松辽盆地地壳精细结构研究

况春利 张瑞青 陈成锋 刘嘉栋

况春利,张瑞青,陈成锋,刘嘉栋. 2022. 松辽盆地地壳精细结构研究. 地震学报,44(0):1−12 doi: 10.11939/jass.20210108
引用本文: 况春利,张瑞青,陈成锋,刘嘉栋. 2022. 松辽盆地地壳精细结构研究. 地震学报,44(0):1−12 doi: 10.11939/jass.20210108
Kuang C L,Zhang R Q,Chen C F,Liu J D. 2022. High-resolution crustal structure in the Songliao basin. Acta Seismologica Sinica,44(0):1−12 doi: 10.11939/jass.20210108
Citation: Kuang C L,Zhang R Q,Chen C F,Liu J D. 2022. High-resolution crustal structure in the Songliao basin. Acta Seismologica Sinica44(0):1−12 doi: 10.11939/jass.20210108

松辽盆地地壳精细结构研究

doi: 10.11939/jass.20210108
基金项目: 国家自然科学基金(41874073,U1839210)资助
详细信息
    作者简介:

    况春利,在读硕士研究生,主要从事地球深部结构方面研究,e-mail:1291980721@qq.com

    通讯作者:

    张瑞青,研究员,主要从事壳幔深部结构研究,e-mail:zrq@cea-igp.ac.cn

  • 中图分类号: P315.2

High-resolution crustal structure in the Songliao basin

  • 摘要: 东北地区松辽盆地下方地壳浅层精细结构探测具有重要的经济和科学意义。利用东北地区已有的宽频带流动台阵远震数据,基于波场延拓和分解的H-β网格搜索法,对松辽盆地的沉积层及地壳结构进行了研究。结果显示:松辽盆地沉积层厚度为0.2—2.5 km,整体呈现中央坳陷区厚、边缘薄且西南地区最薄的分布特征;研究区地壳较薄,厚度介于24—34 km之间,其横向变化特征与沉积层厚度分布具有一定的对应性。依据沉积层与地壳厚度计算了地壳伸展系数,其平均值接近于以往接收函数研究估测的岩石圈伸展因子。据此,本文推测松辽盆地在伸展构造过程中,地壳和岩石圈的减薄以纯剪切模式为主。此外,松辽盆地具有高的地壳平均波速比(vP/vS),暗示盆地下方岩石圈地幔减薄过程中可能存在岩浆的底侵作用。

     

  • 图  1  东北地区地质构造和地震台站分布示意图

    黄色实心圆表示满洲里—绥芬河线性流动台阵(SM台阵),蓝色为NECESSArray流动台阵。紫色实线为松辽盆地边界,黑色粗虚线为主要缝合带和郯庐断裂带;红色三角形表示火山位置

    Figure  1.  Map showing major geological tectonic settings and portable seismic arrays deployed in Northeast China

    Yellow and blue solid circles represent two portable seismic arrays,the Suifenhe to Manzhouli (SM) and NECESSArray,respectively. The purple solid line outlines the Songliao basin. The major suture and Tanlu fault zone are shown as the black dashed lines. Red triangles show the volcanoes in the NE China

    图  2  远震地震事件分布

    红色三角形为研究区域中心,黑色圆点为地震事件的震中分布

    Figure  2.  Epicentral distribution of teleseismic events used in this study

    Red triangle represents the center of the study areas,black dots denotes seismic events

    图  3  松辽盆地沉积层厚度(a)、地壳厚度(b)、地壳平均vP/vS值(c)以及地壳伸展系数(d)分布图

    图(b)中,黑色方块表示采用H-β搜索方法获得有效结果的台站

    Figure  3.  Map of sediment thickness (a),crustal thickness (b),vP/vS ratio (c) and stretching factor (d) beneath the Songliao basin

    The black squares in Fig. (b) represent the seismic stations with the valid H-β values

    图  4  地壳厚度分别与沉积层厚度(a)和壳内平均波速比(b)的相关性

    Figure  4.  Relationship between crustal thicknesses and sediment thicknesses (a) and vP/vS ratios (b)

