Three-dimensional P-wave velocity structure around the sources of Ludian and Qiaojia earthquakes
-
摘要: 本文利用2010年1月至2020年6月巧家地震和鲁甸地震震源区周围发生地震事件的走时观测资料,应用双差层析成像方法获得了2014年MS6.5鲁甸地震和2020年5月18日巧家MS5.0地震周边区域中上地壳的P波速度结构。成像结果显示:整个研究区域的速度结构存在很强的非均匀性:在鲁甸地震震源区附近,浅部存在速度高达6.4 km/s的显著高速异常,10 km深度以下存在速度低至约5.8 km/s的明显低速异常;鲁甸地震的初始破裂点位于高低速异常的过渡带;在2010年巧家MS4.8和2020年巧家MS5.0地震的震源区,尽管浅部没有显著的高速异常,但在主震的初始破裂点下方均存在明显的局部低速异常;巧家北部中上地壳存在明显低速异常。Abstract: Using travel times of earthquakes from January 2010 to June 2020 in the region of Qiaojia and Ludian, we obtained three-dimensional P-wave seismic velocity structures around the source areas of Qiaojia and Ludian earthquakes by double-difference tomography. The result show that the velocity structure in this area is strongly heterogeneous, which affects the distribution of active faults. In the source region of the Ludian earthquake, there is a significant P wave high velocity anomaly with a maximum velocity up to 6.4 km/s, and an obvious P wave low velocity anomaly with a minimum velocity of about 5.8 km/s below the depth of 10 km. The occurrence of Ludian earthquake may be related to the difference of mechanical properties between deep and shallow rocks and the presence of fluid in mid-upper crustal rocks. In the source areas of the 2010 Qiaojia MS4.8 earthquake and the 2020 Qiaojia MS5.0 earthquake, although there are no significant high-velocity anomalies in the shallow crust, there are obvious local low-velocity anomalies beneath the initial rupture point of the main shock. In addition, there are obvious low velocity anomalies in the middle and upper crust of northern Qiaojia.
-
-
图 1 研究区周边的活动断裂与2010年以来MS>4.0地震分布(房立华等,2014)
F1:则木河断裂;F2:小江断裂;F3:大凉山断裂;F4:莲峰断裂;F5:龙树断裂;F6:包谷垴—小河断裂;F7:昭通—鲁甸断裂;F8:会泽—彝良断裂
Figure 1. Distribution of active faults and the epicenters of MS>4.0 earthquakes in the studied region since 2010
F1:Zemuhe fault;F2:Xiaojiang fault;F3:Daliangshan fault;F4:Lianfeng fault;F5:Longshu fault;F6:Baogunao-Xiaohe fault;F7:Zhaotong-Ludian fault;F8:Huize-Yiliang fault
图 5 深度为2 (a),5 (b),8 (c),12 (d)和17 km (e)时P波水平层析成像结果及余震分布
F3:大凉山断裂;F4:莲峰断裂;F5:龙树断裂;F6:包谷垴—小河断裂;F7:昭通—鲁甸断裂
Figure 5. Horizontal sections of P-wave velocity structure and aftershocks distribution at the depth of 2 (a),5 (b),8 (c),12 (d) and 17 km (e)
F3:Daliangshan fault;F4:Lianfeng fault;F5:Longshu fault;F6:Baogunao-Xiaohe fault;F7:Zhaotong-Ludian fault
表 1 研究区P波初始速度模型
Table 1 Initial P wave velocity structure
上界面深度/km vP/(km·s−1) vP/vS 0 5.20 1.73 2 5.70 5 5.88 8 6.00 12 6.15 17 6.27 25 5.60 30 6.70 -
房立华,吴建平,王未来,吕作勇,王长在,杨婷,钟世军. 2014. 云南鲁甸MS6.5地震余震重定位及其发震构造[J]. 地震地质,36(4):1173–1185. doi: 10.3969/j.issn.0253-4967.2014.04.019 Fang L H,Wu J P,Wang W L,Lü Z Y,Wang C Z,Yang T,Zhong S J. 2014. Relocation of the aftershock sequence of the MS6.5 Ludian earthquake and its seismogenic structure[J]. Seismology and Geology,36(4):1173–1185 (in Chinese).
