia Sinica Terrae,46(6):845–856 (in Chinese).

    桂宝玲. 2011. 伸展盆地构造几何学、运动学: 以渤海湾盆地廊固凹陷为例[D]. 北京: 中国地质大学(北京): 67–68.

    Gui B L. 2011. The Structural Geometry and Kinemics of Extensional Basin: An Example from Langfang−Gu′an Depression Bohai Gulf Basin[D]. Beijing: China University of Geosciences (Beijing): 67–68 (in Chinese).

    国家地震局 《深部物探成果》 编写组. 1986. 中国地壳上地幔地球物理探测成果[M]. 北京: 地震出版社: 112–113.

    Editional Group for Deep Geophysical Exploration Results, State Seismological Bureau. 1986. Geophysical Exploration Results of Mantle Upper Mantle in China[M]. Beijing: Seismological Press: 112–113 (in Chinese).

    黄建平,倪四道,傅容珊,钮凤林,邵志刚,郑勇. 2009. 综合近震及远震波形反演2006文安地震(MW5.1)的震源机制解[J]. 地球物理学报,52(1):120–130.

    Huang J P,Ni S D,Fu R S,Niu F L,Shao Z G,Zheng Y. 2009. Source mechanism of the 2006 MW5.1 Wen’an earthquake determined from a joint inversion of local and teleseismic broadband waveform data[J]. Chinese Journal of Geophysics,52(1):120–130 (in Chinese). doi: 10.1002/cjg2.1333

    嘉世旭,张先康. 2005. 华北不同构造块体地壳结构及其对比研究[J]. 地球物理学报,48(3):611–620. doi: 10.3321/j.issn:0001-5733.2005.03.019

    Jia S X,Zhang X K. 2005. Crustal structure and comparison of different tectonic blocks in North China[J]. Chinese Journal of Geophysics,48(3):611–620 (in Chinese). doi: 10.1002/cjg2.694

    嘉世旭,张成科,赵金仁,方盛明,刘志,赵俊猛. 2009. 华北东北部裂陷盆地与燕山隆起地壳结构[J]. 地球物理学报,52(1):99–110.

    Jia S X,Zhang C K,Zhao J R,Fang S M,Liu Z,Zhao J M. 2009. Crustal structure of the rift-depression basin and Yanshan uplift in the northeast part of North China[J]. Chinese Journal of Geophysics,52(1):99–110 (in Chinese).

    姜文亮,张景发. 2012. 首都圈地区精细地壳结构-基于重力场的反演[J]. 地球物理学报,55(5):1646–1661. doi: 10.6038/j.issn.0001-5733.2012.05.022

    Jiang W L,Zhang J F. 2012. Fine crustal structure beneath Capital area of China derived from gravity[J]. Chinese Journal of Geophysics,55(5):1646–1661 (in Chinese).

    李德生. 1980. 渤海湾含油气盆地的地质和构造特征[J]. 石油学报,1(1):6–20. doi: 10.7623/syxb198001002

    Li D S. 1980. Geology and structural characteristics of Bohai Bay,China[J]. Acta Petrolei Sinica,1(1):6–20 (in Chinese).

    李赫,董一兵,王熠熙,彭研枫,刘双庆,吴博洋. 2020. 廊固凹陷深部剪切破裂构造的地震学证据[J]. 地球物理学报,63(2):492–504. doi: 10.6038/cjg2020N0192

    Li H,Dong Y B,Wang Y X,Peng Y F,Liu S Q,Wu B Y. 2020. Seismological evidence for a deep-seated shear zone in the Langgu depression[J]. Chinese Journal of Geophysics,63(2):492–504 (in Chinese).

    刘保金,曲国胜,孙铭心,刘亢,赵成彬,徐锡伟,酆少英,寇昆朋. 2011. 唐山地震区地壳结构和构造:深地震反射剖面结果[J]. 地震地质,33(4):901–912. doi: 10.3969/j.issn.0253-4967.2011.04.014

    Liu B J,Qu G S,Sun M X,Liu K,Zhao C B,Xu X W,Feng S Y ,Kou K P. 2011. Crustal structures and tectonics of Tangshan earthquake area:Results from deep seismic reflection profiling[J]. Seismology and Geology,33(4):901–912 (in Chinese).

    刘国栋,顾群,史书林,孙洁,石障松,刘金汉. 1983. 京津唐渤和周围地区地壳上地幔电性结构及其与地震活动性的关系[J]. 地球物理学报,26(2):149–157. doi: 10.3321/j.issn:0001-5733.1983.02.006

    Liu G D,Gu Q,Shu S L,Sun J,Shi Z S,Liu J H. 1983. The electrical structure of the crust and upper mantle and its relationship with seismicity in the Beijing-Tianjin-Tangshan region and adjacent area[J]. Acta Geophysica Sinica,26(2):149–157 (in Chinese).

