内蒙古敖汉旗震群的微震匹配定位及其发震断层研究

张珂 张帆 张晖 王鑫 郝美仙 翟浩

张珂,张帆,张晖,王鑫,郝美仙,翟浩. 2022. 内蒙古敖汉旗震群的微震匹配定位及其发震断层研究. 地震学报,44(4):594−607 doi: 10.11939/jass.20210041
引用本文: 张珂,张帆,张晖,王鑫,郝美仙,翟浩. 2022. 内蒙古敖汉旗震群的微震匹配定位及其发震断层研究. 地震学报,44(4):594−607 doi: 10.11939/jass.20210041
Zhang K,Zhang F,Zhang H,Wang X,Hao M X,Zhai H. 2022. Matching location for small events and seismogenic fault of Aohanqi earthquake swarm of Inner Mongolia. Acta Seismologica Sinica,44(4):594−607 doi: 10.11939/jass.20210041
Citation: Zhang K,Zhang F,Zhang H,Wang X,Hao M X,Zhai H. 2022. Matching location for small events and seismogenic fault of Aohanqi earthquake swarm of Inner Mongolia. Acta Seismologica Sinica44(4):594−607 doi: 10.11939/jass.20210041

内蒙古敖汉旗震群的微震匹配定位及其发震断层研究

doi: 10.11939/jass.20210041
基金项目: 中国地震局地震科技星火计划(XH20014)和内蒙古自治区地震局局长基金(2020JC07,2022(ZD)TM02)联合资助
详细信息
    作者简介:

    张珂,硕士,工程师,主要从事地震监测预警等研究,e-mail:zkee0928@163.com

    通讯作者:

    张晖,硕士,高级工程师,主要从事地震监测研究,e-mail:zhanghui218@163.com

  • 中图分类号: P315.31

Matching location for small events and seismogenic fault of Aohanqi earthquake swarm of Inner Mongolia

  • 摘要: 内蒙古敖汉旗地区在2018—2019年间曾发生多次小震丛集活动,不同地震事件的波形记录易相互交叠,导致地震目录缺失。针对以上问题,采用匹配定位(Match & Locate)方法,对台网遗漏地震进行识别、检测与定位,并通过CAP方法反演敖汉旗震群最大地震的震源机制解,利用匹配定位后的小震分布定量地拟合发震断层面参数,从而综合判定敖汉旗震群的发震断层面几何形态和发震构造。结果显示:通过匹配定位方法共识别、定位405个小震事件,是原有地震目录事件的5.4倍,震群主体沿NW−SE向展布于红山—八里罕断裂与赤峰—开源断裂相交区域的东侧,震源深度集中于8—10 km。断层拟合结果和最大地震震源机制解表明敖汉旗震群的发震构造应是一条左旋走滑型隐伏正断层,断层面走向为157°,倾角为84°。综合分析红山—八里罕断裂和赤峰—开源断裂的断层性质和活动特征,认为敖汉旗震群的发震断层可能是这两条深大断裂在不断活动中相互作用而形成。

     

  • 图  1  内蒙古赤峰市敖汉旗区域构造特征及2018年和2019年地震分布

    (a) 研究区区域构造背景,F1:赤峰—开源断裂,F2:红山—八里罕断裂;(b) 震群地震分布;(c) M-t

    Figure  1.  Regional tectonic settings and distribution of earthquakes in Aohanqi,Chifeng City,Inner Mongolia during 2018—2019

    (a) The regional tectonic settings of the studied area;F1:Chifeng-Kaiyuan fault,F2:Hongshan-Balihan fault;(b) The earthquake distribution of the swarm;(c) M-t plot

    图  2  双差方法重定位得到的敖汉旗震群分布图

    (a) 震中分布图;(b,c) 震源深度分别沿纬度、经度方向的变化;(d) 震源深度分布图

    Figure  2.  The earthquake swarm distribution of Aohanqi obtained by double difference relocation method

    (a) Epicentral distribution;(b,c) The variation of focal depth along latitude and longitude direction,respectively;(d) The distribution of focal depth

    图  3  模板地震事件的空间分布

    Figure  3.  Spatial distribution of template events selected from Aohanqi earthquake swarm

    图  4  不同互相关系数$ \overline{c} $阈值下使用匹配定位方法检测出来的敖汉旗地震事件

    Figure  4.  Aohanqi earthquake events detected by the method of match and locate with different threshold of cross correlation coefficient $ \overline{c} $

