基于修正岩土体强度参数的简化纽马克位移法地震滑坡危险性快速评估技术

陈帅 苗则朗 吴立新

陈帅,苗则朗,吴立新. 2022. 基于修正岩土体强度参数的简化纽马克位移法地震滑坡危险性快速评估技术. 地震学报,44(3):512−527 doi: 10.11939/jass.20210008
引用本文: 陈帅,苗则朗,吴立新. 2022. 基于修正岩土体强度参数的简化纽马克位移法地震滑坡危险性快速评估技术. 地震学报,44(3):512−527 doi: 10.11939/jass.20210008
Chen S,Miao Z L,Wu L X. 2022. A method for seismic landslide hazard assessment using simplified Newmark displacement model based on modified strength parameters of rock mass . Acta Seismologica Sinica,44(3):512−527 doi: 10.11939/jass.20210008
Citation: Chen S,Miao Z L,Wu L X. 2022. A method for seismic landslide hazard assessment using simplified Newmark displacement model based on modified strength parameters of rock mass . Acta Seismologica Sinica44(3):512−527 doi: 10.11939/jass.20210008

基于修正岩土体强度参数的简化纽马克位移法地震滑坡危险性快速评估技术

doi: 10.11939/jass.20210008
基金项目: 国家重点研发项目(2018YFC15035)、湖南省自然科学基金(2019JJ60001)和中南大学创新驱动计划(2020CX036)共同资助
详细信息
    作者简介:

    陈帅,在读博士研究生,主要从事地震地质灾害风险和制图研究,e-mail:s.chen1227@csu.edu.cn

    通讯作者:

    苗则朗,博士,副教授,主要从事地震地质灾害方向的研究,e-mail:zelang.miao@csu.edu.cn

  • 中图分类号: P315.9

A method for seismic landslide hazard assessment using simplified Newmark displacement model based on modified strength parameters of rock mass

  • 摘要: 地震滑坡危险性评估可为震后应急响应等提供科学的决策依据。纽马克位移法可不依赖同震滑坡编目快速评估同震滑坡危险性。工程岩体物理力学参数是该方法的核心参数之一,但其赋值过于单一,难以反映复杂地质背景下岩体强度的空间差异性。针对上述问题,本文在分析地震滑坡影响因子的基础上,选择距断层距离、高程和距水系距离作为影响岩体强度的评价指标并建立岩体强度评价模型,获得区域岩体强度修正系数,进而修正传统方法的临界加速度。结合震后的即时地震动峰值加速度,采用简化纽马克位移法计算边坡累积位移,开展地震滑坡危险性快速评估,并以汶川MW7.9地震的地震滑坡危险性评估为例验证本文方法。结果表明,相对于传统方法,本文方法划分的地震滑坡危险区与同震滑坡分布更加一致。

     

  • 图  1  研究区断层分布及地震动图

    Figure  1.  Distribution of fault and ground motion map in the study area

    图  2  研究使用的主要数据源

    (a) 地震动图;(b) 工程岩组;(c) 地形坡度;(d) 同震滑坡

    Figure  2.  Data sources used in this study

    (a) Ground motion maps;(b) Engineering rock mass;(c) Topographic slopes;(d) Co-seismic landslides

    图  3  研究区斜坡静态安全系数(a)和临界加速度(b)分布

    Figure  3.  Distribution of static factor of safety (a) and critical acceleration (b) in study area

    图  4  岩体强度的主要评价指标

    (a) 高程;(b) 距水系距离;(c) 距断层距离

    Figure  4.  Main evaluation indicators for rock mass strength

    (a) Elevation;(b) Distance to the river;(c) Distance to the fault

    图  5  研究区岩体强度修正系数(a)和修正后的临界加速度(b)

    Figure  5.  Distribution of the modified factor of rock mass strength (a) and the modified critical acceleration (b)

    图  6  基于不同临界加速度获得的边坡累积位移分布及其差异性

    (a) 传统临界加速度;(b) 修正临界加速度;(c) 不同临界加速度的边坡位移差分

    Figure  6.  Distribution and differences of cumulative displacement of slopes calculated using different critical accelerations

    (a) Critical acceleration;(b) Modfied critical acceleration;(c) Cumulative displacement difference