    刘国栋,史书林,王宝钧. 1984. 华北地区壳内高导层及其与地壳构造活动性的关系[J]. 中国科学:B辑,14(9):839–848.

    Liu G D,Shi S L,Wang B J. 1984. The relationship between the high conductivity layer in the crust and its tectonic activity in North China[J]. Science in China :Series B,14(9):839–848 (in Chinese).

    罗艳,崇加军,倪四道,陈棋福,陈颙. 2008. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报,51(4):1135–1145. doi: 10.3321/j.issn:0001-5733.2008.04.022

    Luo Y,Chong J J,Ni S D,Chen Q F,Chen Y. 2008. Moho depth and sedimentary thickness in Capital region[J]. Chinese Journal of Geophysics,51(4):1135–1145 (in Chinese).

    罗艳,曾祥方,倪四道. 2013. 震源深度测定方法研究进展[J]. 地球物理学进展,28(5):2309–2321. doi: 10.6038/pg20130513

    Luo Y,Zeng X F,Ni S D. 2013. Progress on the determination of focal depth[J]. Progress in Geophysics,28(5):2309–2321 (in Chinese).

    马宗晋,薛峰. 1983. 中国大陆地震深度分布与“易震层”初探[J]. 地震科学研究,3(3):43–46.

    Ma Z J,Xue F. 1983. Preliminary study on the depth distribution of earthquakes in China and the “Easy Layer”[J]. Earthquake Science Research,3(3):43–46 (in Chinese).

    马宗晋,张家声,刘国栋,刘若新. 1990. 大陆多震层研究现状和讨论[J]. 地震地质,12(3):262–264.

    Ma Z J,Zhang J S,Liu G D,Liu R X. 1990. Current status and discussion of multi-seismic strata in the mainland[J]. Seismology and Geology,12(3):262–264 (in Chinese).

    孙若昧,刘福田. 1995. 京津唐地区地壳结构与强震的发生:Ⅰ. P波速度结构[J]. 地球物理学报,38(5):599–607. doi: 10.3321/j.issn:0001-5733.1995.05.006

    Sun R M,Liu F T. 1995. Crust structure and strong earthquake in Beijing,Tianjin,Tangshan area:Ⅰ. P wave velocity structure[J]. Acta Geophysica Sinica,38(5):599–607 (in Chinese).

    孙若昧,赵燕来,吴丹. 1996. 京津唐地区地壳结构与强震的发生:Ⅱ. S波速度结构[J]. 地球物理学报,39(3):347–355. doi: 10.3321/j.issn:0001-5733.1996.03.008

    Sun R M,Zhao Y L,Wu D. 1996. Crust structures and strong earthquake in Beijing,Tianjin,Tangshan area:Ⅱ. S wave velocity structure[J]. Acta Geophysica Sinica,39(3):347–355 (in Chinese).

    孙玉军,董树文,范桃园,张怀,石耀霖. 2013. 中国大陆及邻区岩石圈三维流变结构[J]. 地球物理学报,56(9):2936–2946. doi: 10.6038/cjg20130908

    Sun Y J,Dong S W,Fan T Y,Zhang H,Shi Y L. 2013. 3D rheological structure of the continental lithosphere beneath China and adjacent regions[J]. Chinese Journal of Geophysics,56(9):2936–2946 (in Chinese).

    王椿镛,吴庆举,段永红,王志铄,楼海. 2017. 华北地壳上地幔结构及其大地震深部构造成因[J]. 中国科学:地球科学,47(6):684–719.

    Wang C Y,Wu Q J,Duan Y H,Wang Z S,Lou H. 2017. Crustal and upper mantle structure and deep tectonic genesis of large earthquakes in North China[J]. Science China Earth Sciences,60(5):821–857. doi: 10.1007/s11430-016-9009-1

    谢祖军. 2013. 中国地区基于背景噪声的瑞利面波层析成像及震源参数研究[D]. 北京: 中国科学院大学: 55–56.

    Xie Z J. 2013. Rayleighian Surface Tomography and Source Parameters Research Based on Background Noise in China[D]. Beijing: University of Chinese Academy of Sciences: 55–56 (in Chinese).

    王帅军,张先康,张成科,王夫运,赵金仁,张建狮,刘宝峰,潘素珍,盖玉杰. 2007. 武清—北京—赤城二维地壳结构和构造[J]. 地球物理学报,50(6):1769–1777. doi: 10.3321/j.issn:0001-5733.2007.06.017

    Wang S J,Zhang X K,Zhang C K,Wang F Y,Zhao J R,Zhang J S,Liu B F,Pan S Z,Gai Y J. 2007. 2-D crustal structures along Wuqing-Beijing-Chicheng deep seismic sounding profile[J]. Chinese Journal of Geophysics,50(6):1769–1777 (in Chinese).

