A damping modification factor model for vertical acceleration spectrum from slab earthquakes in subduction zone
-
摘要: 基于日本K-NET和KiK-net台网的4 695条俯冲带板内地震记录,采用最小二乘法对阻尼修正系数(DMF)的几何均值进行关于阻尼比和谱周期的回归拟合,分场地类别建立了考虑阻尼比和谱周期的竖向加速度谱DMF模型。为探究震源、路径和场地效应对该模型残差分布的影响,采用随机效应模型将残差分离得到各类残差及相应的残差标准差,在此基础上进行DMF模型残差分析。研究结果表明,DMF可以采用阻尼比对数值的三次多项式、周期对数值的四次多项式来模拟。由于规范设计反应谱并非针对某一特定地震,规范提出的DMF模型并不包含震源和路径参数,但事件间和事件内残差关于矩震级、断层距离和断层深度的分布表明,在给定地震事件下,包含地震动参数的DMF模型将会改善模型的预测能力。Abstract: In this study, 4695 strong-motion records from subduction slab earthquakes in Japan obtained by the K-NET and KiK-net networks were used to develop a damping modification factor (DMF) model for the vertical acceleration spectrum. The DMF model considering the damping ratio and spectral period is established for four site classes, and the geometric mean values for DMF are used to perform regression fitting in respect to the damping ratio and spectral period by least squares method. To evaluate the influence of hypocenter, path, and site effects on the residual distribution of the model, the total model residuals and standard deviations were separated into between-event and within-event parts, and the within-event residuals were further divided into the between-site and within-site parts by using a random effects model. The results show that the effect of damping ratios on DMF can be modelled by the third-order polynomial of the logarithm of the damping ratios, a fourth-order polynomial of the logarithm of spectral periods can be used to model the effect of spectral periods for the DMF. The effects of source and path parameters were not modelled in this study because of DMF model is used to scale a design spectrum not associated with a given scenario earthquake. The distribution of the between- and within-event residual distributions with respect to moment magnitude, fault depth and source distance suggests that including these terms would improve prediction capability of the model when a DMF is designed for scaling a 5% acceleration spectrum associated with a scenario event for a give magnitude and source distance.
-
-
图 3 四类场地间显著性检验统计值|Z|
(a) Ⅰ类场地与Ⅱ类场地;(b) Ⅰ类场地与Ⅲ类场地;(c) Ⅰ类场地与Ⅳ类场地;(d) Ⅱ类场地与Ⅲ类场地;(e) Ⅱ类场地与Ⅳ类场地;(f) Ⅲ类场地与Ⅳ类场地
Figure 3. |Z| values for the statistical tests between each pair of four site classes
(a) Site class Ⅰ vs site class Ⅱ;(b) Site class Ⅰ vs site class Ⅲ;(c) Site class Ⅰ vs site class Ⅳ; (d) Site class Ⅱ vs site class Ⅲ;(e) Site class Ⅱ vs site class Ⅳ;(f) Site class Ⅲ vs site class Ⅳ
图 8 阻尼比为25%时阻尼修正系数DMF模型事件间残差分布图
(a) T=0.1 s时残差关于断层深度的分布图;(b) T=0.1 s时残差关于矩震级的分布图;(c) T=3.0 s时残差关于断层深度的分布图;(d) T=3.0 s时残差关于矩震级的分布图
Figure 8. The distributions of between-event residuals of DMF model for a damping ratio of 25%
(a) The distribution of residuals with respect to fault depth at T=0.1 s;(b) The distribution of residuals with respect to moment magnitude at T=0.1 s;(c) The distribution of residuals with respect to fault depth at T=3.0 s;(d) The distribution of residuals with respect to moment magnitude at T=3.0 s