    表  1  本文H-β网格搜索法中所用模型

    Table  1.   Model used in H-β grid search

    模型vP/(km·s−1ρ/(g·cm −3H/kmvS/(km·s−1
    沉积层2.11.970~7.00~2.5
    地壳6.42.725.0~40.03.0~5.0
    地幔8.03.34.5
    下载: 导出CSV
  • [1] 包汉勇,郭战峰,张罗磊,黄亚平. 2013. 盆地伸展系数求取方法与评价:以苏北盆地为例[J]. 石油实验地质,35(3):331–338. doi: 10.11781/sysydz201303331
    [2] Bao H Y,Guo Z F,Zhang L L,Huang Y P. 2013. Calculating methods and assessment of stretching factor:a case study of Northern Jiangsu Basin[J]. Petroleum Geology &Experiment,35(3):331–338 (in Chinese).
    [3] 窦立荣. 1992. 东北含油气区中新生代断陷盆地石油地质特征及资源远景[J]. 江汉石油学院学报,14(1):1–8.
    [4] Dou L R. 1992. Characteristics of petroleum geology and petroleum potential in Meso-Cenozoic fault Basins in Northeastern petroleum-bearing provinces,China[J]. Journal of Jianghan Petroleum Institute,14(1):1–8 (in Chinese).
    [5] 符伟. 2019. 深反射剖面揭示的松辽盆地北部深部结构、动力学背景与油气远景[D]. 长春: 吉林大学: 67–82.
    [6] Fu W. 2019. Deep Structure, Dynamic Background and Hydrocarbon Prospect of Northern Songliao Basin: Revealed by Deep Seismic Reflection Profile[D]. Changchun: Jilin University: 67–82 (in Chinese).
    [7] 傅维洲,杨宝俊,刘财,Кгылов С B. 1998. 中国满洲里—绥芬河地学断面地震学研究[J]. 长春科技大学学报,28(2):87–93.
    [8] Fu W Z,Yang B J,Liu C,Кгылов C B. 1998. Study on the seismology in Manzhouli−Suifenhe geoscience transect of China[J]. Journal of Changchun University of Science and Technology,28(2):87–93 (in Chinese).
    [9] 高立新,戴勇. 2020. 现今中国东北地区地球动力学环境[J]. 大地测量与地球动力学,40(11):1101–1107.
    [10] Gao L X,Dai Y. 2020. The present geodynamic environment of Northeast China[J]. Journal of Geodesy and Geodynamics,40(11):1101–1107 (in Chinese).
    [11] 高延光,李永华. 2014. 中国东北—华北地区地壳厚度与泊松比及其地质意义[J]. 地球物理学报,57(3):847–857. doi: 10.6038/cjg20140314
    [12] Gao Y G,Li Y H. 2014. Crustal thickness and Vp/Vs in the Northeast China-North China region and its geological implication[J]. Chinese Journal of Geophysics,57(3):847–857 (in Chinese).
    [13] 高占永. 2015. 中国东北地区地壳上地幔结构的接收函数研究[D]. 北京: 中国地震局地球物理研究所: 31–46.
    [14] Gao Z Y. 2015. The Study of the Crustal and Upper Mantle Structure in Northeast China from Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 31–46 (in Chinese).
    [15] 葛荣峰,张庆龙,王良书,解国爱,徐士银,陈娟,王锡勇. 2010. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质论评,56(2):180–195.
    [16] Ge R F,Zhang Q L,Wang L S,Xie A G,Xu S Y,Chen J,Wang X Y. 2010. Tectonic evolution of Songliao basin and the prominent tectonic regime transition in Eastern China[J]. Geological Review,56(2):180–195 (in Chinese).
    [17] 侯贺晟,王成善,张交东,马峰,符伟,王璞珺,黄永建,邹长春,高有峰,高远,张来明,杨瑨,国瑞. 2018. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质,45(4):641–657. doi: 10.12029/gc20180401
    [18] Hou H S,Wang C S,Zhang J D,Ma F,Fu W,Wang P J,Huang Y J,Zou C C,Gao Y F,Gao Y,Zhang L M,Yang J,Guo R. 2018. Deep continental scientific drilling engineering in Songliao Basin:progress in earth science research[J]. Geology in China,45(4):641–657 (in Chinese).