    表  1  研究区工程地质岩组结构面强度经验赋值

    Table  1.   Empirical value of the structural surface strength of the engineering geological rocks in the studied area

    工程地质岩组有效内摩擦角/°有效黏聚力/MPa
    坚硬岩组400.035
    较坚硬岩组350.028
    较软岩组300.025
    软岩组200.015
    下载: 导出CSV

    表  2  判别矩阵定量标度及其描述

    Table  2.   Scale of judgment matrix and its description

    标度值bij相对重要性描述
    1bibj 同样重要
    3 bibj 稍微重要
    5bibj 明显重要
    7bibj 强烈重要
    9 bibj 极端重要
    2,4,6,8上述相邻的判断中值
    倒数bijbji
    下载: 导出CSV

    表  3  评价指标权重和对应的判别矩阵

    Table  3.   Evaluation index weight and corresponding judgment matrix

    评价指标距断层距离高程距水系距离权重一致性检验
    距断层距离1370.669 4CI=0.003 5<0.1
    高程1/3130.242 6
    距水系距离1/71/310.087 9
    下载: 导出CSV

    表  4  不同临界位移对应的地震滑坡危险性评价

    Table  4.   The hazard assessment of seismic landslide corresponding to different threshold

    坡体饱和度临界位移T/cm传统方法计算获得的边坡累积位移DN本文方法计算获得的边坡累积位移DNc
    LPAHARLPAHAR
    m=0 0.01 88.56% 43.13% 90.01% 45.13%
    0.5 62.90% 23.55% 72.15% 27.31%
    1 50.94% 17.40% 62.36% 21.56%
    2 36.32% 11.05% 48.61% 14.96%
    3 27.84% 7.92% 39.20% 11.15%
    4 22.30% 6.08% 32.51% 8.75%
    5 18.55% 4.90% 27.51% 7.11%
    m=0.5 0.01 93.01% 51.29% 93.47% 52.31%
    0.5 78.62% 34.47% 83.40% 37.26%
    1 70.43% 28.79% 77.21% 31.93%
    2 58.33% 21.65% 67.28% 25.20%
    3 49.75% 17.25% 59.49% 20.82%
    4 43.36% 14.34% 53.36% 17.71%
    5 38.52% 12.27% 48.26% 15.39%
    m=1 0.01 95.46% 59.80% 95.55% 60.17%
    0.5 89.47% 46.72% 91.06% 48.41%
    1 85.15% 41.98% 88.03% 44.04%
    2 78.00% 35.81% 82.68% 38.27%
    3 72.08% 31.54% 77.83% 34.23%
    4 67.19% 28.29% 73.54% 31.06%
    5 63.08% 25.74% 69.71% 28.51%
    下载: 导出CSV

    表  5  不同岩组对应的地震滑坡危险性评价

    Table  5.   The hazard assessment of seismic landslide corresponding to different rock groups