付芮,单斌,熊熊,郑勇,谢祖军,刘成利,房立华. 2015. 2014年云南鲁甸地震同震库仑应力对余震分布及周边断层的影响[J]. 地震地质,37(4):1084–1095. doi: 10.3969/j.issn.0253-4967.2015.04.012 Fu R,Shan B,Xiong X,Zheng Y,Xie Z J,Liu C L,Fang L H. 2015. Co-seismic Coulomb stress changes and its influences on aftershock distribution and surrounding faults caused by 2014 Ludian earthquake,Yunnan[J]. Seismology and Geology,37(4):1084–1095 (in Chinese).
胡新亮,刁桂苓,高景春,张四昌,啜永清,段跃荣,赵英萍,刘胜国,朱振兴,张彦清,秦清娟. 2002. 用现今小震推断洪洞、临汾两次历史大震的震源断层[J]. 中国地震,18(1):76–85. doi: 10.3969/j.issn.1001-4683.2002.01.008 Hu X L,Diao G L,Gao J C,Zhang S C,Chuai Y Q,Duan Y R,Zhao Y P,Liu S G,Zhu Z X,Zhang Y Q,Qin Q J. 2002. Application of present small earthquakes to infer the focal faults of two large historical earthquakes in Hongdong and Linfen,Shanxi Province[J]. Earthquake Research in China,18(1):76–85 (in Chinese).
李大虎,丁志峰,吴萍萍,梁明剑,吴朋,顾勤平,康清清. 2019. 川滇交界东段昭通、莲峰断裂带的深部结构特征与2014年鲁甸MS6.5地震[J]. 地球物理学报,62(12):4571–4587. doi: 10.6038/cjg2019M0450 Li D H,Ding Z F,Wu P P,Liang M J,Wu P,Gu Q P,Kang Q Q. 2019. Deep structure of the Zhaotong and Lianfeng fault zones in the eastern segment of the Sichuan-Yunnan border and the 2014 Ludian MS6.5 earthquake[J]. Chinese Journal of Geophysics,62(12):4571–4587 (in Chinese).
罗佳宏,马文涛. 2016. 三峡库区上地壳速度结构初步研究[J]. 地震地质,38(2):329–341. doi: 10.3969/j.issn.0253-4967.2016.02.008 Luo J H,Ma W T. 2016. A preliminary study on upper crustal velocity structure in the Three Gorges reservoir area[J]. Seismology and Geology,38(2):329–341 (in Chinese).
曲均浩,王长在,刘方斌,周少辉,郑建常,李新凤,张芹. 2019. 乳山序列地震分布与震源区速度结构的关系[J]. 地震地质,41(1):99–118. doi: 10.3969/j.issn.0253-4967.2019.01.007 Qu J H,Wang C Z,Liu F B,Zhou S H,Zheng J C,Li X F,Zhang Q. 2019. Study on relationship between seismic distribution of Rushan sequence and velocity structure[J]. Seismology and Geology,41(1):99–118 (in Chinese).
王长在,吴建平,房立华,王未来. 2013. 玉树地震震源区速度结构与余震分布的关系[J]. 地球物理学报,56(12):4072–4083. doi: 10.6038/cjg20131212 Wang C Z,Wu J P,Fang L H,Wang W L. 2013. The relationship between wave velocity structure around Yushu earthquake source region and the distribution of aftershocks[J]. Chinese Journal of Geophysics,56(12):4072–4083 (in Chinese).
王长在,吴建平,杨婷,王未来,范莉苹,房立华. 2018. 太原盆地及周边地区双差层析成像[J]. 地球物理学报,61(3):963–974. doi: 10.6038/cjg2018L0114 Wang C Z,Wu J P,Yang T,Wang W L,Fan L P,Fang L H. 2018. Crustal structure beneath the Taiyuan basin and adjacent areas revealed by double-difference tomography[J]. Chinese Journal of Geophysics,61(3):963–974 (in Chinese).
