基于改进长短时窗比值及优化变分模态分解的微震初至拾取算法

孟娟 吴燕雄 李亚南

孟娟,吴燕雄,李亚南. 2022. 基于改进长短时窗比值及优化变分模态分解的微震初至拾取算法. 地震学报,44(3):388−400 doi: 10.11939/jass.20200199
引用本文: 孟娟,吴燕雄,李亚南. 2022. 基于改进长短时窗比值及优化变分模态分解的微震初至拾取算法. 地震学报,44(3):388−400 doi: 10.11939/jass.20200199
Meng J,Wu Y X,Li Y N. 2022. First arrival time picking algorithm of micro-seismic based on improved STA/LTA and adaptive VMD. Acta Seismologica Sinica,44(3):388−400 doi: 10.11939/jass.20200199
Citation: Meng J,Wu Y X,Li Y N. 2022. First arrival time picking algorithm of micro-seismic based on improved STA/LTA and adaptive VMD. Acta Seismologica Sinica44(3):388−400 doi: 10.11939/jass.20200199

基于改进长短时窗比值及优化变分模态分解的微震初至拾取算法

doi: 10.11939/jass.20200199
基金项目: 河北省教育厅高等学校科学研究计划项目(QN2020527)和中央高校基本科研业务费项目(QN2020527)联合资助
详细信息
    作者简介:

    孟娟,硕士,讲师,主要从事地震资料信号处理和地震仪表设计领域的教学与科研工作,e-mail:mengjuan@cidp.edu.cn

  • 中图分类号: P315.3+1

First arrival time picking algorithm of micro-seismic based on improved STA/LTA and adaptive VMD

  • 摘要: 针对低信噪比条件下微震初至拾取准确度低的问题,基于信号幅度变化引入权重因子,对传统长短时窗比值(STA/LTA)算法进行改进,提高初次拾取精度。为了进一步降低拾取误差,对变分模态分解(VMD)算法进行优化,基于互相关系数和排列熵准则自适应确定VMD分解层数,对初次拾取结果前后2—3 s的记录进行优化VMD,并计算分解后各本征模函数(IMF)的峰度赤池信息准则值,得到各IMF的到时,以各IMF的拾取结果及能量比综合加权得到二次拾取到时。仿真实验表明:改进后的STA/LTA在较低信噪比下可降低初次拾取误差约0.01 s以上;相比经验模态分解(EMD)和小波包分解,自适应VMD分解后能再次降低误差,最终与人工拾取结果平均误差在0.023 s以内。实际微震信号初至拾取结果表明,本算法能快速有效地识别初至P波,与人工拾取结果相比误差小,准确率高。

     

  • 图  1  基于改进STA/LTA及优化VMD的微震初至拾取算法流程图

    Figure  1.  The flow chart of the first break picking of micro-seismic based on imp-roved STA/LTA and adaptive VMD

    图  2  基于雷克子波和卷积模型的理论和模拟地震记录

    Figure  2.  Theoretical and simulated seismogram based on Ricker wavelet and convolution model

    图  3  三种STA/LTA算法拾取结果

    Figure  3.  Picking up results of three kinds of STA/LTA algorithms

    图  4  不同SNR下三种STA/LTA算法拾取误差曲线

    Figure  4.  Picking up error curves of three STA/LTA algorithms under different SNRs

    图  5  优化VMD峰度AIC为3.07 s时的初至拾取结果

    Figure  5.  First arrival picking based on improved VMD when Kurtosis-AIC is 3.07 s

    图  6  基于EMD-AIC算法的初至拾取

    Figure  6.  First arrival picking based on EMD-AIC

    图  7  基于小波包峰度AIC的初至拾取

    Figure  7.  First arrival picking based on wavelet packet Kurtosis-AIC

    图  8  初次与二次P波拾取的误差对比

    Figure  8.  Comparison of initial and second P-wave picking errors

    图  9  3种不同算法的拾取误差对比

    Figure  9.  Picking errors of three different algorithms

    图  10  广西平果2013年7月4日ML1.3爆破的一条实际微震记录

    Figure  10.  Real micro-seismic record of some coal mine with ML1.3 at Pingguo,Guangxi on July 4th 2013

    图  11  本文改进STA/LTA初次拾取结果

    Figure  11.  First picking results of improved STA/LTA in this paper

    图  12  本文改进STA/LTA及优化VMD峰度AIC拾取结果

    Figure  12.  First arrival picking by improved STA/LTA and adaptive VMD Kurtosis-AIC