    坡体饱和度岩组传统方法计算获得的边坡累积位移DN本文方法计算获得的边坡累积位移DNc
    LPAHARLPAHAR
    m=0 软岩 45.45% 0.50% 52.27% 0.59%
    较软岩 44.80% 15.62% 51.68% 19.21%
    较硬岩 42.23% 26.24% 59.64% 41.45%
    坚硬岩 10.64% 1.18% 19.75% 2.46%
    m=0.5 软岩 52.27% 0.67% 54.55% 0.81%
    较软岩 65.88% 31.80% 70.30% 35.15%
    较硬岩 68.12% 49.26% 79.07% 61.38%
    坚硬岩 28.69% 4.02% 39.68% 6.15%
    m=1 软岩 61.36% 1.04% 63.64% 1.12%
    较软岩 82.65% 54.50% 84.56% 56.76%
    较硬岩 86.60% 72.34% 91.42% 78.46%
    坚硬岩 56.48% 11.62% 63.92% 13.93%
    下载: 导出CSV
  • [1] 陈晓利,单新建,张凌,刘春国,韩娜娜,兰剑. 2019. 地震诱发滑坡的快速评估方法研究:以2017年MS7.0级九寨沟地震为例[J]. 地学前缘,26(2):312–320.
    [2] Chen X L,Shan X J,Zhang L,Liu C G,Han N N,Lan J. 2019. Quick assessment of earthquake-triggered landslide hazards:A case study of the 2017 MS7.0 Jiuzhaigou earthquake[J]. Earth Science Frontiers,26(2):312–320 (in Chinese).
    [3] 郭金玉,张忠彬,孙庆云. 2008. 层次分析法的研究与应用[J]. 中国安全科学学报,18(5):148–153. doi: 10.3969/j.issn.1003-3033.2008.05.025
    [4] Guo J Y,Zhang Z B,Sun Q Y. 2008. Study and applications of analytic hierarchy process[J]. China Safety Science Journal,18(5):148–153 (in Chinese).
    [5] 黄润秋,李为乐. 2008. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,27(12):2585–2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
    [6] Huang R Q,Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,27(12):2585–2592 (in Chinese).
    [7] 黄润秋. 2011. 汶川地震地质灾害后效应分析[J]. 工程地质学报,19(2):145–151. doi: 10.3969/j.issn.1004-9665.2011.02.001
    [8] Huang R Q. 2011. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,19(2):145–151 (in Chinese).
    [9] 李鑫. 2018. 基于汶川地震资料的地震滑坡危险性快速评估技术研究[D]. 北京: 中国地震局地球物理研究所: 29–46.
    [10] Li X. 2018. Study on Seismic Landslide Hazard Rapid Assessment Based on the Inventory of Landslides Triggered by Wenchuan Earthquake[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 29–46 (in Chinese).
    [11] 李鑫,迟明杰,李小军. 2018. 基于简化纽马克位移模型的地震滑坡岩土体强度参数研究[J]. 地震学报,40(6):820–830. doi: 10.11939/jass.20180026
    [12] Li X,Chi M J,Li X J. 2018. Rock-soil strength parameters of earthquake-triggered landslides based on simplified Newmark displacement model[J]. Acta Seismologica Sinica,40(6):820–830 (in Chinese).
    [13] 李雪婧,高孟潭,徐伟进. 2019. 基于Newmark模型的概率地震滑坡危险性分析方法研究:以甘肃天水地区为例[J]. 地震学报,41(6):795–807. doi: 10.11939/jass.20180075
    [14] Li X J,Gao M T,Xu W J. 2019. Probabilistic seismic slope displacement hazard analysis based on Newmark displacement model:Take the area of Tianshui,Gansu Province,China as an example[J]. Acta Seismologica Sinica,41(6):795–807 (in Chinese).
    [15] 刘甲美. 2015. 概率地震滑坡危险性区划方法及应用[D]. 北京: 中国地震局地球物理研究所: 29–39.
    [16] Liu J M. 2015. Probabilistic Seismic Landslide Hazard Zonation Method and its Application[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 29–39 (in Chinese).
    [17] 刘甲美,高孟潭,陈鲲. 2015. 地形效应影响下地震动参数与斜坡稳定性的相关性研究[J]. 地震学报,37(5):865–874. doi: 10.11939/jass.2015.05.014
    [18] Liu J M,Gao M T,Chen K. 2015. On the correlation of ground motion parameters with slope stability incorporating topographic effects[J]. Acta Seismologica Sinica,37(5):865–874 (in Chinese).
    [19] 刘丽娜,许冲,徐锡伟,陈剑. 2014. GIS支持下基于AHP方法的2013年芦山地震区滑坡危险性评价[J]. 灾害学,29(4):183–191. doi: 10.3969/j.issn.1000-811X.2014.04.034
    [20] Liu L N,Xu C,Xu X W,Chen J. 2014. GIS-based landslide hazard evaluation using AHP method in the 2013 Lushan earthquake region[J]. Journal of Catastrophology,29(4):183–191 (in Chinese).
    [21] 马思远,许冲,王涛,刘甲美. 2019. 应用2类Newmark简易模型进行2008年汶川地震滑坡评估[J]. 地震地质,41(3):774–788. doi: 10.3969/j.issn.0253-4967.2019.03.015
