山东地区地壳三维纵横波速度、泊松比结构与地震活动性

范建柯 丁志峰 郭慧丽 苏道磊 张斌

范建柯, 丁志峰,郭慧丽,苏道磊,张斌. 2022. 山东地区地壳三维纵横波速度、泊松比结构与地震活动性. 地震学报,44(5):1−14 doi: 10.11939/jass.20210077
引用本文: 范建柯, 丁志峰,郭慧丽,苏道磊,张斌. 2022. 山东地区地壳三维纵横波速度、泊松比结构与地震活动性. 地震学报,44(5):1−14 doi: 10.11939/jass.20210077
Fan J K,Ding Z F,Guo H L,Su D L,Zhang B. 2022. 3-D P and S wave velocity and Poisson’s ratio structures and seismic activity in Shandong area. Acta Seismologica Sinica,44(5):1−14 doi: 10.11939/jass.20210077
Citation: Fan J K,Ding Z F,Guo H L,Su D L,Zhang B. 2022. 3-D P and S wave velocity and Poisson’s ratio structures and seismic activity in Shandong area. Acta Seismologica Sinica44(5):1−14 doi: 10.11939/jass.20210077

山东地区地壳三维纵横波速度、泊松比结构与地震活动性

doi: 10.11939/jass.20210077
基金项目: 国家自然科学基金青年基金(41704060)资助.
详细信息
    通讯作者:

    范建柯,E-mails:fanjianke_8888@163.com;281432360@qq.com

  • 中图分类号: P315.2

3-D P and S wave velocity and Poisson’s ratio structures and seismic activity in Shandong area

  • 摘要: 基于山东及邻区丰富的P波和S波到时数据反演获得了研究区内高精度的三维纵横波速度结构和泊松比异常分布形态。结果表明:2020年济南长清M4.1地震震中位于P波、S波高低速异常和高低泊松比异常过渡带,可能是区域构造应力下长清断裂发生左旋走滑运动的结果;2003年青岛崂山M4.1地震、崂山震群、乳山震群和长岛震群等的发生可能都受到流体的强烈影响,流体沿已有的较大断裂或相对完整岩体内的裂隙侵入,诱发断裂活动或裂隙破裂,从而导致中强地震或震群活动的发生。

     

  • 图  1  山东及周边地区构造分区图(修改自苏道磊等,2016

    Figure  1.  Tectonic settings in and around Shandong area (modified from Su et al,2016

    图  2  台站及地震分布图

    Figure  2.  Distribution of seismic stations and local earthquakes used in this study

    图  3  研究区内不同模型的莫霍面埋深

    (a)CRUST1.0模型;(b)接收函数反演结果;(c)合成模型

    Figure  3.  Moho depths in different models

    (a) CRUST1.0 model;(b) Inversion results from receiver function;(c) Synthetic model

    图  4  使用鲁西地区地壳速度模型在重定位前(a)后(b)及山东地震台网定位用地壳速度模型重定位前(c)所得的走时残差分布图

    Figure  4.  Travel time residual distribution based on crustal velocity model in Luxi area before (a) and after (b) relocation and crustal velocity model adopted by the Shandong seismic network before relocation (c)

    图  5  P波(a,b)和S波(c,d)成像中不同阻尼和平滑因子对应的速度扰动与走时残差均方根关系曲线

    圆点代表选取的最优阻尼因子和平滑因子

    Figure  5.  Trade-off curves between the norm of the 3-D velocity model and the root-mean-square travel time residual,with different values (the numbers beside the triangles) of the damping (a and c) and smoothing (b and d) parameters for P- (a,b) and S-wave (c,d) tomographies. The dots denote the optimal values of the damping and smoothing parameters

    图  6  检测板分辨率测试结果

    Figure  6.  Results of checkerboard resolution tests

    图  7  山东地区不同深度P波速度扰动(a—e)、S波速度扰动(a1—e1)及泊松比相对扰动(a2—e2)结果。(e—e2)分别为1—30 km的P波、S波速度扰动和泊松比相对扰动平均值

    Figure  7.  Map views of P-wave (a—e),S-wave (a1—e1) and Poisson’s ratio (a2—e2) tomographies in Shandong area. The averages of P-wave,S-wave and Poisson’s ratio anomalies from 1 to 30 km are shown in (e—e2)

