濑溪河流域地貌对泸县MS6.0地震发震构造变形的响应及其指示作用

周文英 梁明剑 左洪 廖程 吴微微 王明明 宫悦 魏娅玲

周文英,梁明剑,左洪,廖程,吴微微,王明明,宫悦,魏娅玲. 2022. 濑溪河流域地貌对泸县MS6.0地震发震构造变形的响应及其指示作用. 地震学报,44(2):250−259 doi: 10.11939/jass.20210071
引用本文: 周文英,梁明剑,左洪,廖程,吴微微,王明明,宫悦,魏娅玲. 2022. 濑溪河流域地貌对泸县MS6.0地震发震构造变形的响应及其指示作用. 地震学报,44(2):250−259 doi: 10.11939/jass.20210071
Zhou W Y,Liang M J,Zuo H,Liao C,Wu W W,Wang M M,Gong Y,Wei Y L. 2022. Response of the topography of Laixihe drainage to the structural deformation induced by MS6.0 Luxian earthquake and its indication. Acta Seismologica Sinica,44(2):250−259 doi: 10.11939/jass.20210071
Citation: Zhou W Y,Liang M J,Zuo H,Liao C,Wu W W,Wang M M,Gong Y,Wei Y L. 2022. Response of the topography of Laixihe drainage to the structural deformation induced by MS6.0 Luxian earthquake and its indication. Acta Seismologica Sinica44(2):250−259 doi: 10.11939/jass.20210071

濑溪河流域地貌对泸县MS6.0地震发震构造变形的响应及其指示作用

doi: 10.11939/jass.20210071
基金项目: 中国地震局地震科技星火计划(XH202302)、四川省地震局地震科技专项(LY2216)、国家重点研发计划(2020YFA0710600)、四川省地震局地震科技创新团队专项(201804)和西藏拉萨地球物理国家野外科学观测站研究课题(NORSLS21-04)共同资助
详细信息
    作者简介:

    周文英,硕士,工程师,主要从事构造地貌方面的研究,e-mail:zhouwenying10@163.com

    通讯作者:

    梁明剑,博士,高级工程师,主要从事活动构造方面的研究,e-mail:23800794@qq.com

  • 中图分类号: P315.2

Response of the topography of Laixihe drainage to the structural deformation induced by MS6.0 Luxian earthquake and its indication

  • 摘要: 以12.5 m 数字高程模型数据为基础,采用数字地貌分析方法提取了濑溪河流域的高程剖面和面积-高程积分(HI)等地貌参数,分析了2021年9月16日四川盆地东南部泸县MS6.0地震震中附近区域地貌与构造活动的响应关系。结果显示:震中西侧的螺观山和梯子崖背斜在震中的南北两端存在明显的缩短量差异;HI条带状低值区的展布方向与流域内构造的方向一致,HI高值区位于华蓥山两条断裂夹持的谷地,但在震中附近存在WNW向的HI低值带。综合分析认为,泸县地震震中附近应存在一走向为WNW的隐伏构造,它不仅调节了螺观山和梯子崖背斜在震中南北两端的缩短量差异,也使得HI值受其影响呈低值特征,该结果与震源机制解结果、等震线长轴走向以及余震空间展布的优势方向相一致。

     

  • 图  1  研究区位置和地质概况

    Figure  1.  The location and geological survey of the study area

    图  2  研究区坡度分布

    Figure  2.  The slope map of the study area

    图  3  跨螺观山和古佛山的AA′条带地形剖面

    Figure  3.  The swath profile AA′ across Luoguanshan and Gufoshan anticline structure

    图  4  研究区地层及断层分布

    Figure  4.  The geological map of study area

    图  5  跨螺观山和梯子崖背斜的高程剖面线BB′ (a)和CC′ (b)

    Figure  5.  Height profiles BB′ (a) and CC′ (b) across Luoguanshan and Tiziya anticline structures

    图  6  研究区的亚流域盆地分布图

    Figure  6.  The sub-basins distribution of the study area

    图  7  研究区亚流域盆地的HI等值分区图

    Figure  7.  The HI values isograms of the study area

    表  1  泸县MS6.0地震震中附近区域断层(引自四川省地质局,1980

    Table  1.   Faults information of Luxian MS6.0 earthquake area (after Sichuan Geology Bureau,1980