图 9 阻尼比为25%时DMF模型事件内残差分布图
(a) T=0.1 s时残差关于断层距离的分布图;(b) T=0.1 s时残差关于矩震级的分布图;(c) T=3.0 s时残差关于断层距离的分布图;(d) T=3.0 s时残差关于矩震级的分布图
Figure 9. The distributions of within-event residuals of DMF model for a damping ratio of 25%
(a) The distribution of residuals with respect to fault distance at T=0.1 s;(b) The distribution of residuals with respect to moment magnitude at T=0.1 s;(c) The distribution of residuals with respect to fault distance at T=3.0 s;(d) The distribution of residuals with respect to moment magnitude at T=3.0 s
表 1 场地类别定义和各类场地记录数量
Table 1 Site class definition and number of the records in each site class
场地类别 土质类型 场地周期/s 记录条数 Ⅰ 岩石 Ts<0.2 2 022 Ⅱ 硬土 0.2≤Ts<0.4 1 353 Ⅲ 中硬土 0.4≤Ts<0.6 442 Ⅳ 软土 Ts≥0.6 878 表 2 四类场地下阻尼修正系数模型的系数值
Table 2 Coefficients of DMF model for four site classes
T/s Ⅰ类场地 Ⅱ类场地 Ⅲ类场地 Ⅳ类场地 $ {c}_{1} $ $ {c}_{2} $ $ {c}_{3} $ $ {c}_{1} $ $ {c}_{2} $ $ {c}_{3} $ $ {c}_{1} $ $ {c}_{2} $ $ {c}_{3} $ $ {c}_{1} $ $ {c}_{2} $ $ {c}_{3} $ 0.03 −0.020 0 −0.011 3 −0.015 0 −0.020 0 −0.005 4 −0.008 0 −0.008 3 −0.004 8 −0.008 0 −0.007 1 −0.004 7 −0.010 0 0.04 −0.234 3 0.012 9 0.001 0 −0.152 1 0.016 7 −0.005 0 −0.138 9 0.018 3 −0.004 0 −0.120 8 0.013 3 −0.004 0 0.05 −0.294 9 0.005 7 0.000 1 −0.235 9 0.012 9 0.001 4 −0.213 8 0.012 3 −0.001 1 −0.220 4 0.013 0 0.002 4 0.06 −0.322 8 0.001 8 0.002 6 −0.283 5 0.006 7 0.003 1 −0.262 1 0.009 1 0.001 9 −0.273 8 0.008 2 0.005 0 0.07 −0.340 8 −0.001 1 0.004 4 −0.314 7 0.002 1 0.004 4 −0.294 4 0.006 1 0.003 8 −0.308 7 0.004 7 0.006 6 0.08 −0.352 8 −0.003 2 0.005 9 −0.335 7 −0.001 4 0.005 4 −0.317 1 0.003 4 0.005 1 −0.332 4 0.002 0 0.007 7 0.09 −0.361 1 −0.004 9 0.007 1 −0.350 3 −0.004 0 0.006 2 −0.333 4 0.001 0 0.006 1 −0.349 1 −0.000 1 0.008 5 0.10 −0.366 8 −0.006 3 0.008 1 −0.360 5 −0.006 1 0.007 0 −0.345 4 −0.001 0 0.006 8 −0.361 1 −0.001 8 0.009 1 0.12 −0.373 5 −0.008 2 0.009 7 −0.372 8 −0.008 9 0.008 2 −0.361 2 −0.004 4 0.007 9 −0.376 3 −0.004 3 0.009 9 0.14 −0.376 5 −0.009 4 0.011 0 −0.378 8 −0.010 6 0.009 3 −0.370 3 −0.007 0 0.008 7 −0.384 6 −0.006 1 0.010 5 0.15 −0.377 1 −0.009 8 0.011 5 −0.380 3 −0.011 2 0.009 9 −0.373 4 −0.008 1 0.009 0 −0.387 3 −0.006 7 0.010 8 0.16 −0.377 4 −0.010 1 0.012 1 −0.381 2 −0.011 6 0.010 4 −0.375 7 −0.009 0 0.009 3 −0.389 3 −0.007 3 0.011 0 0.18 −0.377 1 −0.010 5 0.013 0 −0.381 6 −0.012 0 0.011 3 −0.378 8 −0.010 5 0.009 9 −0.391 8 −0.008 2 0.011 4 0.20 −0.376 2 −0.010 7 0.013 9 −0.380 8 −0.012 1 0.012 2 −0.380 4 −0.011 6 0.010 5 −0.393 1 −0.008 8 0.011 8 0.25 −0.372 3 −0.010 4 0.015 7 −0.376 3 −0.011 3 0.014 2 −0.381 1 −0.013 1 0.011 8 −0.393 4 −0.009 6 0.012 9 0.30 −0.367 6 −0.009 5 0.017 2 −0.370 3 −0.009 7 0.016 0 −0.379 3 −0.013 5 0.013 1 −0.392 2 −0.009 7 0.013 9 0.35 −0.362 7 −0.008 3 0.018 6 −0.364 2 −0.007 7 0.017 6 −0.376 6 −0.013 1 0.014 4 −0.390 6 −0.009 5 0.014 9 0.40 −0.357 9 −0.006 9 0.019 8 −0.358 2 −0.005 5 0.019 2 −0.373 5 −0.012 2 0.015 6 −0.388 9 −0.008 9 0.016 0 0.45 −0.353 2 −0.005 4 0.020 8 −0.352 5 −0.003 1 0.020 5 −0.370 1 −0.011 0 0.016 8 −0.387 3 −0.008 2 0.017 0 0.50 −0.348 6 −0.003 8 0.021 8 −0.347 1 −0.000 8 0.021 8 −0.366 7 −0.009 5 0.018 0 −0.385 7 −0.007 3 0.018 0 0.60 −0.339 8 −0.000 5 0.023 6 −0.337 0 0.003 9 0.024 1 −0.359 9 −0.006 2 0.020 2 −0.382 5 −0.005 4 0.020 0 0.70 −0.331 3 0.002 9 0.025 0 −0.327 7 0.008 4 0.026 0 −0.353 1 −0.002 6 0.022 2 −0.379 3 −0.003 1 0.021 8 0.80 −0.323 0 0.006 2 0.026 3 −0.319 0 0.012 8 0.027 7 −0.346 2 0.001 1 0.024 1 −0.375 9 −0.000 8 0.023 5 0.90 −0.314 9 0.009 4 0.027 5 −0.310 6 0.016 9 0.029 2 −0.339 2 0.004 8 0.025 8 −0.372 2 0.001 6 0.025 1 1.00 −0.306 8 0.012 6 0.028 5 −0.302 4 0.020 9 0.030 5 −0.332 2 0.008 5 0.027 3 −0.368 1 0.004 1 0.026 6 1.25 −0.286 8 0.020 2 0.030 6 −0.282 5 0.030 0 0.033 1 −0.314 2 0.017 4 0.030 5 −0.356 2 0.010 4 0.029 8 1.50 −0.266 7 0.027 4 0.032 1 −0.262 7 0.038 1 0.034 9 −0.295 4 0.025 6 0.033 1 −0.342 1 0.016 7 0.032 4 2.00 −0.226 4 0.040 4 0.034 2 −0.222 5 0.052 1 0.037 2 −0.256 0 0.040 4 0.036 5 −0.307 9 0.029 0 0.036 2 2.50 −0.185 6 0.052 2 0.035 3 −0.181 3 0.063 7 0.038 1 −0.214 6 0.053 0 0.038 4 −0.267 9 0.040 9 0.038 7 3.00 −0.144 7 0.062 9 0.035 8 −0.139 1 0.073 8 0.038 1 −0.171 9 0.064 0 0.039 1 −0.223 6 0.052 3 0.040 3 3.50 −0.103 8 0.072 8 0.035 9 −0.096 2 0.082 6 0.037 6 −0.128 3 0.073 7 0.039 1 −0.176 3 0.063 2 0.041 1 4.00 −0.063 1 0.082 0 0.035 6 −0.052 9 0.090 4 0.036 6 −0.084 1 0.082 2 0.038 4 −0.126 9 0.073 8 0.041 3 4.50 −0.022 6 0.090 6 0.035 1 −0.009 2 0.097 4 0.035 2 −0.039 6 0.089 8 0.037 3 −0.075 9 0.084 0 0.041 1 5.00 0.017 7 0.098 7 0.034 4 0.034 6 0.103 8 0.033 6 0.005 0 0.096 7 0.035 8 −0.023 8 0.093 9 0.040 6 表 3 阻尼修正系数模型的总残差标准差
${\sigma _T} $ Table 3 Total standard deviations
${\sigma _T} $ of DMF modelT/s σT ζ=1% ζ=2% ζ=3% ζ=4% ζ=6% ζ=7% ζ=8% ζ=9% ζ=10% ζ=15% ζ=20% ζ=25% ζ=30% 0.03 0.056 0 0.014 7 0.011 6 0.005 7 0.000 0 0.005 4 0.010 4 0.015 2 0.019 8 0.024 3 0.046 0 0.066 5 0.086 4 0.04 0.242 6 0.146 3 0.084 4 0.039 9 0.030 8 0.055 7 0.079 9 0.094 8 0.110 7 0.167 6 0.204 1 0.229 5 0.248 6 0.05 0.238 6 0.148 7 0.087 9 0.042 5 0.033 0 0.060 1 0.082 9 0.102 7 0.120 2 0.184 1 0.225 5 0.255 4 0.277 7 0.06 0.225 0 0.144 4 0.092 9 0.042 7 0.035 8 0.061 4 0.090 2 0.105 6 0.123 7 0.190 9 0.235 1 0.267 0 0.290 8 0.07 0.215 5 0.139 6 0.090 0 0.041 5 0.034 6 0.059 8 0.088 0 0.103 0 0.120 7 0.187 6 0.232 0 0.263 6 0.287 1 0.08 0.206 3 0.141 4 0.085 5 0.039 8 0.033 2 0.057 5 0.084 0 0.099 0 0.115 9 0.178 7 0.220 1 0.250 3 0.273 1 0.09 0.200 4 0.136 4 0.082 7 0.038 5 0.030 8 0.056 2 0.082 3 0.096 2 0.112 7 0.174 6 0.215 7 0.245 1 0.266 9 0.10 0.192 7 0.132 4 0.080 7 0.037 3 0.029 5 0.053 7 0.078 7 0.097 7 0.107 8 0.165 9 0.205 1 0.233 3 0.254 2 0.12 0.188 5 0.122 9 0.077 8 0.034 5 0.030 5 