    徐杰, 计凤桔. 2015. 渤海湾盆地构造及其演化[M]. 北京: 地震出版社: 234–256.

    Xu J, Ji F J. 2015. Tectonics and Evolution of Bohai Bay Basin[M]. Beijing: Seismological Press: 234–256.

    徐锡伟, 吴卫民, 张先康. 2002. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社: 134–154.

    Xu X W, Wu W M, Zhang X K. 2002. The Latest Tectonic Changes and Earthquakes in the Crust of the Capital Zone[M]. Beijing: Science Press: 134–154 (in Chinese).

    徐亚,郝天珧,黄松,李志伟,吕川川,赵百民,胡卫剑. 2011. 渤海湾地区壳幔结构重磁综合研究[J]. 地球物理学报,54(12):3344–3351. doi: 10.3969/j.issn.0001-5733.2011.12.032

    Xu Y,Hao T Y,Huang S,Li Z W,Lü C C,Zhao B M,Hu W J. 2011. Crustal and mantle structure of the Bohai Bay area based on the gravity and magnetic data[J]. Chinese Journal of Geophysics,54(12):3344–3351 (in Chinese).

    杨歧焱,吴庆举,盛艳蕊,高家乙,宋键,邸龙. 2018. 张渤地震带及邻区近震体波成像及孕震环境分析[J]. 地球物理学报,61(8):3251–3262. doi: 10.6038/cjg2018L0628

    Yang Q Y,Wu Q J,Sheng Y R,Gao J Y,Song J,Di L. 2018. Regional seismic body wave tomography and deep seismogenic environment beneath Zhangbo seismic belt and its adjacent area[J]. Chinese Journal of Geophysics,61(8):3251–3262 (in Chinese).

    曾融生,朱露培,何正勤,丁志峰,孙为国. 1991. 华北盆地强震的震源模型兼论强震和盆地的成因[J]. 地球物理学报,34(3):288–301. doi: 10.3321/j.issn:0001-5733.1991.03.004

    Zeng R S,Zhu L P,He Z Q,Ding Z F,Sun W G. 1991. A seismic source model of the large earthquakes in North China extensional basin and discussions on the genetic processes of the extensional basin and earthquakes[J]. Acta Geophysica Sinica,34(3):288–301 (in Chinese).

    张国民,汪素云,李丽,张晓东,马宏生. 2002. 中国大陆地震震源深度及其构造含义[J]. 科学通报,47(9):663–668. doi: 10.3321/j.issn:0023-074X.2002.09.004

    Zhang G M,Wang S Y,Li L,Zhang X D,Ma H S. 2002. Focal depth research of earthquakes in mainland China:Implication for tectonics[J]. Chinese Science Bulletin,47(12):969–974.

    赵博,高原,石玉涛. 2013. 用双差定位结果分析华北地区的地震活动[J]. 地震,33(1):12–21. doi: 10.3969/j.issn.1000-3274.2013.01.002

    Zhao B,Gao Y,Shi Y T. 2013. Relocation of small earthquakes in North China using double difference algorithm[J]. Earthquake,33(1):12–21 (in Chinese).

    赵成彬,刘保金,姬计法,酆少英,石金虎. 2013. 北京南部地壳精细结构深地震反射探测研究[J]. 地球物理学报,56(4):1168–1176. doi: 10.6038/cjg20130412

    Zhao C B,Liu B J,Ji J F,Feng S Y,Shi J H. 2013. Fine crustal structure in the south of Beijing revealed by deep seismic reflection profiling[J]. Chinese Journal of Geophysics,56(4):1168–1176 (in Chinese).

    赵金仁,张先康,张成科,张建狮,杨卓欣,刘宝峰,刘保金,赵成斌. 2004. 利用宽角反射/折射和深反射探测剖面揭示三河—平谷大震区深部结构特征[J]. 地球物理学报,47(4):646–653. doi: 10.3321/j.issn:0001-5733.2004.04.015

    Zhao J R,Zhang X K,Zhang C K,Zhang J S,Yang Z X,Liu B F,Liu B J,Zhao C B. 2004. Deep structural features of the Sanhe-Pinggu great earthquake area imaged by wide-angle and deep seismic reflection profiling[J]. Chinese Journal of Geophysics,47(4):646–653 (in Chinese).

    Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd ed. Cambridge: Cambridge University Press: 167–174.

    Stein S,Wiens D A. 1986. Depth determination for shallow teleseismic earthquakes:Methods and results[J]. Rev Geophys,24(4):806–832. doi: 10.1029/RG024i004p00806

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the Northern Hayward Fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.

    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641.

    Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x

图(8)  /  表(1)
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  603
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-10
  • 修回日期:  2020-04-13
  • 网络出版日期:  2020-08-26
  • 发布日期:  2020-07-14

目录

/

返回文章
返回