    名称构造部位走向倾向倾角/°长度/km性质
    薄刀岭断层圣灯山背斜北翼N60°ENW30—4218.0压性逆断层
    石马岭断层梯子崖背斜北西翼N40°ESE28—435.6压性逆断层
    天洋坪断层梯子崖背斜北西翼N45°ENW30—6318.0压性逆断层
    燕子崖断层螺观山背斜近核部N60°ESE26—5710.0压性逆断层
    黄泥垭断层梯子崖背斜核部北段N40°ENW30—7025.0压性逆断层
    堆金湾断层海潮背斜及古佛山背斜近核部N40°ENW50—7522.4压性逆断层
    黄草沟断层海潮背斜北西翼NESE354.4压性逆断层
    双河场断层古佛山背斜北西翼N40°—50°ESE30—4012.0压性逆断层
    菜子沟断层古佛山背斜南东翼N70°ES28—3710.0压性逆断层
    下载: 导出CSV
  • [1] 邓宾. 2013. 四川盆地中-新生代盆-山结构与油气分布[D]. 成都: 成都理工大学: 17–18.
    [2] Deng B. 2013. Meso-Cenozoic Architecture of Basin-Mountain System in the Sichuan Basin and Its Gas Distribution[D]. Chengdu: Chengdu University of Technology: 17–18 (in Chinese).
    [3] 贺鸿冰. 2012. 华蓥山构造带的构造几何学与运动学及其对川东与川中地块作用关系的启示[D]. 北京: 中国地质大学: 1–2.
    [4] He H B. 2012. Geometry and Kinematics Structures of the Huayingshan Mountains: Implications to Relationship Between Central Sichuan and East Sichuan Block[D]. Beijing: China University of Geosciences: 1–2 (in Chinese).
    [5] 李奋生,赵国华,李勇,颜照坤,梁明剑,闫亮,李敬波,邵崇建,郑立龙. 2015. 龙门山地区水系发育特征及其对青藏高原东缘隆升的指示[J]. 地质论评,61(2):345–355.
    [6] Li F S,Zhao G H,Li Y,Yan Z K,Liang M J,Yan L,Li J B,Shao C J,Zheng L L. 2015. The characteristics of drainage development in Longmen mountains area and its indication to the uplift of the eastern margin of Qinghai-Xizang (Tibet) Plateau[J]. Geological Review,61(2):345–355 (in Chinese).
    [7] 李伟,谢超,程宏宾,冯兵. 2021. 利用水系方位角和GPS数据研究龙门山后山断裂运动模式[J]. 四川地震,(2):7–10.
    [8] Li W,Xie C,Cheng H B,Feng B. 2021. Study on the fault movement model of the backmountain of Longmen mountain based on the azimuth angle and GPS data[J]. Earthquake Research in Sichuan,(2):7–10 (in Chinese).
    [9] 梁明剑,李大虎,郭红梅,王世元. 2014a. 成都盆地南缘第四纪构造变形及地貌响应特征[J]. 地震工程学报,36(1):98–106.
    [10] Liang M J,Li D H,Guo H M,Wang S Y. 2014a. Quaternary tectonic deformation and geomorphologic response characteristics in the southern margin of Chengdu basin[J]. China Earthquake Engineering Journal,36(1):98–106 (in Chinese).
    [11] 梁明剑,周荣军,闫亮,赵国华,郭红梅. 2014b. 青海达日断裂中段构造活动与地貌发育的响应关系探讨[J]. 地震地质,36(1):28–38.
    [12] Liang M J,Zhou R J,Yan L,Zhao G H,Guo H M. 2014b. The relationships between neotectonic activity of the middle segment of Dari fault and its geomorphological response,Qinghai Province,China[J]. Seismology and Geology,36(1):28–38 (in Chinese).
    [13] 刘静,曾令森,丁林,Tapponnier P,Gaudemer Y,文力,谢克家. 2009. 青藏高原东南缘构造地貌、活动构造和下地壳流动假说[J]. 地质科学,44(4):1227–1255. doi: 10.3321/j.issn:0563-5020.2009.04.014
    [14] Liu J,Zeng L S,Ding L,Tapponnier P,Gaudemer Y,Wen L,Xie K J. 2009. Tectonic geomorphology,active tectonics and lower crustal channel flow hypothesis of the southeastern Tibetan Plateau[J]. Chinese Journal of Geology,44(4):1227–1255 (in Chinese).