    [19] 胡望水,吕炳全,张文军,毛治国,冷军,官大勇. 2005. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学,40(1):16–31.
    [20] Hu W S, Lü B Q, Zhang W J, Mao Z G, Leng J, Guan D Y. 2005. An approach to tectonic evolution and dynamics of the Songliao baisn[J]. Chinese Journal of Geology, 40(1): 16-31 (in Chinese).
    [21] 嵇少丞,王茜,杨文采. 2009. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义[J]. 地质学报,83(3):324–330. doi: 10.3321/j.issn:0001-5717.2009.03.002
    [22] Ji S C,Wang Q,Yang W C. 2009. Correlation between crustal thickness and Poisson’s ratio in the North China craton and its implication for lithospheric thinning[J]. Acta Geologica Sinica,83(3):324–330 (in Chinese).
    [23] 李恩泽,刘财,张良怀,曾昭发. 2012. 松辽盆地地震构造与地震活动相关性研究[J]. 地球物理学进展,27(4):1337–1349. doi: 10.6038/j.issn.1004-2903.2012.04.007
    [24] Li E Z,Liu C,Zhang L H,Zeng Z F. 2012. The correlation of structure and earthquake in Songliao Basin[J]. Progress in Geophysics,27(4):1337–1349 (in Chinese).
    [25] 李国良. 2016. 瑞雷波椭圆率的测定与在反演S波速度结构中的应用[D]. 北京: 中国石油大学(北京): 14–28.
    [26] Li G L. 2016. Measurement of Rayleigh Wave Ellipticity and its Application to the Joint Inversion of High-Resolution S-Wave Velocity Structure[D]. Beijing: China University of Petroleum (Beijing): 14–28 (in Chinese).
    [27] 李国良. 2019. 利用被动源数据联合反演盆地3D速度结构[D]. 北京: 中国石油大学(北京): 47–69.
    [28] Li G L. 2019. Joint Inversion of Basin-Wide 3D Sedimentary Structure with Passive Seismic Data[D]. Beijing: China University of Petroleum (Beijing): 47–69 (in Chinese).
    [29] 李英宾,李毅,魏滨,刘波,张占彬,杨明. 2019. CSAMT和浅层地震在松辽盆地西南部铀矿勘查中的应用[J]. 地质与勘探,55(6):1442–1451.
    [30] Li Y B,Li Y,Wei B,Liu B,Zhang Z B,Yang M. 2019. Application of CSAMT and shallow seismic reflection to uranium exploration in southwestern Songliao Basin[J]. Geology and Exploration,55(6):1442–1451 (in Chinese).
    [31] 林畅松,张燕梅. 1995. 拉伸盆地模拟理论基础与新进展[J]. 地学前缘,2(3/4):79–88.
    [32] Lin C S,Zhang Y M. 1995. Quantitative stretching models and computer simulation of rift basin[J]. Earth Science Frontiers,2(3/4):79–88 (in Chinese).
    [33] 刘德来,陈发景,关德范,唐建人,刘翠荣. 1996. 松辽盆地形成、发展与岩石圈动力学[J]. 地质科学,31(4):397–408.
    [34] Liu D L,Chen F J,Guan D F,Tang J R,Liu C R. 1996. A study on lithospheric dynamics of the origin and evolution in the Songliao Basin[J]. Chinese Journal of Geology,31(4):397–408 (in Chinese).
    [35] 马海超,储日升,盛敏汉,危自根. 2020. 利用深源近震高频Ps转换波震相研究松辽盆地沉积层结构[J]. 大地测量与地球动力学,40(2):214–220.
    [36] Ma H C,Chu R S,Sheng M H,Wei Z G. 2020. Sedimentary structures of the Songliao Basin using high-frequency Ps converted wave from local deep earthquakes[J]. Journal of Geodesy and Geodynamics,40(2):214–220 (in Chinese).
    [37] 王璞珺,刘海波,任延广,万晓樵,王树学,瞿雪姣,蒙启安,黄永建,黄清华,高有峰,王成善. 2017. 松辽盆地白垩系大陆科学钻探“松科2井”选址[J]. 地学前缘,24(1):216–228.
    [38] Wang P J,Liu H B,Ren Y G,Wang X Q,Wang S X,Qu X J,Meng Q A,Huang Y J,Huang Q H,Gao Y F,Wang C S. 2017. How to choose a right drilling site for the ICDP Cretaceous Continental Scientific Drilling in the Songliao Basin (SK2),Northeast China[J]. Earth Science Frontiers,24(1):216–228 (in Chinese).