    [22] Ma S Y,Xu C,Wang T,Liu J M. 2019. Application of two simplified Newmark models to the assessment of landslides triggered by the 2008 Wenchuan earthquake[J]. Seismology and Geology,41(3):774–788 (in Chinese).
    [23] 王进,郭靖,王卫东,方理刚. 2012. 权重线性组合与逻辑回归模型在滑坡易发性区划中的应用与比较[J]. 中南大学学报(自然科学版),43(5):1932–1939.
    [24] Wang J,Guo J,Wang W D,Fang L G. 2012. Application and comparison of weighted linear combination model and logistic regression model in landslide susceptibility mapping[J]. Journal of Central South University (Science and Technology),43(5):1932–1939 (in Chinese).
    [25] 王涛. 2010. 汶川地震重灾区地质灾害危险性评估研究[D]. 北京: 中国地质科学院: 27–40.
    [26] Wang T. 2010. Study on Seismic Landslide Hazard Assessment in Wenchuan Earthquake Severly Afflicted Area[D]. Beijing: Chinese Academy of Geological Sciences 27–40(in Chinese).
    [27] 王涛,吴树仁,石菊松,辛鹏. 2013. 基于简化Newmark位移模型的区域地震滑坡危险性快速评估:以汶川MS8.0级地震为例[J]. 工程地质学报,21(1):16–24. doi: 10.3969/j.issn.1004-9665.2013.01.003
    [28] Wang T,Wu S R,Shi J S,Xin P. 2013. Case study on rapid assessment of regional seismic landslide hazard based on simplified Newmark displacement model:Wenchuan MS8.0 earthquake[J]. Journal of Engineering Geology,21(1):16–24 (in Chinese).
    [29] 王涛,吴树仁,石菊松,辛鹏. 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨[J]. 工程地质学报,23(1):93–104.
    [30] Wang T,Wu S R,Shi J S,Xin P. 2015. Concepts and mechanical assessment method for seismic landslide hazard:A review[J]. Journal of Engineering Geology,23(1):93–104 (in Chinese).
    [31] 许冲,戴福初,姚鑫,陈剑,涂新斌,曹琰波,肖建章. 2010. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报,29(增刊):2972–2981.
    [32] Xu C,Dai F C,Yao X,Chen J,Tu X B,Cao Y B,Xiao J Z. 2010. GIS based certainty factor analysis of landslide triggering factors in Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,29(S1):2972–2981 (in Chinese).
    [33] 许冲,徐锡伟,吴熙彦,戴福初,姚鑫,姚琪. 2013. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报,21(1):25–44. doi: 10.3969/j.issn.1004-9665.2013.01.004
    [34] Xu C,Xu X W,Wu X Y,Dai F C,Yao X,Yao Q. 2013. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology,21(1):25–44 (in Chinese).
    [35] 姚鑫,许冲,戴福初,张永双. 2009. 四川汶川MS8级地震引发的滑坡与地层岩性、坡度的相关性[J]. 地质通报,28(8):1156–1162. doi: 10.3969/j.issn.1671-2552.2009.08.019
    [36] Yao X,Xu C,Dai F C,Zhang Y S. 2009. Contribution of strata lithology and slope gradient to landslides triggered by Wenchuan MS8 earthquake,Sichuan,China[J]. Geological Bulletin of China,28(8):1156–1162 (in Chinese).
    [37] 张咸恭, 王思敬, 张倬元. 2000. 中国工程地质学[M]. 北京: 科学出版社: 45–48.
    [38] Zhang X G, Wang S J, Zhang Z Y. 2000. Engineering Geology of China[M]. Beijing: Science Press: 45–48 (in Chinese).
    [39] 中华人民共和国建设部. 2004. GB 50021—2001 岩土工程勘察规范[S]. 北京: 中国建筑工业出版社: 20–28.
    [40] Ministry of Construction of the People’s Republic of China. 2004. GB 50021−2001 Code for Investigation of Geotechnical Engineering[S]. Beijing: China Architecture & Building Press: 20–28 (in Chinese).
    [41] 中华人民共和国住房和城乡建设部. 2015. GB/T 50218—2014 工程岩体分级标准[S]. 北京: 中国计划出版社: 3–14.
    [42] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2015. GB/T 50218–2014 Standard for Engineering Classification Rock Mass[S]. Beijing: China Planning Press : 3–14(in Chinese).
    [43] Chen S,Miao Z L,Wu L X,He Y G. 2020. Application of an incomplete landslide inventory and one class classifier to earthquake-induced landslide susceptibility mapping[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,13:1649–1660. doi: 10.1109/JSTARS.2020.2985088
    [44] Dreyfus D,Rathje E M,Jibson R W. 2013. The influence of different simplified sliding-block models and input parameters on regional predictions of seismic landslides triggered by the Northridge earthquake[J]. Eng Geol,163:41–54. doi: 10.1016/j.enggeo.2013.05.015