    图  5  (a) 匹配定位方法检测到的事件累积个数随互相关系数$ \overline{c} $阈值的变化;(b) 事件检测个数、地震事件检测准确率和$ \overline{c} $阈值三者间的关系

    Figure  5.  (a) The variation of the cumulative number of events detected by match and locate method with the threshold of cross-correlation coefficient $ \overline{c} $;(b) The relationship among the number of detected events,the accuracy of earthquake event detection and the $ \overline{c} $ threshold

    图  6  利用匹配定位方法检测到的地震事件波形(黑色)与模板事件波形(红色)的拟合图

    (a) 模板事件的自检结果;(b) 在原有地震目录内的地震检测结果;(c) 原有目录遗漏的地震检测结果

    Figure  6.  Fitting of earthquake event waveforms (black) and template event waveforms (red) detected by the match and locate method

    (a) Self-detection of a template event;(b) Detection result of an earthquake in the original earthquake catalogue; (c) Detection result of an earthquake missed in the original earthquake catalogue

    图  7  匹配定位方法与双差定位方法对同一地震的震中定位结果偏差(a,b)及相应震源深度分布情况(c,d)

    Figure  7.  Deviations of the results of the same earthquake epicenter (a,b) and depth (c,d) obtained using the match and locate method and the double difference method,respectively

    图  8  基于匹配定位方法与双差定位方法得到的赤峰—开源断裂北(a)、南(b)侧敖汉旗震群微震震中分布

    Figure  8.  The epicenter distribution of the Aohanqi earthquake events located on the north (a) and south (b) sides of Chifeng-Kaiyuan fault obtained by match and located method and double difference location method,respectively

    图  9  微震检测前、后敖汉旗震群三维分布特征(a)和地震频次-震级分布图(b)

    Figure  9.  3D distribution characteristics of Aohanqi earthquake swarm (a) and frequency-magnitude distribution (b) before and after microseismic detection

    图  10  内蒙古东部地区一维地壳速度结构模型(赵艳红等,2018

    Figure  10.  One-dimensional crustal velocity structure model of eastern Inner Mongolia (Zhao et al,2018

    图  11  敖汉旗震群最大地震的震源机制解反演误差随震源深度的变化(a)以及最佳反演深度7.5 km下的波形拟合(b)

    拟合波形下方的两行数字分别为理论波形(红色)相对实际波形(黑色)的时移(单位:s)以及二者的相关系数,波形左侧第一行给出了台站名,第二行给出了震中距(单位:km)和相对偏移时间(单位:s),台站波形按震中距排列

    Figure  11.  Variation of inversion error of focal mechanism solutions for the largest earthquake of Aohanqi swarm with focal depth (a) and waveform fitting at the optimal inversion depth 7.5 km (b)

    The numbers of two rows beneath the traces are the time shifts (in second) of synthetics (red) relative to the observations (black) and the corresponding cross-correlation coefficients,respectively. The upper-left corner are stations. The lower-left corner numbers represent the epicentral distance (in km) and the relative offset time (in second). The waveforms of stations are sorted in epicentral distance

    图  12  敖汉旗地震序列区小震(a)及其深度(b)的分布

    Figure  12.  Distribution of small earthquakes (a) and their depth in Aohanqi earthquake sequence region

    图  13  经匹配定位方法精确定位的敖汉旗震群小震分布在水平面(a)、断层面(b)和垂直于断层面的横断面(c)上的投影以及小震距断层面距离的分布(d)

    AA为震群分布的优势方向;圆圈表示精确定位小震;红色方框表示拟合的断层面边界

    Figure  13.  Projection of small earthquakes of the Aohanqi earthquake swarm by using match and locate method in the horizontal plane (a),fault plane (b) and cross section perpendicular to the fault plane (c) as well as distribution of the distance between small earthquakes and the fault plane (d)

    表  1  基于用匹配定位方法得到的敖汉旗震群小震定位结果计算出的断层面参数

    Table  1.   The fault plane parameters calculated based on the locations of small earthquakes of Aohanqi swarm by the match and locate method