    [39] 王仁涛,李志伟,包丰,谢军,赵建忠. 2019. 松辽盆地沉积层结构的短周期地震背景噪声成像研究[J]. 地球物理学报,62(9):3385–3399. doi: 10.6038/cjg2019M0144
    [40] Wang R T,Li Z W,Bao F,Xie J,Zhao J Z. 2019. S-wave velocity structure of sediment in Songliao Basin from short-period ambient noise tomography[J]. Chinese Journal of Geophysics,62(9):3385–3399 (in Chinese).
    [41] 危自根,陈凌. 2012. 东北地区至华北北缘地壳结构的区域差异:地壳厚度与波速比的联合约束[J]. 地球物理学报,55(11):3601–3614. doi: 10.6038/j.issn.0001-5733.2012.11.009
    [42] Wei Z G,Chen L. 2012. Regional differences in crustal structure beneath northeastern China and northern North China Craton:constraints from crustal thickness and Vp/Vs ratio[J]. Chinese Journal of Geophysics,55(11):3601–3614 (in Chinese).
    [43] 危自根,储日升,陈凌. 2015. 华北克拉通地壳结构区域差异的接收函数研究[J]. 中国科学:地球科学,45(10):1504–1514.
    [44] Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210. doi: 10.1007/s11430-015-5162-y
    [45] 武岩. 2011. 利用接收函数方法研究华北克拉通地壳上地幔结构[D]. 北京: 中国地震局地球物理研究所: 25-39.
    [46] Wu Y. 2011. The Structure of the Crust and Upper Mantle in North China Craton from Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 25-39 (in Chinese).
    [47] 谢振新,吴庆举,周仕勇,朱敏. 2018. 兴蒙造山带诺敏河火山群地壳厚度与波速比研究[J]. 地球物理学报,61(12):4805–4816. doi: 10.6038/cjg2018M0197
    [48] Xie Z X,Wu Q J,Zhou S Y,Zhu M. 2018. Study of crustal thickness and vP/vS ratio beneath the Nuomin River volcanoes[J]. Chinese Journal of Geophysics,61(12):4805–4816 (in Chinese).
    [49] 杨宝俊,穆石敏,金旭,刘财. 1996. 中国满洲里—绥芬河地学断面地球物理综合研究[J]. 地球物理学报,39(6):772–782. doi: 10.3321/j.issn:0001-5733.1996.06.007
    [50] Yang B J,Mu S M,Jin X,Liu C. 1996. Synthesized study on the geophysics of Manzhouli-Suifenhe geoscience transect,China[J]. Chinese Journal of Geophysics,39(6):772–782 (in Chinese).
    [51] 姚志祥,王椿镛,曾融生,楼海,周民都. 2014. 利用接收函数方法研究西秦岭构造带及其邻区地壳结构[J]. 地震学报,36(1):1–19. doi: 10.3969/j.issn.0253-3782.2014.01.001
    [52] Yao Z X,Wang C Y,Zeng R S,Lou H,Zhou M D. 2014. Crustal structure in western Qinling tectonic belt and its adjacent regions deduced from receiver functions[J]. Acta Seismologica Sinica,36(1):1–19 (in Chinese).
    [53] 余嘉顺,曹俊兴,鲍新毅,黄跃. 2003. 表面低速层对勘探地震横波波形影响的模拟研究[J]. 成都理工大学学报(自然科学版),30(6):583–587. doi: 10.3969/j.issn.1671-9727.2003.06.006
    [54] Yu J S,Cao J X,Bao X Y,Huang Y. 2003. A modeling of the effects of ground surface weathering layers on reflected shear waves in seismic exploration[J]. Journal of Chengdu University of Technology (Science &Technology Edition),30(6):583–587 (in Chinese).
    [55] 张广成,吴庆举,潘佳铁,张风雪,余大新. 2013. 利用H-K叠加方法和CCP叠加方法研究中国东北地区地壳结构与泊松比[J]. 地球物理学报,56(12):4084–4094. doi: 10.6038/cjg20131213
    [56] Zhang G C,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. Study of crustal structure and Poisson ratio of NE China by H-K stack and CCP stack methods[J]. Chinese Journal of Geophysics,56(12):4084–4094 (in Chinese).