0.055 6 0.076 6 0.094 8 0.105 7 0.160 9 0.197 3 0.223 8 0.243 6 0.14 0.189 9 0.123 0 0.077 2 0.035 7 0.029 7 0.053 7 0.073 4 0.090 3 0.104 6 0.157 0 0.184 4 0.208 3 0.227 0 0.15 0.188 8 0.122 1 0.076 8 0.033 1 0.029 4 0.053 4 0.069 3 0.090 8 0.105 9 0.159 4 0.194 3 0.208 6 0.227 8 0.16 0.190 8 0.122 6 0.077 6 0.033 9 0.030 1 0.054 4 0.074 8 0.092 2 0.107 1 0.161 3 0.196 2 0.210 3 0.230 1 0.18 0.191 8 0.123 9 0.074 0 0.035 2 0.029 0 0.052 6 0.072 0 0.088 5 0.102 9 0.155 7 0.190 8 0.207 5 0.228 1 0.20 0.191 2 0.123 5 0.076 8 0.035 7 0.029 7 0.053 9 0.070 9 0.090 9 0.105 6 0.159 2 0.194 6 0.212 3 0.233 3 0.25 0.191 7 0.124 3 0.077 0 0.035 5 0.029 5 0.053 3 0.069 8 0.085 9 0.104 5 0.150 0 0.184 4 0.211 7 0.235 5 0.30 0.195 6 0.125 8 0.075 4 0.035 9 0.029 8 0.053 5 0.073 1 0.089 7 0.104 2 0.152 3 0.189 1 0.219 4 0.246 6 0.35 0.191 2 0.129 8 0.077 5 0.034 0 0.029 5 0.053 4 0.070 0 0.090 9 0.106 4 0.163 8 0.195 2 0.227 4 0.256 7 0.40 0.195 0 0.131 8 0.078 4 0.033 9 0.030 1 0.051 6 0.070 9 0.093 2 0.108 9 0.159 6 0.201 9 0.238 1 0.270 9 0.45 0.198 7 0.128 2 0.077 9 0.035 8 0.029 8 0.054 4 0.072 8 0.089 9 0.108 6 0.163 8 0.208 5 0.247 5 0.283 4 0.50 0.200 2 0.127 6 0.079 8 0.036 7 0.030 7 0.056 0 0.077 1 0.095 4 0.111 5 0.168 6 0.216 1 0.257 7 0.296 3 0.60 0.199 6 0.128 4 0.077 5 0.037 7 0.030 1 0.054 9 0.076 1 0.097 8 0.111 4 0.177 9 0.231 7 0.278 7 0.321 8 0.70 0.204 6 0.131 8 0.083 3 0.036 7 0.032 3 0.056 4 0.081 9 0.097 9 0.115 5 0.187 3 0.246 8 0.299 6 0.347 5 0.80 0.208 8 0.133 9 0.084 6 0.037 0 0.033 2 0.058 0 0.084 9 0.100 9 0.119 3 0.196 4 0.260 3 0.316 3 0.367 4 0.90 0.207 7 0.132 6 0.085 0 0.036 9 0.033 4 0.057 8 0.086 0 0.102 1 0.121 3 0.202 3 0.270 0 0.329 0 0.382 3 1.00 0.211 5 0.134 7 0.086 1 0.039 8 0.031 8 0.058 9 0.083 2 0.104 9 0.125 0 0.210 3 0.281 6 0.343 5 0.398 6 1.25 0.212 4 0.139 3 0.084 3 0.041 0 0.033 8 0.063 0 0.088 8 0.112 6 0.134 9 0.230 7 0.309 6 0.377 6 0.436 5 1.50 0.216 5 0.143 5 0.087 8 0.041 0 0.036 1 0.067 9 0.096 3 0.122 6 0.147 1 0.252 2 0.340 2 0.413 0 0.475 9 2.00 0.226 1 0.153 8 0.095 2 0.045 1 0.040 4 0.076 7 0.109 0 0.139 1 0.167 8 0.290 5 0.389 2 0.470 3 0.536 1 2.50 0.231 1 0.160 7 0.100 6 0.048 0 0.043 9 0.083 5 0.119 7 0.153 3 0.185 1 0.321 3 0.426 2 0.510 2 0.576 5 3.00 0.237 0 0.166 7 0.105 6 0.050 8 0.046 7 0.089 1 0.128 2 0.164 5 0.198 3 0.341 7 0.450 8 0.533 9 0.598 3 3.50 0.245 7 0.175 6 0.112 1 0.054 3 0.050 2 0.096 0 0.137 5 0.176 2 0.212 8 0.363 0 0.473 3 0.556 3 0.619 1 4.00 0.248 4 0.179 3 0.115 3 0.055 5 0.051 5 0.098 9 0.142 6 0.183 2 0.220 5 0.372 7 0.481 9 0.561 4 0.621 2 4.50 0.258 3 0.187 3 0.120 4 0.058 4 0.054 0 0.103 5 0.149 1 0.191 1 0.229 9 0.385 1 0.495 0 0.573 2 0.630 5 5.00 0.264 9 0.194 2 0.126 4 0.061 3 0.056 7 0.108 0 0.154 9 0.197 5 0.237 1 0.391 7 0.498 4 0.573 2 0.627 1 表 4 阻尼修正系数模型的事件内残差标准差σ
Table 4 Within-event standard deviation σ of DMF model