    走向/°误差/°倾角/°误差/°到原点距离/km误差/km顶点位置(北纬/°,东经/°,深度/km)
    157 1.2 84° 2.9° 0 0.08 (42.24,119.95,13.0)
    (42.36,119.88,5.9)
    (42.36,119.88,13.0)
    (42.24,119.95,5.9)
    下载: 导出CSV
  • [1] 韩晓明,张帆,陈立峰,李娟,胡博. 2018. 2013年通辽5.3级地震及余震的破裂特征讨论[J]. 地震地质,40(3):685–697. doi: 10.3969/j.issn.0253-4967.2018.03.013
    [2] Han X M,Zhang F,Chen L F,Li J,Hu B. 2018. Discussion on rupture characteristics of the 2013 Tongliao M5.3 earthquake and its aftershocks[J]. Seismology and Geology,40(3):685–697 (in Chinese).
    [3] 蒋策,吴建平,房立华. 2018. 地震检测与震相自动拾取研究[J]. 地震学报,40(1):45–57. doi: 10.11939/jass.20170093
    [4] Jiang C,Wu J P,Fang L H. 2018. Earthquake detection and automatic phase picking[J]. Acta Seismologica Sinica,40(1):45–57 (in Chinese).
    [5] 刘希强,周蕙兰,郑治真,沈萍,杨选辉,马延路. 1998. 基于小波包变换的弱震相识别方法[J]. 地震学报,20(4):373–380. doi: 10.3321/j.issn:0253-3782.1998.04.005
    [6] Liu X Q,Zhou H L,Zheng Z Z,Shen P,Yang X H,Ma Y L. 1998. Weak seismic phase identification method based on wavelet packet transform[J]. Acta Seismologica Sinica,20(4):373–380 (in Chinese).
    [7] 盛书中,万永革,王未来,郑爽,石砚斌,李迎秋. 2014. 2010年玉树MS7.1地震发震断层面参数的确定[J]. 地球物理学进展,29(4):1555–1562.
    [8] Sheng S Z,Wan Y G,Wang W L,Zheng S,Shi Y B,Li Y Q. 2014. The fault plane parameter determination of the 2010 Yushu MS7.1 earthquake[J]. Progress in Geophysics,29(4):1555–1562 (in Chinese).
    [9] 涂广红,江为为,朱东英,周立宏,肖敦清,高嘉瑞,袁淑琴. 2006. 中国东北地区剩余重磁异常特征与地质构造及成矿带的关系[J]. 地球物理学进展,21(3):746–755. doi: 10.3969/j.issn.1004-2903.2006.03.010
    [10] Tu G H,Jiang W W,Zhu D Y,Zhou L H,Xiao D Q,Gao J R,Yuan S Q. 2006. The relationships between the characteristics of Northeast China residual gravity and magnetic anomalies and geological tectonic & metallogenic belt[J]. Progress in Geophysics,21(3):746–755 (in Chinese).
    [11] 万永革,沈正康,刁桂苓,王福昌,胡新亮,盛书中. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报,51(3):793–804. doi: 10.3321/j.issn:0001-5733.2008.03.020
    [12] Wan Y G,Shen Z K,Diao G L,Wang F C,Hu X L,Sheng S Z. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence[J]. Chinese Journal of Geophysics,51(3):793–804 (in Chinese).
    [13] 王兆国,刘财,冯晅,秦树洪. 2009. 中国东北地区地震空间分布与主要断裂带、深部构造及应力场关系[J]. 世界地质,28(4):513–519. doi: 10.3969/j.issn.1004-5589.2009.04.016
    [14] Wang Z G,Liu C,Feng X,Qin S H. 2009. Earthquake space distribution and its relationships with main faults,deep structure and stress field in Northeast China[J]. Global Geology,28(4):513–519 (in Chinese).
    [15] 杨超群,孟凡顺,万永革. 2013. 采用精确定位小震资料反演伽师地震断层面[J]. 地球物理学进展,28(6):2865–2871. doi: 10.6038/pg20130607
    [16] Yang C Q,Meng F S,Wan Y G. 2013. Calculating the parameters of fault plane for Jiashi earthquake by the data of small earthquakes accurately located[J]. Progress in Geophysics,28(6):2865–2871 (in Chinese).
    [17] 曾宪伟,姚华建,莘海亮. 2017. 宁夏石嘴山震群的微震匹配定位及其发震构造[J]. 地震地质,39(4):735–753. doi: 10.3969/j.issn.0253-4967.2017.04.009
    [18] Zeng X W,Yao H J,Xin H L. 2017. Match and locate for small event detection of Ningxia Shizuishan earthquake swarm and investigation of its seismogenic fault[J]. Seismology and Geology,39(4):735–753 (in Chinese).
    [19] 赵明,陈石,房立华,Yuen D A. 2019. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报,62(8):3034–3042.
    [20] Zhao M,Chen S,Fang L H,Yuen D A. 2019. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics,62(8):3034–3042 (in Chinese).