    [45] Fan X M,Scaringi G,Korup O,West A J,Van Westen C J,Tanyas H,Hovius N,Hales T C,Jibson R W,Allstadt K E,Zhang L M,Evans S G,Xu C,Li G,Pei X J,Xu Q,Huang R Q. 2019. Earthquake-induced chains of geologic hazards:Patterns,mechanisms,and impacts[J]. Rev Geophys,57(2):421–503. doi: 10.1029/2018RG000626
    [46] Godt J W, Sener B, Verdin K L, Wald D J, Earle P S, Harp E L, Jibson R W. 2008. Rapid assessment of earthquake-induced landsliding[C]//Proceedings of the First World Landslide Forum. Tokyo: Association for Disaster Prevention Research: 219–222.
    [47] Guzzetti F,Reichenbach P,Ardizzone F,Cardinali M,Galli M. 2006. Estimating the quality of landslide susceptibility models[J]. Geomorphology,81(1/2):166–184.
    [48] Ingles J,Darrozes J,Soula J C. 2006. Effects of the vertical component of ground shaking on earthquake-induced landslide displacements using generalized Newmark analysis[J]. Eng Geol,86(2/3):134–147.
    [49] Intrieri E,Carla T,Gigli G. 2019. Forecasting the time of failure of landslides at slope-scale:A literature review[J]. Earth-Sci Rvi,193:333–349. doi: 10.1016/j.earscirev.2019.03.019
    [50] Jibson R W. 1993. Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis[J]. Transp Res Rec,1411:9–17.
    [51] Jibson R W. 2007. Regression models for estimating coseismic landslide displacement[J]. Eng Geol,91(2/3/4):209–218.
    [52] Jibson R W. 2011. Methods for assessing the stability of slopes during earthquakes:A retrospective[J]. Eng Geol,122(1/2):43–50.
    [53] Jibson R W,Harp E L,Michael J A. 2000. A method for producing digital probabilistic seismic landslide hazard maps[J]. Eng Geol,58(3/4):271–289.
    [54] Kamp U,Growley B J,Khattak G A,Owen L A. 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region[J]. Geomorphology,101(4):631–642. doi: 10.1016/j.geomorph.2008.03.003
    [55] Kayastha P,Dhital M R,De Smedt F. 2013. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping:A case study from the Tinau watershed,west Nepal[J]. Comput Geosci,52:398–408. doi: 10.1016/j.cageo.2012.11.003
    [56] Newmark N M. 1965. Effects of earthquakes on dams and embankments[J]. Géotechnique,15(2):139–160.
    [57] Pourghasemi H R,Yansari Z T,Panagos P,Pradhan B. 2018. Analysis and evaluation of landslide susceptibility:A review on articles published during 2005−2016 (periods of 2005−2012 and 2013−2016)[J]. Arab J Geosci,11(9):193. doi: 10.1007/s12517-018-3531-5
    [58] Reichenbach P,Rossi M,Malamud B D,Mihir M,Guzzetti F. 2018. A review of statistically-based landslide susceptibility models[J]. Earth-Sci Rev,180:60–91. doi: 10.1016/j.earscirev.2018.03.001
    [59] Tsai H Y,Tsai C C,Chang W C. 2019. Slope unit-based approach for assessing regional seismic landslide displacement for deep and shallow failure[J]. Eng Geol,248:124–139. doi: 10.1016/j.enggeo.2018.11.015
    [60] Xu C,Xu X W,Dai F C,Wu Z D,He H L,Shi F,Wu X Y,Xu S N. 2013. Application of an incomplete landslide inventory,logistic regression model and its validation for landslide susceptibility mapping related to the May 12,2008 Wenchuan earthquake of China[J]. Nat Hazards,68(2):883–900. doi: 10.1007/s11069-013-0661-7
    [61] Zhou B G,Zhang Y M. 1994. Some characteristics of earthquake-induced landslide in southwestern China[J]. Northwest Seismol J,16(1):95–103.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  38
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-04-19
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回