    图  8  长清地震(黑色菱形)及泰山(黑色三角)周边不同深度处P波速度扰动(a—d)、S波速度扰动(a1—d1)及泊松比相对扰动(a2—d2)结果

    Figure  8.  Map views of P-wave (a—d),S-wave (a1—d1) and Poisson’s ratio (a2—d2) tomographies around Changqing earthquake (black diamond) and Mountain Tai (black triangle)

    图  9  过长清地震(黑色菱形)的剖面AA′(a)的P波速度扰动(b)、S波速度扰动(c)和泊松比扰动(d)。

    Figure  9.  Vertical cross section of P-wave (b),S-wave (c) and Poisson’s ratio (d) tomographies along a profile AA′ (a) across the Changqing earthquake (black diamond) shown in the inset map

    图  10  山东半岛地区不同深度P波速度扰动(a—d)、S波速度扰动(a1—d1)及泊松比相对扰动(a2—d2)结果

    Figure  10.  Map views of P-wave (a—d),S-wave (a1—d1) and Poisson’s ratio (a2—d2) tomographies in and around Shandong Peninsula

  • [1] 陈立华,宋仲和. 1990. 华北地区地壳上地幔P波速度结构[J]. 地球物理学报,33(5):540–546. doi: 10.3321/j.issn:0001-5733.1990.05.006
    [2] Chen L H,Song Z H. 1990. Crust-upper mantle P wave velocity structure beneath northern China[J]. Acta Geophysica Sinica,33(5):540–546 (in Chinese).
    [3] 郭敬辉,陈福坤,张晓曼,Siebel W,翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J]. 岩石学报,21(4):1281–1301. doi: 10.3321/j.issn:1000-0569.2005.04.025
    [4] Guo J H,Chen F K,Zhang X M,Siebel W,Zhai M G. 2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt,eastern China:Zircon U-Pb geochronology[J]. Acta Petrologica Sinica,21(4):1281–1301 (in Chinese).
    [5] 嘉世旭,张先康. 2005. 华北不同构造块体地壳结构及其对比研究[J]. 地球物理学报,48(3):611–620. doi: 10.3321/j.issn:0001-5733.2005.03.019
    [6] Jia S X,Zhang X K. 2005. Crustal structure and comparison of different tectonic blocks in North China[J]. Chinese Journal of Geophysics,48(3):611–620 (in Chinese). doi: 10.1002/cjg2.694
    [7] 雷霆. 2020. 济南市背景噪声成像: 地下水运移与地热水的形成[D]. 合肥: 中国科学技术大学.
    [8] Lei T. 2020. Ambient Noise Tomography of Jinan: The Migration of Groundwater and the Formation of Geothermal Water[D]. Hefei: University of Science and Technology of China (in Chinese).
    [9] 李理,钟大赉. 2006. 泰山新生代抬升的裂变径迹证据[J]. 岩石学报,22(2):457–464. doi: 10.3321/j.issn:1000-0569.2006.02.018
    [10] Li L,Zhong D L. 2006. Fission track evidence of Cenozoic uplifting events of the Taishan Mountain,China[J]. Acta Petrologica Sinica,22(2):457–464 (in Chinese).
    [11] 李志伟,胥颐,郝天珧,刘劲松,张岭. 2006. 环渤海地区的地震层析成像与地壳上地幔结构[J]. 地球物理学报,49(3):797–804. doi: 10.3321/j.issn:0001-5733.2006.03.023
    [12] Li Z W,Xu Y,Hao T Y,Liu J S,Zhang L. 2006. Seismic tomography and velocity structure in the crust and upper mantle around Bohai Sea area[J]. Chinese Journal of Geophysics,49(3):797–804 (in Chinese).
    [13] 潘元生,颜景连,史雯,卢桦楠,万连初,邓向明. 2003. 2003年6月5日青岛崂山4.1级震群概述[J]. 国际地震动态,(11):19–26. doi: 10.3969/j.issn.0253-4975.2003.11.005
    [14] Pan Y S,Yan J L,Shi W,Lu H N,Wan L C,Deng X M. 2003. Outline of the earthquake swarm of M 4.1 occurring in Laoshan District of Qingdao City on June 5,2003[J]. Recent Developments in World Seismology,(11):19–26 (in Chinese).
