Modeling and applications on amplitude-magnitude-distance-depth of some teleseism and ultra-teleseism phases
-
摘要: 不同震相具有不同的振动特性和传播规律,对应各自不同的幅值-震中距-深度衰减规律,本文基于禁核试核查国际数据中心公报,统计P,PcP,PKP,PKPbc及PKPab远震和极远震震相样本随震中距的分布,运用基于残差统计的迭代方法回归上述震相的幅值-震级-震中距-深度模型,通过震级残差标准差与均值的统计进行模型评估,结果显示:P,PcP,PKP,PKPbc及PKPab震相的震级残差标准差范围为0.30—0.36,满足一般震相相容性判断的需求;除PKPbc的残差均值大于0.03外,其余震相残差均值均为0.01左右,模型的系统偏差极小,甚至可以忽略不计。最后针对模型进行了幅值预测比对、震级相容性检测、极远震体波震级计算等三个不同场景的应用研究,验证模型可用于日常地震监测。
-
关键词:
- 事件检测 /
- 震相相容性 /
- 残差统计 /
- 幅值-震级-震中距-深度模型
Abstract: The consistency analysis of the signal feature is an important method to estimate the relationship between the event and the signal in the detection of seismic event. The consistency of amplitude can be used for determination of association through the comparison of amplitude residuals with numerous signal features on time and frequency domain. Different phases comply with the different propagation and attenuation law of amplitude-distance-depth. In this paper, the distribution of sample size varying with the distance of teleseism and ultra-teleseism phases such as P, PcP, PKP, PKPab and PKPbc based on the IDC is made. The model of amplitude-magnitude- distance-depth is constructed by iterative regression based on the residual statistics. The model is estimated through the standard deviation and mean of residual of magnitude. The range of standard deviation of residual of magnitude is 0.30−0.36. It could satisfy the requirements of phase consistency. Besides the mean of residual of magnitude of PKPbc phase is greater than 0.03, the rest phases is about 0.01. It demonstrates that the system deviation of the model is so tiny that it could be neglected. The application research of model is carried out by three different cases such as comparison of predicted amplitude, detection of magnitude consistency and magnitude calculation of ultra-teleseism events. The application research demonstrates that these models could be applied to routine seismic monitoring. -
图 12 新疆地区部分台站记录的南美地区某次mb5.3地震事件的PKP震相(右上角为台站名,括号内为计算的体波震级,波形滤波频带为0.8—4.5 Hz)
Figure 12. PKP phases of some mb5.3 event located in South America observed by stations in Xinjiang (Station code is labeled on right top of the waveform,and the number in bracket is the computed mb. The filter band is 0.8 to 4.5 Hz)
-
[1] 陈培善,秦嘉政. 1983. 量规函数、台站方位、台基及不同测量方法对近震震级ML的影响[J]. 地震学报,5(1):87–98. [2] Chen P S,Qin J Z. 1983. The effects of the calibration function,azimuths and sites of the stations and different methods of approach on the magnitude determination of near earthquakes,ML[J]. Acta Seismologica Sinica,5(1):87–98 (in Chinese). [3] 康清清,顾勤平,于悦颖,钱婷,黄群,霍祝青. 2019. 江苏及邻区地方性震级量规函数的研究[J]. 中国地震,35(3):521–530. doi: 10.3969/j.issn.1001-4683.2019.03.010 [4] Kang Q Q,Gu Q P,Yu Y Y,Qian T,Huang Q,Huo Z Q. 2019. Study on calibration function of local earthquakes in Jiangsu and its adjacent areas[J]. Earthquake Research in China,35(3):521–530 (in Chinese). [5] 库尔哈奈克. 1992. 地震图解析[M]. 刘启元, 吴宁远, 修济刚译. 北京: 地震出版社: 10–33. [6] Ota K. 1992. Anatomy of Seismograms[M]. Liu Q Y, Wu N Y, Xiu J G trans. Beijing: Seismological Press: 10–33 (in Chinese). [7] 刘芳,张帆,张晖,赵铁锁,娜热,魏建民. 2016. 内蒙古地区地方性震级的量规函数研究[J]. 中国地震,32(3):485–493. doi: 10.3969/j.issn.1001-4683.2016.03.005 [8] Liu F,Zhang F,Zhang H,Zhao T S,Na R,Wei J M. 2016. Study on calibration function of near earthquakes in the Inner Mongolia region[J]. Earthquake Research in China,32(3):485–493 (in Chinese). [9] 严尊国,薛军蓉. 1987. 中国近震震级ML综述[J]. 中国地震,3(4):44–51. [10] Yan Z G,Xue J R. 1987. On local magnitude ML for earthquakes in China[J]. Earthquake Research in China,3(4):44–51 (in Chinese). [11] 严尊国,李普丽,薛军蓉. 1992. 中国近震震级量规函数研究[J]. 中国地震,8(4):76–91. [12] Yan Z G,Li P L,Xue J R. 1992. Study on calibration function of local magnitude ML in China[J]. Earthquake Research in China,8(4):76–91 (in Chinese). [13] 张媛媛,王平,惠少兴,古云鹤. 2017. 陕西地区近震震级的量规函数研究[J]. 内陆地震,31(4):368–375. [14] Zhang Y Y,Wang P,Hui S X,Gu Y H. 2017. Study on calibration function of local earthquakes in Shaanxi region[J]. Inland Earthquake,31(4):368–375 (in Chinese). [15] Carpenter E W,Marshall P D,Douglas A. 1967. The amplitude-distance curve for short period teleseismic P-waves[J]. Geophys J Int,13(1/2/3):61–70. [16] Le Bras R, Wuster J. IDC Processing of Seismic, Hydroacoustic and Infrasonic Data. Revision 1. IDC Documentation User Guides.[M]. Vienna: Science Applications International Corporation: 74–96. [17] Murphy J R,Barker B W. 2003. Revised distance and depth corrections for use in the estimation of short-period P-wave magnitudes[J]. Bull Seismol Soc Am,93(4):1746–1764. doi: 10.1785/0120020084 [18] Veith K F,Clawson G E. 1972. Magnitude from short-period P-wave data[J]. Bull Seismol Soc Am,62(2):435–452. doi: 10.1785/BSSA0620020435 -