    图  13  EMD-AIC拾取结果

    Figure  13.  Picking results of EMD-AIC

    图  14  小波包峰度AIC的拾取结果

    Figure  14.  Picking results of wavelet packet Kurtosis-AIC

    表  1  实际微震记录初至拾取结果

    Table  1.   First arrival picking of real micro-seismics

    拾取方法误差 30 ms误差 20 ms误差 10 ms
    记录条数占比记录条数占比记录条数占比
    本文 1 117 98.2% 1 090 95.9% 1 031 90.7%
    EMD-AIC 1 090 95.9% 1 052 92.5% 980 86.2%
    小波包峰度AIC 1 075 94.5% 1 037 91.2% 968 85.1%
    下载: 导出CSV
  • [1] 贾瑞生,谭云亮,孙红梅,洪永发. 2015. 低信噪比微震P波震相初至自动拾取方法[J]. 煤炭学报,40(8):1845–1852.
    [2] Jia R S,Tan Y L,Sun H M,Hong Y F. 2015. Method of automatic detection on micro-seismic P-arrival time under low signal-to-noise ratio[J]. Journal of China Coal Society,40(8):1845–1852 (in Chinese).
    [3] 李伟,江晓林,陈海波,金珠鹏,刘志军,李兴伟,林井祥. 2018. 基于EEMD_Hankel_SVD的矿山微震信号降噪方法[J]. 煤炭学报,43(7):1910–1917.
    [4] Li W,Jiang X L,Chen H B,Jin Z P,Liu Z J,Li X W,Lin J X. 2018. Denosing method of mine microseismic signal based on EEMD_Hankel_SVD[J]. Journal of China Coal Society,43(7):1910–1917 (in Chinese).
    [5] 刘晗,张建中. 2014. 微震信号自动检测的STA/LTA算法及其改进分析[J]. 地球物理学进展,29(4):1708–1714. doi: 10.6038/pg20140429
    [6] Liu H,Zhang J Z. 2014. STA/LTA algorithm analysis and improvement of microseismic signal automatic detection[J]. Progress in Geophysics,29(4):1708–1714 (in Chinese).
    [7] 刘晓明,赵君杰,王运敏,彭平安. 2017. 基于改进的STA/LTA方法的微地震P波自动拾取技术[J]. 东北大学学报(自然科学版),38(5):740–745.
    [8] Liu X M,Zhao J J,Wang Y M,Peng P A. 2017. Automatic picking of microseismic events P-wave arrivals based on improved method of STA/LTA[J]. Journal of Northeastern University (Natural Science),38(5):740–745 (in Chinese).
    [9] 唐贵基,王晓龙. 2015. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报,49(5):73–81. doi: 10.7652/xjtuxb201505012
    [10] Tang G J,Wang X L. 2015. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xian Jiaotong University,49(5):73–81 (in Chinese).
    [11] 田优平,赵爱华. 2016. 基于小波包和峰度赤池信息量准则的P波震相自动识别方法[J]. 地震学报,38(1):71–85. doi: 10.11939/jass.2016.01.007
    [12] Tian Y P,Zhao A H. 2016. Automatic identification of P-phase based on wavelet packet and kurtosis-AIC method[J]. Acta Seismologica Sinica,38(1):71–85 (in Chinese).
    [13] 王志坚,常雪,王俊元,杜文华,段能全,党长营. 2018. 排列熵优化改进变模态分解算法诊断齿轮箱故障[J]. 农业工程学报,34(23):59–66. doi: 10.11975/j.issn.1002-6819.2018.23.007
    [14] Wang Z J,Chang X,Wang J Y,Du W H,Duan N Q,Dang C Y. 2018. Gearbox fault diagnosis based on permutation entropy optimized variational mode decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering,34(23):59–66 (in Chinese).
    [15] 赵大鹏,刘希强,刘尧兴,王志铄,赵晖,张亚琳. 2013. 高阶统计量及AIC方法在区域地震事件和直达P波初动识别中的应用[J]. 地震地磁观测与研究,34(5/6):61–69.
    [16] Zhao D P,Liu X Q,Liu Y X,Wang Z S,Zhao H,Zhang Y L. 2013. Detection of regional seismic events by high order statistics method and automatic identification of direct P-wave first motion by AIC method[J]. Seismological and Geomagnetic Observation and Research,34(5/6):61–69 (in Chinese).
    [17] 郑近德,程军圣,杨宇. 2013. 改进的EEMD算法及其应用研究[J]. 振动与冲击,32(21):21–26. doi: 10.3969/j.issn.1000-3835.2013.21.004
    [18] Zheng J D,Cheng J S,Yang Y. 2013. Modified EEMD algorithm and its applications[J]. Journal of Vibration and Shock,32(21):21–26 (in Chinese).