王未来,吴建平,房立华,来贵娟. 2014. 2014年云南鲁甸MS6.5地震序列的双差定位[J]. 地球物理学报,57(9):3042–3051. doi: 10.6038/cjg20140929 Wang W L,Wu J P,Fang L H,Lai G J. 2014. Double difference location of the Ludian MS6.5 earthquake sequences in Yunnan Province in 2014[J]. Chinese Journal of Geophysics,57(9):3042–3051 (in Chinese).
王兴臣,丁志峰,武岩,朱露培. 2015. 鲁甸MS6.5地震震源区地壳结构及孕震环境研究[J]. 地球物理学报,58(11):4031–4040. Wang X C,Ding Z F,Wu Y,Zhu L P. 2015. The crustal structure and seismogenic environment in the Ludian MS6.5 earthquake region[J]. Chinese Journal of Geophysics,58(11):4031–4040 (in Chinese).
吴建平,杨婷,王未来,明跃红,张天中. 2013. 小江断裂带周边地区三维P波速度结构及其构造意义[J]. 地球物理学报,56(7):2257–2267. Wu J P,Yang T,Wang W L,Ming Y H,Zhang T Z. 2013. Three dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications[J]. Chinese Journal of Geophysics,56(7):2257–2267 (in Chinese).
闻学泽. 2000. 四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征[J]. 地震地质,22(3):239–249. doi: 10.3969/j.issn.0253-4967.2000.03.005 Wen X Z. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone,western Sichuan[J]. Seismology and Geology,22(3):239–249 (in Chinese).
闻学泽,杜方,易桂喜,龙锋,范军,杨攀新,熊仁伟,刘晓霞,刘琦. 2013. 川滇交界东段昭通、莲峰断裂带的地震危险背景[J]. 地球物理学报,56(10):3361–3372. doi: 10.6038/cjg20131012 Wen X Z,Du F,Yi G X,Long F,Fan J,Yang P X,Xiong R W,Liu Q X,Liu Q. 2013. Earthquake potential of the Zhaotong and Lianfeng fault zones of the eastern Sichuan-Yunnan border region[J]. Chinese Journal of Geophysics,56(10):3361–3372 (in Chinese).
肖卓,高原. 2017. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构[J]. 地球物理学报,60(6):2213–2225. doi: 10.6038/cjg20170615 Xiao Z,Gao Y. 2017. Crustal velocity structure beneath the northeastern Tibetan Plateau and adjacent regions derived from double difference tomography[J]. Chinese Journal of Geophysics,60(6):2213–2225 (in Chinese).
熊绍柏,郑晔,尹周勋,曾晓献,全幼黎,孙克忠. 1993. 丽江—攀枝花—者海地带二维地壳结构及其构造意义[J]. 地球物理学报,36(4):434–444. doi: 10.3321/j.issn:0001-5733.1993.04.004 Xiong S B,Zheng Y,Yin Z X,Zeng X X,Quan Y L,Sun K Z. 1993. The 2-D structure and it’s tectonic implications of the crust in the Lijiang-Panzhihua-Zhehai region[J]. Acta Geophysica Sinica,36(4):434–444 (in Chinese).
徐涛,张明辉,田小波,郑勇,白志明,武澄泷,张忠杰,滕吉文. 2014. 丽江—清镇剖面上地壳速度结构及其与鲁甸MS6.5地震孕震环境的关系[J]. 地球物理学报,57(9):3069–3079. doi: 10.6038/cjg20140932 Xu T,Zhang M H,Tian X B,Zheng Y,Bai Z M,Wu C L,Zhang Z J,Teng J W. 2014. Upper crustal velocity of Lijiang-Qingzhen profile and its relationship with the seismogenic environment of the MS6.5 Ludian earthquake[J]. Chinese Journal of Geophysics,57(9):3069–3079 (in Chinese).
徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学:D辑,33(增刊1):151–162. Xu X W,Wen X Z,Zheng R Z,Ma W T,Song F M,Yu G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region,China[J]. Science in China:Series D,46(2):220–226.