T/s σ ζ=1% ζ=2% ζ=3% ζ=4% ζ=6% ζ=7% ζ=8% ζ=9% ζ=10% ζ=15% ζ=20% ζ=25% ζ=30% 0.03 0.017 8 0.013 8 0.009 7 0.005 1 0.000 0 0.004 9 0.009 4 0.013 7 0.017 6 0.021 3 0.037 9 0.051 1 0.061 9 0.04 0.221 0 0.134 7 0.078 6 0.035 3 0.028 8 0.051 8 0.071 2 0.088 0 0.102 6 0.154 9 0.188 3 0.211 5 0.228 8 0.05 0.222 3 0.140 0 0.083 1 0.037 9 0.031 0 0.056 3 0.077 6 0.096 1 0.112 2 0.171 2 0.209 1 0.236 1 0.256 0 0.06 0.213 5 0.137 8 0.083 2 0.038 4 0.032 3 0.058 5 0.080 8 0.100 1 0.117 0 0.178 8 0.218 8 0.247 1 0.268 1 0.07 0.206 4 0.134 0 0.081 1 0.037 4 0.031 2 0.057 0 0.078 6 0.097 3 0.113 7 0.174 8 0.214 5 0.242 4 0.263 1 0.08 0.199 1 0.129 5 0.078 4 0.036 4 0.030 4 0.055 0 0.075 8 0.093 8 0.109 3 0.165 9 0.202 6 0.229 2 0.249 4 0.09 0.195 3 0.126 8 0.076 6 0.035 5 0.029 9 0.054 4 0.074 8 0.092 4 0.107 6 0.163 7 0.200 8 0.227 1 0.246 8 0.10 0.186 1 0.121 2 0.073 6 0.034 1 0.028 5 0.051 8 0.071 4 0.088 4 0.103 1 0.157 0 0.193 1 0.218 9 0.238 2 0.12 0.183 3 0.119 8 0.072 4 0.033 5 0.028 2 0.051 3 0.070 7 0.087 4 0.101 8 0.154 2 0.188 5 0.213 6 0.232 3 0.14 0.182 7 0.119 0 0.071 6 0.033 2 0.027 6 0.050 0 0.068 7 0.084 6 0.098 2 0.147 6 0.179 5 0.202 2 0.219 6 0.15 0.181 4 0.117 5 0.070 3 0.032 2 0.027 0 0.049 1 0.067 5 0.083 2 0.097 0 0.146 6 0.178 9 0.202 1 0.220 1 0.16 0.184 5 0.118 7 0.071 9 0.033 2 0.027 6 0.050 0 0.068 8 0.084 8 0.098 5 0.148 4 0.180 6 0.204 1 0.222 8 0.18 0.185 3 0.120 0 0.072 3 0.033 1 0.027 3 0.049 4 0.067 5 0.082 7 0.096 1 0.144 7 0.177 1 0.201 1 0.220 6 0.20 0.184 5 0.119 5 0.071 5 0.033 2 0.027 8 −0.050 5 0.069 2 0.085 1 0.098 8 0.148 5 0.181 4 0.206 0 0.225 5 0.25 0.184 0 0.118 8 0.071 4 0.032 9 0.027 3 0.049 3 0.067 8 0.083 4 0.096 9 0.144 5 0.176 5 0.201 1 0.221 7 0.30 0.188 1 0.120 8 0.072 9 0.033 5 0.027 9 −0.050 2 0.068 8 0.084 7 0.098 3 0.147 6 0.181 7 0.208 7 0.231 9 0.35 0.185 6 0.119 7 0.072 1 0.033 3 0.027 7 0.050 1 0.068 7 0.085 0 0.099 2 0.151 9 0.188 5 0.217 7 0.242 9 0.40 0.188 7 0.120 7 0.072 3 0.033 2 0.027 9 −0.050 6 0.069 5 0.085 8 0.100 1 0.154 8 0.194 0 0.226 4 0.254 2 0.45 0.192 2 0.123 6 0.073 6 0.033 7 0.028 3 0.051 4 0.070 8 0.087 3 0.101 8 0.156 9 0.197 7 0.231 8 0.261 7 0.50 0.193 4 0.123 4 0.074 5 0.034 3 0.028 6 0.052 2 0.071 9 0.088 8 0.103 6 0.160 3 0.202 0 0.237 1 0.268 4 0.60 0.191 4 0.122 7 0.074 2 0.034 3 0.029 0 0.052 8 0.072 9 0.090 4 0.105 9 0.165 7 0.211 6 0.250 0 0.283 3 0.70 0.195 4 0.125 9 0.075 5 0.035 1 0.029 5 0.053 8 0.074 5 0.092 4 0.108 5 0.171 5 0.220 6 0.262 2 0.297 4 0.80 0.199 8 0.128 1 0.076 8 0.035 5 0.030 1 0.054 7 0.075 6 0.093 8 0.110 2 0.176 3 0.228 3 0.271 8 0.308 7 0.90 0.198 2 0.127 1 0.076 4 0.035 4 0.029 9 0.054 9 0.076 5 0.095 7 0.113 0 0.182 0 0.236 1 0.280 8 0.318 7 1.00 0.199 6 0.127 0 0.075 8 0.035 0 0.029 7 0.054 8 0.076 8 0.096 2 0.113 9 0.185 8 0.242 1 0.287 9 0.326 1 1.25 0.201 3 0.130 1 0.078 4 0.036 5 0.031 3 0.058 0 0.081 2 0.102 1 0.121 5 0.199 9 0.259 8 0.307 2 0.346 0 1.50 0.201 9 0.131 7 0.080 0 0.037 