    [15] 潘元生,侯海锋,万连初,邓向明,史雯,周焕鹏. 2004. 2003年6月青岛崂山4级震群序列初步分析[J]. 内陆地震,18(1):77–83. doi: 10.3969/j.issn.1001-8956.2004.01.010
    [16] Pan Y S,Hou H F,Wan L C,Deng X M,Shi W,Zhou H P. 2004. The preliminary analysis of the swarm sequence about the Laoshan earthquake with Ms 4 of Qingdao City in June 2003[J]. Inland Earthquake,18(1):77–83 (in Chinese).
    [17] 潘元生,李彬,宋德忠,梁宗海. 2005. 2004年11月1日青岛崂山3.6级震群概况[J]. 国际地震动态,(6):37–42. doi: 10.3969/j.issn.0253-4975.2005.06.008
    [18] Pan Y S,Li B,Song D Z,Liang Z H. 2005. Outline of the earthquake swarm of M 3.6 occurring in Laoshan District of Qingdao City on November 1,2004[J]. Recent Developments in World Seismology,(6):37–42 (in Chinese).
    [19] 申金超,李士成,张斌. 2019. 长岛震群b值随深度变化特征[J]. 地震,39(2):28–36. doi: 10.3969/j.issn.1000-3274.2019.02.004
    [20] Shen J C,Li S C,Zhang B. 2019. Variation of b value with depth in the Changdao earthquake sequence[J]. Earthquake,39(2):28–36 (in Chinese).
    [21] 苏道磊,范建柯,吴时国,陈传绪,董晓娜,陈时军. 2016. 山东地区地壳P波三维速度结构及其与地震活动的关系[J]. 地球物理学报,59(4):1335–1349. doi: 10.6038/cjg20160415
    [22] Su D L,Fan J K,Wu S G,Chen C X,Dong X N,Chen S J. 2016. 3D P wave velocity structures of crust and their relationship with earthquakes in the Shandong area[J]. Chinese Journal of Geophysics,59(4):1335–1349 (in Chinese).
    [23] 索艳慧,李三忠,刘鑫,戴黎明,许立青,王鹏程,赵淑娟,张丙坤. 2013. 中国东部NWW向活动断裂带构造特征:以张家口-蓬莱断裂带为例[J]. 岩石学报,29(3):953–966.
    [24] Suo Y H,Li S Z,Liu X,Dai L M,Xu L Q,Wang P C,Zhao S J,Zhang B K. 2013. Structural characteristics of NWW-trending active fault zones in East China:A case study of the Zhangjiakou-Penglai Fault Zone[J]. Acta Petrologica Sinica,29(3):953–966 (in Chinese).
    [25] 田粟. 2012. 威海地区构造型地热田成因机制研究[D]. 济南: 济南大学.
    [26] Tian S. 2012. The Study on the Mechanism of Structural Geothermal Fields of Wei Hai[D]. Ji’nan: University of Jinan (in Chinese).
    [27] 王鹏. 2019. 山东半岛长岛和乳山震群发震机制研究[D]. 北京: 中国地震局地球物理研究所.
    [28] Wang P. 2019. Study on Seismogenic Mechanism of Chang Island and Rushan Earthquake Swarms in Shandong Peninsula[D]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese).
    [29] 王志才,邓起东,晁洪太,杜宪宋,石荣会,孙昭民,肖兰喜,闵伟,凌宏. 2006. 山东半岛北部近海海域北西向蓬莱-威海断裂带的声波探测[J]. 地球物理学报,49(4):1092–1101. doi: 10.3321/j.issn:0001-5733.2006.04.022
    [30] Wang Z C,Deng Q D,Chao H T,Du X S,Shi R H,Sun Z M,Xiao L X,Min W,Ling H. 2006. Shallow-depth sonic reflection profiling studies on the active Penglai-Weihai fault zone offshore of the northern Shandong peninsula[J]. Chinese Journal of Geophysics,49(4):1092–1101 (in Chinese).
    [31] 张斌,苏道磊,范建柯,申金超,王鹏,蔡寅,刘晨. 2017. 基于自适应量子遗传算法对胶东半岛地区乳山震群重定位及构造特征分析[J]. 地球物理学进展,32(3):1080–1088. doi: 10.6038/pg20170318
    [32] Zhang B,Su D L,Fan J K,Shen J C,Wang P,Cai Y,Liu C. 2017. Relocation by adaptive quantum genetic algorithm of Rushan earthquake swarm in Jiaodong peninsula area and analysis of structural features[J]. Progress in Geophysics,32(3):1080–1088 (in Chinese).
    [33] 张斌,苏道磊,申金超,董晓娜,程海泽. 2020. 山东济南4.1级地震序列重定位及其发震构造分析[J]. 华北地震科学,38(2):85–90.