徐锡伟,江国焰,于贵华,吴熙彦,张建国,李西. 2014. 鲁甸6.5级地震发震断层判定及其构造属性讨论[J]. 地球物理学报,57(9):3060–3068. doi: 10.6038/cjg20140931 Xu X W,Jiang G Y,Yu G H,Wu X Y,Zhang J G,Li X. 2014. Discussion on seismogenic fault of the Ludian MS6.5 earthquake and its tectonic attribution[J]. Chinese Journal of Geophysics,57(9):3060–3068 (in Chinese).
张娜,赵翠萍,李春宏,周连庆. 2019. 基于加密观测的金沙江下游水库区速度结构成像[J]. 地震地质,41(6):1380–1394. doi: 10.3969/j.issn.0253-4967.2019.06.005 Zhang N,Zhao C P,Li C H,Zhou L Q. 2019. Velocity structure tomography of regions downstream the Jinsha River based on dense observation[J]. Seismology and Geology,41(6):1380–1394 (in Chinese).
张培震,邓启东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊Ⅰ):12–20. Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24.
张勇,陈运泰,许力生,魏星,金明培,张森. 2015. 2014年云南鲁甸MW6.1地震:一次共轭破裂地震[J]. 地球物理学报,58(1):153–162. doi: 10.6038/cjg20150113 Zhang Y,Chen Y T,Xu L S,Wei X,Jin M P,Zhang S. 2015. The 2014 MW6.1 Ludian,Yunnan,earthquake:A complex conjugated ruptured earthquake[J]. Chinese Journal of Geophysics,58(1):153–162 (in Chinese).
赵小艳,孙楠. 2014. 2014年云南鲁甸6.5级地震震源位置及震源区速度结构联合反演[J]. 地震研究,37(4):523–531. doi: 10.3969/j.issn.1000-0666.2014.04.006 Zhao X Y,Sun N. 2014. Simultaneous inversion for focal location of Yunnan Ludian MS6.5 earthquake sequence in 2014 and velocity structure in the source region[J]. Journal of Seismological Research,37(4):523–531 (in Chinese).
Cai J T,Chen X B,Xu X W,Tang J,Wang L F,Guo C L,Han B,Dong Z Y. 2017. Rupture mechanism and seismotectonics of the MS6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging:3D electrical model of Ludian earthquake[J]. Geophys Res Lett,44(3):1275–1285. doi: 10.1002/2016GL071855
Gentile G F,Bressan G,Burlini L,Franco R D. 2000. Three-dimensional vP and vP/vS models of the upper crust in the Friuli area (northeastern Italy)[J]. Geophys J Int,141:457–478. doi: 10.1046/j.1365-246x.2000.00095.x
Humphreys E,Clayton R W. 1988. Adaptation of back projection tomography to seismic travel time problems[J]. J Geophys Res,93(B2):1073–1085. doi: 10.1029/JB093iB02p01073
Lévěque J J,Rivera L,Wittlinger G. 1993. On the use of the checker‐board test to assess the resolution of tomographic inversions[J]. Geophys J Int,115(1):313–318. doi: 10.1111/j.1365-246X.1993.tb05605.x
Peate I U,Bryan S E. 2008. Re-evaluating plume-induced uplift in the Emeishan large igneous province[J]. Nat Geosci,1(9):625–629. doi: 10.1038/ngeo281
Riaz S,Yong Z,Xiong X,Xie Z J,Li Z W,Song M Q. 2017. Refined 3D seismic-velocity structures and seismogenic environment of the MS6.5 Ludian earthquake[J]. Bull Seismol Soc Am,107(6):3023–3036. doi: 10.1785/0120170072
Um J,Thurber C. 1987. A fast algorithm for two-point seismic ray tracing[J]. Bull Seismol Soc Am,77(3):972–986.
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
Wessel P,Smith W H F. 1998. New,improved version of generic mapping tools released[J]. Eos,Trans Am Geophys Union,79(47):579. doi: 10.1029/98EO00426
Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190
Zhang H J,Thurber C H. 2006. Development and applications of double-difference seismic tomography[J]. Pure Appl Geophys,163(2/3):273–403.