2 0.032 4 0.060 1 0.084 6 0.106 5 0.126 4 0.208 1 0.271 4 0.321 3 0.361 7 2.00 0.196 5 0.130 1 0.080 4 0.038 1 0.033 7 0.063 1 0.088 9 0.112 2 0.133 5 0.219 6 0.284 9 0.336 0 0.376 7 2.50 0.195 7 0.132 5 0.082 4 0.039 2 0.035 0 0.065 4 0.092 5 0.117 2 0.139 9 0.232 2 0.299 5 0.351 3 0.390 6 3.00 0.190 2 0.130 3 0.082 1 0.039 5 0.035 4 0.066 6 0.094 4 0.119 6 0.142 4 0.234 6 0.302 1 0.352 0 0.390 3 3.50 0.194 9 0.135 9 0.086 0 0.041 2 0.036 9 0.069 5 0.098 4 0.124 7 0.148 3 0.243 0 0.309 7 0.358 2 0.395 1 4.00 0.187 0 0.132 2 0.084 8 0.040 8 0.037 0 0.069 8 0.099 2 0.125 7 0.149 5 0.242 6 0.307 1 0.353 0 0.387 1 4.50 0.185 7 0.132 6 0.085 0 0.041 1 0.037 0 0.069 5 0.098 5 0.124 5 0.147 9 0.239 3 0.301 5 0.345 3 0.378 0 5.00 0.189 1 0.135 9 0.087 4 0.042 1 0.037 9 0.070 5 0.099 4 0.125 2 0.148 3 0.237 2 0.296 4 0.337 8 0.368 3 表 5 阻尼修正系数模型的事件间残差标准差τ
Table 5 Between-event standard deviation τ of DMF model
T/s τ ζ=1% ζ=2% ζ=3% ζ=4% ζ=6% ζ=7% ζ=8% ζ=9% ζ=10% ζ=15% ζ=20% ζ=25% ζ=30% 0.03 0.053 1 0.004 9 0.006 3 0.002 5 0.000 0 0.002 2 0.004 4 0.006 7 0.009 1 0.011 7 0.026 1 0.042 6 0.060 3 0.04 0.100 1 0.056 9 0.030 9 0.018 6 0.011 0 0.020 5 0.036 2 0.035 3 0.041 5 0.064 0 0.078 6 0.089 1 0.097 1 0.05 0.086 7 0.050 1 0.028 4 0.019 4 0.011 3 0.020 9 0.029 1 0.036 4 0.043 0 0.067 7 0.084 4 0.097 4 0.107 6 0.06 0.071 0 0.043 3 0.041 4 0.018 6 0.015 4 0.018 6 0.040 0 0.033 5 0.040 1 0.066 9 0.086 2 0.101 2 0.112 7 0.07 0.062 1 0.039 3 0.039 0 0.017 8 0.014 8 0.018 0 0.039 7 0.033 9 0.040 6 0.068 0 0.088 3 0.103 5 0.114 9 0.08 0.053 8 0.056 8 0.034 0 0.016 0 0.013 3 0.016 7 0.036 1 0.031 7 0.038 3 0.066 3 0.086 0 0.100 5 0.111 4 0.09 0.044 7 0.050 5 0.031 2 0.014 9 0.007 4 0.014 3 0.034 3 0.027 0 0.033 7 0.060 6 0.078 9 0.092 2 0.101 7 0.10 0.050 1 0.053 4 0.033 1 0.015 1 0.007 5 0.014 1 0.033 2 0.041 7 0.031 6 0.053 6 0.069 1 0.080 8 0.088 8 0.12 0.044 0 0.027 6 0.028 5 0.008 1 0.011 6 0.021 3 0.029 4 0.036 7 0.028 2 0.046 1 0.058 3 0.066 9 0.073 3 0.14 0.051 8 0.031 1 0.028 7 0.013 0 0.010 9 0.019 5 0.025 9 0.031 5 0.035 8 0.053 5 0.042 1 0.050 2 0.057 5 0.15 0.052 3 0.033 3 0.031 0 0.007 9 0.011 7 0.021 1 0.015 7 0.036 4 0.042 6 0.062 5 0.075 9 0.051 7 0.058 7 0.16 0.048 6 0.030 5 0.029 1 0.006 8 0.012 0 0.021 4 0.029 4 0.036 3 0.042 1 0.063 2 0.076 7 0.050 6 0.057 5 0.18 0.049 5 0.030 7 0.028 5 0.011 9 0.010 0 0.018 2 0.025 3 0.031 5 0.036 8 0.057 4 0.071 0 0.051 0 0.057 7 0.20 0.050 0 0.031 0 0.027 9 0.013 0 0.010 4 0.019 0 0.015 3 0.032 0 0.037 2 0.057 2 0.070 4 0.051 6 0.059 5 0.25 0.053 6 0.036 4 0.028 7 0.013 5 0.011 2 0.020 1 0.016 7 0.020 7 0.039 0 0.040 4 0.053 6 0.066 1 0.079 4 0.30 0.053 8 0.035 3 0.028 6 0.013 0 0.010 4 0.018 4 0.024 5 0.029 5 0.034 4 0.037 6 0.052 4 0.067 6 0.084 0 0.35 0.045 9 0.050 1 0.028 5 0.006 8 0.010 1 0.018 3 0.013 4 0.032 4 0.038 4 0.061 4 0.050 7 0.065 6 0.083 0 0.40 0.049 3 0.053 1 0.030 3 0.007 2 0.011 3 0.010 0 0.014 