    [34] Zhang B,Su D L,Shen J C,Dong X N,Cheng H Z. 2020. Relocation of Ji’nan 4.1 earthquake sequence and seismogenic structure analysis[J]. North China Earthquake Sciences,38(2):85–90 (in Chinese).
    [35] 张岭,刘劲松,郝天珧,刘建华,胥颐. 2007. 渤海湾盆地及其邻域地区地壳与上地幔层析成像[J]. 中国科学D辑:地球科学,37(11):1444–1455.
    [36] Zhang L,Liu J S,Hao T Y,Liu J H,Xu Y. 2007. Seismic tomography of the crust and upper mantle in the Bohai Bay Basin and its adjacent regions[J]. Science in China Series D:Earth Sciences,50(12):1810–1822. doi: 10.1007/s11430-007-0135-4
    [37] 赵广涛,曹钦臣,孙悦鹏. 1996. 崂山花岗岩地区含锶、偏硅酸矿泉水的形成机理[J]. 青岛海洋大学学报,26(2):239–245.
    [38] Zhao G T,Cao Q C,Sun Y P. 1996. Formation mechanism of strontium and metasilicic acid-bearing mineral water in the Laoshan mountain granitoid area[J]. Journal of Ocean University of Qingdao,26(2):239–245 (in Chinese).
    [39] 郑宏,范建柯,李翠琳,苏道磊. 2021. 山东地区各向异性、地壳厚度及泊松比分布特征[J]. 地球物理学进展,36(5):1905–1915. doi: 10.6038/pg2021EE0386
    [40] Zheng H,Fan J K,Li C L,Su D L. 2021. Characteristics of crustal anisotropy,thickness and Poisson's ratio in Shandong region[J]. Progress in Geophysics,36(5):1905–1915 (in Chinese).
    [41] 郑建常,王鹏,徐长朋,许崇涛,刘凯,李冬梅,李翠芹. 2016. 乳山震群震源谱参数的稳健反演[J]. 地球物理学报,59(11):4100–4112. doi: 10.6038/cjg20161114
    [42] Zheng J C,Wang P,Xu C P,Xu C T,Liu K,Li D M,Li C Q. 2016. Robust inversion of seismic-source spectral parameters for the 2013-2015 Rushan swarm[J]. Chinese Journal of Geophysics,59(11):4100–4112 (in Chinese).
    [43] Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST 1.0 - A 1-degree Global Model of Earth's Crust[C]//EGU General Assembly 2013. Vienna, Austria.
    [44] Li C L,Chen C X,Dong D D,Kuponiyi A P,Dosso S E,Su D L. 2018. Ambient noise tomography of the shandong province and its implication for Cenozoic Intraplate Volcanism in Eastern China[J]. Geochem Geophys Geosyst,19(9):3286–3301. doi: 10.1029/2018GC007515
    [45] Liu X,Zhao D P. 2018. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake[J]. Sci Adv,4(6):eaat4396. doi: 10.1126/sciadv.aat4396
    [46] Paige C C,Saunders M A. 1982. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM Trans Math Softw,8(1):43–71. doi: 10.1145/355984.355989
    [47] Zhao D P,Hasegawa A,Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J Geophys Res:Solid Earth,97(B13):19909–19928. doi: 10.1029/92JB00603
    [48] Zhao D P,Kanamori H,Negishi H,Wiens D. 1996. Tomography of the source area of the 1995 Kobe earthquake:Evidence for fluids at the hypocenter?[J]. Science,274(5294):1891–1894. doi: 10.1126/science.274.5294.1891
    [49] Zimmer M,Prasad M,Mavko G. 2002. Pressure and porosity influences on VP-VS ratio in unconsolidated sands[J]. Lead Edge,21(2):178–183. doi: 10.1190/1.1452609
  • 加载中
图(10)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  31
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-08-24
  • 网络出版日期:  2022-09-02

目录

    /

    返回文章
    返回