    [57] 张毅. 2019. 应用接收函数方法研究中国东部壳幔间断面结构[D]. 北京: 中国地质大学(北京): 29–41.
    [58] Zhang Y. 2019. Study of The Crust-Mantle Discontinuity Structure in Eastern China with Receiver Function Method[D]. Beijing: China University of Geosciences (Beijing): 29–41 (in Chinese).
    [59] 周庆华,冯子辉,门广田. 2007. 松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J]. 中国科学:D辑,37(增刊2):177–188.
    [60] Zhou Q H,Feng Z H,Men G T. 2008. Present geotemperature and its suggestion to natural gas generation in Xujiaweizi fault-depression of the northern Songliao basin[J]. Science in China:Series D,51(1):207–220.
    [61] 朱洪翔,田有,刘财,冯晅. 2018. 沉积盆地地区地壳结构估计:预测反褶积方法消除接收函数多次波混响[J]. 地球物理学报,61(9):3664–3675. doi: 10.6038/cjg2018L0152
    [62] Zhu H X,Tian Y,Liu C,Feng X. 2018. Estimation of the crustal structure beneath the sedimentary Basin:predictive deconvolution method to remove multiples reverberations of the receiver function[J]. Chinese Journal of Geophysics,61(9):3664–3675 (in Chinese).
    [63] 朱洪翔,田有,刘财,冯晅,杨宝俊,刘才华,刘廷,马锦程. 2017. 中国东北地区高分辨率地壳结构:远震接收函数[J]. 地球物理学报,60(5):1676–1689. doi: 10.6038/cjg20170506
    [64] Zhu H X,Tian Y,Liu C,Feng X,Yang B J,Liu C H,Liu T,Ma J C. 2017. High-resolution crustal structure of Northeast China revealed by teleseismic receiver functions[J]. Chinese Journal of Geophysics,60(5):1676–1689 (in Chinese).
    [65] Bao Y F,Niu F L. 2017. Constraining sedimentary structure using frequency-dependent P wave particle motion:a case study of the Songliao Basin in NE China[J]. J Geophys Res,122(11):9083–9094. doi: 10.1002/2017JB014721
    [66] Christensen N I,Mooney W D. 1995. Seismic velocity structure and composition of the continental crust:a global view[J]. J Geophys Res,100(B6):9761–9788. doi: 10.1029/95JB00259
    [67] Gilbert F,Backus G E. 1966. Propagator matrices in elastic wave and vibration problems[J]. Geophysics,31(2):326–332. doi: 10.1190/1.1439771
    [68] Graves R W,Pitarka A,Somerville P G. 1998. Ground-motion amplification in the Santa Monica area:Effects of shallow basin-edge structure[J]. Bull Seismol Soc Am,88(5):1224–1242.
    [69] Guo Z,Chen Y J,Ning J Y,Feng Y G,Grand S P,Niu F L,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data[J]. Earth Planet Sci Lett,416:1–11. doi: 10.1016/j.jpgl.2015.01.044
    [70] Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am,43(1):17–34. doi: 10.1785/BSSA0430010017
    [71] He J,Wu Q J,Sandvol E,Ni J,Gallegos A,Gao M T,Ulziibat M,Demberel S. 2016. The crustal structure of south central Mongolia using receiver functions[J]. Tectonics,35(6):1392–1403. doi: 10.1002/2015TC004027
    [72] Kennett B L N,Kerry N J,Woodhouse J H. 1978. Symmetries in the reflection and transmission of elastic waves[J]. Geophys J Int,52(2):215–229. doi: 10.1111/j.1365-246X.1978.tb04230.x
    [73] Leahy G M,Saltzer R L,Schmedes J. 2012. Imaging the shallow crust with teleseismic receiver functions[J]. Geophys J Int,191(2):627–636. doi: 10.1111/j.1365-246X.2012.05615.x