1 0.036 3 0.042 8 0.038 6 0.055 7 0.073 7 0.093 7 0.45 0.050 5 0.034 2 0.025 4 0.012 2 0.009 4 0.017 8 0.017 0 0.021 6 0.037 8 0.047 1 0.066 3 0.086 9 0.108 7 0.50 0.051 6 0.032 5 0.028 5 0.013 2 0.011 0 0.020 1 0.027 7 0.034 7 0.041 1 0.052 3 0.076 9 0.101 0 0.125 5 0.60 0.056 4 0.037 7 0.031 9 0.015 4 0.008 0 0.015 2 0.021 7 0.037 2 0.034 7 0.064 8 0.094 3 0.123 3 0.152 8 0.70 0.060 5 0.039 1 0.035 2 0.010 8 0.013 2 0.016 8 0.034 0 0.032 2 0.039 6 0.075 3 0.110 6 0.144 9 0.179 7 0.80 0.060 8 0.038 9 0.035 5 0.010 7 0.014 1 0.019 2 0.038 6 0.037 0 0.045 7 0.086 3 0.125 1 0.161 9 0.199 3 0.90 0.062 2 0.037 9 0.037 3 0.010 3 0.014 8 0.018 2 0.039 3 0.035 4 0.044 1 0.088 4 0.131 0 0.171 5 0.211 1 1.00 0.069 7 0.044 8 0.040 7 0.019 0 0.011 3 0.021 6 0.031 9 0.041 8 0.051 7 0.098 6 0.143 8 0.187 3 0.229 1 1.25 0.067 6 0.049 9 0.038 5 0.018 6 0.012 8 0.024 5 0.036 0 0.047 5 0.058 7 0.115 0 0.168 3 0.219 5 0.266 2 1.50 0.078 1 0.057 1 0.044 7 0.017 1 0.016 0 0.031 5 0.046 0 0.060 7 0.075 3 0.142 6 0.205 2 0.259 5 0.309 3 2.00 0.111 8 0.082 0 0.050 9 0.024 2 0.022 3 0.043 5 0.063 1 0.082 2 0.101 6 0.190 2 0.265 2 0.329 1 0.381 4 2.50 0.123 0 0.091 0 0.057 7 0.027 8 0.026 5 0.051 9 0.076 0 0.098 9 0.121 2 0.222 1 0.303 3 0.370 0 0.423 9 3.00 0.141 4 0.103 9 0.066 4 0.032 0 0.030 4 0.059 1 0.086 8 0.112 9 0.138 0 0.248 5 0.334 6 0.401 4 0.453 5 3.50 0.149 6 0.111 2 0.071 8 0.035 3 0.034 1 0.066 2 0.096 0 0.124 5 0.152 6 0.269 6 0.357 9 0.425 6 0.476 6 4.00 0.163 6 0.121 1 0.078 2 0.037 7 0.035 9 0.070 1 0.102 4 0.133 3 0.162 0 0.282 9 0.371 4 0.436 5 0.485 8 4.50 0.179 5 0.132 3 0.085 3 0.041 4 0.039 3 0.076 7 0.111 9 0.145 0 0.176 0 0.301 7 0.392 6 0.457 5 0.504 5 5.00 0.185 6 0.138 7 0.091 3 0.044 6 0.042 2 0.081 9 0.118 8 0.152 8 0.185 0 0.311 7 0.400 7 0.463 1 0.507 5 -
郝安民,周德源,李亚明,张晖. 2012. 考虑震级影响的规范阻尼修正系数评估[J]. 同济大学学报(自然科学版),40(5):657–661. Hao A M,Zhou D Y,Li Y M,Zhang H. 2012. Evaluation of damping modification factors in codes with a consideration of effect of earthquake magnitude[J]. Journal of Tongji University (Natural Science)
,40(5):657–661 (in Chinese). 蒋建,吕西林,周颖,蒋欢军. 2009. 考虑场地类别的阻尼比修正系数研究[J]. 地震工程与工程振动,29(1):153–161. Jiang J,Lü X L,Zhou Y,Jiang H J. 2009. Research on modification factors of damping ratios considering site conditions[J]. Journal of Earthquake Engineering and Engineering Vibration,29(1):153–161 (in Chinese).
Abrahamson N A,Youngs R R. 1992. A stable algorithm for regression analyses using the random effects model[J]. Bull Seismol Soc Am,82(1):505–510. doi: 10.1785/BSSA0820010505
Ambraseys N N,Douglas J. 2003. Near-field horizontal and vertical earthquake ground motions[J]. Soil Dyn Earthq Eng,23(1):1–18. doi: 10.1016/S0267-7261(02)00153-7
Bozorgnia Y,Campbell K W. 2004. The vertical-to-horizontal response spectral ratio and tentative procedures for developing simplified V/H and vertical design spectra[J]. J Earthq Eng,8(2):175–207.