    [15] 刘静,张金玉,葛玉魁,王伟,曾令森,李根,林旭. 2018. 构造地貌学:构造-气候-地表过程相互作用的交叉研究[J]. 科学通报,63(30):3070–3088.
    [16] Liu J,Zhang J Y,Ge Y K,Wang W,Zeng L S,Li G,Lin X. 2018. Tectonic geomorphology:An interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin,63(30):3070–3088 (in Chinese). doi: 10.1360/N972018-00498
    [17] 四川省地质局. 1980. 中华人民共和国区域地质调查报告(遂宁幅、自贡幅、内江幅、宜宾幅、泸州幅)[M]. 成都: 四川省地质局: 153.
    [18] Sichuan Geology Bureau. 1980. Reginal Geological Survey Report of Peoples Republic of ChinaSuining, Zigong, Neijiang, Yibin and Luzhou Geological Map Sheet)[M]. Chengdu: Sichuan Geology Bureau: 153 (in Chinese).
    [19] 四川省地震局. 2021. 四川泸县6.0级地震烈度图发布[EB/OL]. [2021-12-24]. http://www.scdzj.gov.cn/xwzx/fzjzyw/202109/t20210920_50114.html.
    [20] Sichuan Earthquake Agency. 2021. Intensity map of the MS6.0 Sichuan Luxian earthquake on September 16, 2021[EB/OL]. [2021-12-24]. http://www.scdzj.gov.cn/xwzx/fzjzyw/202109/t20210920_50114.html (in Chinese).
    [21] 苏琦. 2015. 青藏高原东北缘典型流域地貌参数分析与构造变形探讨[D]. 兰州: 中国地震局兰州地震研究所: 69–70.
    [22] Su Q. 2015. Study on Typical Drainage Basins Along Northeastern Tibetan Plateau and Its Tectonic Deformation[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration: 69–70 (in Chinese).
    [23] 王丹, 董有浦, 焦骞骞, 张东越, 段佳鑫, 余华玉. 2021. 滇中地块新生代晚期的变形机制: 基于构造地貌学分析[J/OL]. [2021-12-24].地球科学. https://kns.cnki.net/kcms/detail/42.1874.P.20211118.1549.004.html.
    [24] Wang D, Dong Y P, Jiao Q Q, Zhang D Y, Duan J X, Yu H Y. 2021. The mechanism of tectonic deformation of the central Yunnan terrane in the Late Cenozoic based on tectonic geomorphology[J/OL].[2021-12-24]. Earth Science. https://kns.cnki.net/kcms/detail/42.1874.P.20211118.1549.004.html (in Chinese).
    [25] 易桂喜,赵敏,龙锋,梁明剑,王明明,周荣军,王思维. 2021. 2021年9月16日四川泸县MS6.0地震序列特征及孕震构造环境[J]. 地球物理学报,64(12):4449–4461. doi: 10.6038/cjg2021O0533
    [26] Yi G X,Zhao M,Long F,Liang M J,Wang M M,Zhou R J,Wang S W. 2021. Characteristics of the seismic sequence and seismogenic environment of the MS6.0 Sichuan Luxian earthquake on September 16,2021[J]. Chinese Journal of Geophysics,64(12):4449–4461 (in Chinese).
    [27] 于洋,王先彦,李一泉,戴岩,鹿化煜. 2018. 长江源地区通天河段水系格局演化与构造活动的关系[J]. 地理学报,73(7):1338–1351. doi: 10.11821/dlxb201807012
    [28] Yu Y,Wang X Y,Li Y Q,Dai Y,Lu H Y. 2018. The evolution of drainage pattern and its relation to tectonic movement in the upstream Yangtze catchment[J]. Acta Geographica Sinica,73(7):1338–1351 (in Chinese).
    [29] 张会平,刘少峰. 2004. 利用DEM进行地形高程剖面分析的新方法[J]. 地学前缘,11(3):226. doi: 10.3321/j.issn:1005-2321.2004.03.036
    [30] Zhang H P,Liu S F. 2004. A new method for elevation profile analysis using DEM[J]. Earth Science Frontiers,11(3):226 (in Chinese).
    [31] 张会平,杨农,刘少峰,张岳桥. 2006. 数字高程模型(DEM)在构造地貌研究中的应用新进展[J]. 地质通报,25(6):660–669. doi: 10.3969/j.issn.1671-2552.2006.06.002