    [74] Li G L,Chen H C,Niu F L,Guo Z,Yang Y J,Xie J. 2016. Measurement of Rayleigh wave ellipticity and its application to the joint inversion of high-resolution S wave velocity structure beneath northeast China[J]. J Geophys Res,121(2):864–880. doi: 10.1002/2015JB012459
    [75] Lin C S,Li S T,Zhang Q M. 1997. Lithospheric stretching,subsidence and thermal history modeling:application to Yinggehai,Qiongdongnan and Songliao Basins in East China[J]. J China Univ Geosci,8(1):83–89.
    [76] McKenzie D. 1978. Some remarks on the development of sedimentary basins[J]. Earth Planet Sci Lett,40(1):25–32. doi: 10.1016/0012-821X(78)90071-7
    [77] Ren J Y,Tamaki K,Li S T,Zhang J X. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics,344(3/4):175–205.
    [78] Tao K,Liu T Z,Ning J Y,Niu F L. 2014a. Estimating sedimentary and crustal structure using wavefield continuation:theory,techniques and applications[J]. Geophys J Int,197(1):443–457. doi: 10.1093/gji/ggt515
    [79] Tao K,Niu F L,Ning J Y,Chen Y J,Grand S,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2014b. Crustal structure beneath NE China imaged by NECESSArray receiver function data[J]. Earth Planet Sci Lett,398:48–57. doi: 10.1016/j.jpgl.2014.04.043
    [80] Wei H H,Liu J L,Meng Q R. 2010. Structural and sedimentary evolution of the southern Songliao Basin,northeast China,and implications for hydrocarbon prospectivity[J]. AAPG Bull,94(4):531–564.
    [81] Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere[J]. Can J Earth Sci,22(1):108–125. doi: 10.1139/e85-009
    [82] Xiong X S,Gao R,Li Y K,Hou H S,Liang H D,Li W H,Guo L H,Lu Z W. 2015. The lithosphere structure of the Great Xing'an Range in the eastern Central Asian Orogenic Belt:constrains from the joint geophysical profiling[J]. J Asian Earth Sci,113:481–490. doi: 10.1016/j.jseaes.2015.06.006
    [83] Yeck W L,Sheehan A F,Schulte-Pelkum V. 2013. Sequential Hκ stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bull Seismol Soc Am,103(3):2142–2150. doi: 10.1785/0120120290
    [84] Yu Y Q,Song J G,Liu K H,Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. J Geophys Res,120(5):3208–3218. doi: 10.1002/2014JB011610
    [85] Zhang R Q,Wu Q J,Sun L,He J,Gao Z Y. 2014. Crustal and lithospheric structure of Northeast China from S-wave receiver functions[J]. Earth Planet Sci Lett,401:196–205. doi: 10.1016/j.jpgl.2014.06.017
    [86] Zheng C,Zhang R Q,Wu Q J,Li Y H,Zhang F X,Shi K X,Ding Z F. 2019. Variations in crustal and uppermost mantle structures across eastern Tibet and adjacent regions:implications of crustal flow and asthenospheric upwelling combined for expansions of the Tibetan plateau[J]. Tectonics,38(7):3167–3181.
    [87] Zhu L,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  15
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-09-19
  • 网络出版日期:  2022-04-18

目录

    /

    返回文章
    返回