    [21] 赵艳红,张帆,娜热. 2018. 内蒙古东部地区一维地壳速度结构分析[J]. 地震地磁观测与研究,39(1):41–48.
    [22] Zhao Y H,Zhang F,Na R. 2018. Study on 1D crustal velocity structure in the eastern of Inner Mongolia[J]. Seismological and Geomagnetic Observation and Research,39(1):41–48 (in Chinese).
    [23] 周本伟,范莉苹,张龙,李珀任,房立华. 2020. 利用卷积神经网络检测地震的方法与优化[J]. 地震学报,42(6):669–683.
    [24] Zhou B W,Fan L P,Zhang L,Li P R,Fang L H. 2020. Earthquake detection using convolutional neural network and its optimization[J]. Acta Seismologica Sinica,42(6):669–683 (in Chinese).
    [25] Crotwell H P,Owens T J,Ritsema J. 1999. The TauP Toolkit:Flexible seismic travel-time and ray-path utilities[J]. Seismol Res Lett,70(2):154–160. doi: 10.1785/gssrl.70.2.154
    [26] Feng T,Wu J P,Fang L H,Guo X Y,Cai Y,Wang W L. 2021. Foreshocks of the 2018 ML4.0 Shimian earthquake in the Anninghe fault and its implications for earthquake nucleation[J]. Seismol Res Lett,92(3):1937–1949. doi: 10.1785/0220200332
    [27] Gibbons S J,Ringdal F. 2006. The detection of low magnitude seismic events using array-based waveform correlation[J]. Geophys J Int,165(1):149–166. doi: 10.1111/j.1365-246X.2006.02865.x
    [28] Kao H,Shan S J. 2004. The source-scanning algorithm:Mapping the distribution of seismic sources in time and space[J]. Geophys J Int,157(2):589–594. doi: 10.1111/j.1365-246X.2004.02276.x
    [29] Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
    [30] Klein F W. 2002. User’s Guide to HYPOINVERSE-2000: A Fortran Program to Solve for Earthquake Locations and Magnitudes[R]. Menlo Park: U. S. Geological Survey: 1–123.
    [31] Peng Z G,Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nat Geosci,2(12):877–881. doi: 10.1038/ngeo697
    [32] Shelly D R,Beroza G C,Ide S. 2007. Non-volcanic tremor and low-frequency earthquake swarms[J]. Nature,446(7133):305–307. doi: 10.1038/nature05666
    [33] Stevenson P R. 1976. Microearthquakes at Flathead Lake,Montana:A study using automatic earthquake processing[J]. Bull Seismol Soc Am,66(1):61–80. doi: 10.1785/BSSA0660010061
    [34] Wang C L,Liang C T,Deng K,Huang Y L,Zhou L. 2018. Spatiotemporal distribution of microearthquakes and implications around the seismic gap between the Wenchuan and Lushan earthquakes[J]. Tectonics,37(8):2695–2709. doi: 10.1029/2018TC005000
    [35] Zahradník J,Janský J,Plicka V. 2015. Analysis of the source scanning algorithm with a new P-wave picker[J]. J Seismol,19(2):423–441. doi: 10.1007/s10950-014-9475-7
    [36] Zhang M,Wen L X. 2015a. An effective method for small event detection:Match and locate (M&L)[J]. Geophys J Int,200(3):1523–1537. doi: 10.1093/gji/ggu466
    [37] Zhang M,Wen L X. 2015b. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea[J]. Seismol Res Lett,86(1):138–145. doi: 10.1785/02201401170
    [38] Zhang M,Wen L X. 2015c. Earthquake characteristics before eruptions of Japan’s Ontake volcano in 2007 and 2014[J]. Geophys Res Lett,42(17):6982–6988. doi: 10.1002/2015GL065165
    [39] Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.
    [40] Zhu L,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  20
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-11-18
  • 网络出版日期:  2022-07-14
  • 刊出日期:  2022-08-16

目录

    /

    返回文章
    返回