    [32] Zhang H P,Yang N,Liu S F,Zhang Y Q. 2006. Recent progress in the DEM-based tectonogeomorphic study[J]. Geological Bulletin of China,25(6):660–669 (in Chinese).
    [33] 张世民,谢富仁. 2001. 鲜水河—小江断裂带7级以上强震构造区的划分及其构造地貌特征[J]. 地震学报,23(1):36–44. doi: 10.3321/j.issn:0253-3782.2001.01.005
    [34] Zhang S M,Xie F R. 2001. Seismo-tectonic divisions of strong earthquakes (M≥7.0) and their tectonic geomorphology along Xianshuihe-Xiaojiang fault zone[J]. Acta Seismologica Sinica,23(1):36–44 (in Chinese).
    [35] 赵正望. 2005. 川东南地区构造特征及其对油气成藏的控制作用[D]. 北京: 中国地质大学: 33.
    [36] Zhao Z W. 2005. The Regional Tectonic Characteristic of Southeast Sichuan Basin and Its Control to Oil and Gas Reservoir[D]. Beijing: China University of Geosciences: 33 (in Chinese).
    [37] 周荣军,唐荣昌,钱洪,文德华,马声浩,何玉林,蒲晓虹. 1997. 地震构造类比法的应用:以川东地区华蓥山断裂带为例[J]. 地震研究,20(3):316–322.
    [38] Zhou R J,Tang R C,Qian H,Wen D H,Ma S H,He Y L,Pu X H. 1997. An application of seismotectonic analogy to the Huayingshan fault zone in east Sichuan[J]. Journal of Seismological Research,20(3):316–322 (in Chinese).
    [39] Chen Y C,Sung Q,Cheng K Y. 2003. Along-strike variations of morphotectonic features in the western foothills of Taiwan:Tectonic implications based on stream-gradient and hypsometric analysis[J]. Geomorphology,56(1/2):109–137.
    [40] Clark M K,Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8):703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
    [41] Langbein W B. 1947. Topographic Characteristics of Drainage Basins[R/OL]. [2021-11-04]. https://pubs.usgs.gov/wsp/0968c/report.pdf.
    [42] Liu-Zeng J,Tapponnier P,Gaudemer Y,Ding L. 2008. Quantifying landscape differences across the Tibetan Plateau:Implications for topographic relief evolution[J]. J Geophys Res,113(F4):F04018.
    [43] Pike R J,Wilson S E. 1971. Elevation-relief ratio,hypsometric integral,and geomorphic area-altitude analysis[J]. GSA Bull,82(4):1079–1084. doi: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
    [44] Whipple K X,Tucker G E. 1999. Dynamics of the stream-power river incision model:Implications for height limits of mountain ranges,landscape response timescales,and research needs[J]. J Geophys Res:Solid Earth,104(B8):17661–17674. doi: 10.1029/1999JB900120
    [45] Willett S D, Hovius N, Brandon M T, Fisher D M. 2006. Tectonics, Climate, and Landscape Evolution[M/OL]. [2021-11-04]. https://www.researchgate.net/profile/Sean-Willett/publication/235431560_Tectonics_Climate_and_Landscape_Evolution/links/00b4951932ecc71355000000/Tectonics-Climate-and-Landscape-Evolution.pdf.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  21
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回