    [19] 郑小霞,周国旺,任浩翰,符杨. 2017. 基于变分模态分解和排列熵的滚动轴承故障诊断[J]. 振动与冲击,36(22):22–28.
    [20] Zheng X X,Zhou G W,Ren H H,Fu Y. 2017. A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J]. Journal of Vibration and Shock,36(22):22–28 (in Chinese).
    [21] 朱权洁,姜福兴,魏全德,王博,刘金海,刘晓辉. 2018. 煤层水力压裂微震信号P波初至的自动拾取方法[J]. 岩石力学与工程学报,37(10):2319–2333.
    [22] Zhu Q J,Jiang F X,Wei Q D,Wang B,Liu J H,Liu X H. 2018. An automatic method determining arrival times of microseismic P-phase in Hydraulic fracturing of coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,37(10):2319–2333 (in Chinese).
    [23] Bandt C,Pompe B. 2002. Permutation entropy:A natural complexity measure for time series[J]. Phys Rev Lett,88(17):174102. doi: 10.1103/PhysRevLett.88.174102
    [24] Charles M,Ge M C. 2018. Enhancing manual P-phase arrival detection and automatic onset time picking in a noisy microseismic data in underground mines[J]. Int J Min Sci Technol,28(4):691–699. doi: 10.1016/j.ijmst.2017.05.024
    [25] Dragomiretskiy K,Zosso D. 2014. Variational mode decomposition[J]. IEEE Trans Signal Proc,62(3):531–544. doi: 10.1109/TSP.2013.2288675
    [26] Gaci S. 2014. The use of wavelet-based denoising techniques to enhance the first-arrival picking on seismic traces[J]. IEEE Trans Geosci Remote Sens,52(8):4558–4563. doi: 10.1109/TGRS.2013.2282422
    [27] Kirbas I,Peker M. 2017. Signal detection based on empirical mode decomposition and Teager-Kaiser energy operator and its application to P and S wave arrival time detection in seismic signal analysis[J]. Neural Comput Appl,28(10):3035–3045. doi: 10.1007/s00521-016-2333-5
    [28] Li F Y,Zhang B,Verma S,Marfurt K J. 2018. Seismic signal denoising using thresholded variational mode decomposition[J]. Explora Geophys,49(4):450–461. doi: 10.1071/EG17004
    [29] Li X B,Shang X Y,Wang Z W,Dong L J,Weng L. 2016. Identifying P-phase arrivals with noise:An improved Kurtosis method based on DWT and STA/LTA[J]. J Appl Geophys,133:50–61. doi: 10.1016/j.jappgeo.2016.07.022
    [30] Li X B, Shang X Y, Morales-Esteban A, Wang Z W. 2017. Identifying P phase arrival of weak events: The Akaike information criterion picking application based on the empirical mode decomposition[J] Comput Geosci, 100: 57–66.
    [31] Liu M Z,Yang J X,Cao Y P,Fu W N,Cao Y L. 2017. A new method for arrival time determination of impact signal based on HHT and AIC[J]. Mech Syst Signal Proc,86:177–187. doi: 10.1016/j.ymssp.2016.10.003
    [32] Shang X Y,Li X B,Morales-Esteban A,Dong L J. 2018. Enhancing micro-seismic P-phase arrival picking:EMD-cosine function-based denoising with an application to the AIC picker[J]. J Appl Geophys,150:325–337. doi: 10.1016/j.jappgeo.2017.09.012
    [33] Xue Y J,Cao J X,Wang D X,Du H K,Yao Y. 2016. Application of the variational-mode decomposition for seismic time-frequency analysis[J]. IEEE J Select Top Appl Earth Observ Remote Sens,9(8):3821–3831. doi: 10.1109/JSTARS.2016.2529702
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  91
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 修回日期:  2021-05-26
  • 网络出版日期:  2022-04-08
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回