Brillinger D R,Preisler H K. 1984. An exploratory analysis of the Joyner-Boore attenuation data[J]. Bull Seismol Soc Am,74(4):1441–1450.
Japan Road Association. 1980. Specifications for Highway Bridges. Part V, Seismic Design[S]. Tokyo: Maruzen Company Limited: 24–25.
Jiang F,Zhao J X. 2017. A ground‐motion prediction equation for vertical spectra of the strong‐motion records from the subduction slab events in Japan using site class as the site term[J]. Bull Seismol Soc Am,107(5):2328–2341. doi: 10.1785/0120160387
Li H,Chen F. 2017. Damping modification factors for acceleration response spectra[J]. Geodesy Geodyn,8(5):361–370. doi: 10.1016/j.geog.2017.04.009
Lin Y Y,Chang K C. 2003. Study on damping reduction factor for buildings under earthquake ground motions[J]. J Struct Eng,129(2):206–214. doi: 10.1061/(ASCE)0733-9445(2003)129:2(206)
Lin Y Y,Chang K C. 2004. Effects of site classes on damping reduction factors[J]. J Struct Eng,130(11):1667–1675. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1667)
Newmark N M, Hall W J. 1982. Earthquake Spectra and Design[M]. Berkeley: Earthquake Engineering Research Institute: 1–103.
Rezaeian S,Bozorgnia Y,Idriss I M,Abrahamson N,Campbell K,Silva W. 2014. Damping scaling factors for vertical elastic response spectra for shallow crustal earthquakes in active tectonic regions[J]. Earthq Spectra,30(3):1335–1358. doi: 10.1193/100512EQS298M
Xiang Y,Huang Q L. 2019. Damping modification factor for the vertical seismic response spectrum:A study based on Japanese earthquake records[J]. Eng Struct,179:493–511. doi: 10.1016/j.engstruct.2018.11.021
Zhao J X,Irikura K,Zhang J,Fukushima Y,Somerville P G,Asano A,Ohno Y,Oouchi T,Takahashi T,Ogawa H. 2006a. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio[J]. Bull Seismol Soc Am,96(3):914–925. doi: 10.1785/0120050124
Zhao J X,Zhang J,Asano A,Ohno Y,Oouchi T,Takahashi T,Ogawa H,Irikura K,Thio H K,Somerville P G,Fukushima Y,Fukushima Y. 2006b. Attenuation relations of strong ground motion in Japan using site classification based on predominant period[J]. Bull Seismol Soc Am,96(3):898–913. doi: 10.1785/0120050122
Zhao J X,Zhou S L,Gao P J,Long T,Zhang Y B,Thio H K,Lu M,Rhoades D A. 2015. An earthquake classification scheme adapted for Japan determined by the goodness of fit for ground-motion prediction equations[J]. Bull Seismol Soc Am,105(5):2750–2763. doi: 10.1785/0120150013
Zhao J X,Zhou S L,Zhou J,Zhao C,Zhang H,Zhang Y B,Gao P J,Lan X W,Rhoades D,Fukushima Y,Somerville P G,Irikura K. 2016a. Ground-motion prediction equations for shallow crustal and upper-mantle earthquakes in Japan using site class and simple geometric attenuation functions[J]. Bull Seismol Soc Am,106(4):1552–1569. doi: 10.1785/0120150063
Zhao J X,Liang X,Jiang F,Xing H,Zhu M,Hou R B,Zhang Y B,Lan X W,Rhoades D A,Irikura K,Fukushima Y,Somerville P G. 2016b. Ground-motion prediction equations for subduction interface earthquakes in Japan using site class and simple geometric attenuation functions[J]. Bull Seismol Soc Am,106(4):1518–1534. doi: 10.1785/0120150034
Zhao J X,Jiang F,Shi P,Xing H,Huang H F,Hou R B,Zhang Y B,Yu P C,Lan X W,Rhoades D A,Somerville P G,Irikura K,Fukushima Y. 2016c. Ground-motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions[J]. Bull Seismol Soc Am,106(4):1535–1551. doi: 10.1785/0120150056
Zhao J X,Jiang F,Ma Y,Zhou J,Cheng Y,Chang Z W. 2017. Ground‐motion prediction equations for the vertical component from shallow crustal and upper‐mantle earthquakes in Japan using site classes as the site term[J]. Bull Seismol Soc Am,107(5):2310–2327. doi: 10.1785/0120160376
Zhao J X,Yang Q S,Su K W,Liang J G,Zhou J,Zhang H,Yang X G. 2019. Effects of earthquake source,path,and site conditions on damping modification factor for the response spectrum of the horizontal component from subduction earthquakes[J]. Bull Seismol Soc Am,109(6):2594–2613. doi: 10.1785/0120190105
Zhou J,Zhao J X. 2020. A damping modification factor prediction model for horizontal displacement spectrum from subduction interface earthquakes in Japan accounting for site conditions[J]. Bull Seismol Soc Am,110(3):1231–1246. doi: 10.1785/0120190275