怀涿盆地北缘断裂带土壤气体地球化学特征

唐杰 张素欣 盛艳蕊 王江 丁志华

唐杰,张素欣,盛艳蕊,王江,丁志华. 2023. 怀涿盆地北缘断裂带土壤气体地球化学特征. 地震学报,45(1):84−97 doi: 10.11939/jass.20210116
引用本文: 唐杰,张素欣,盛艳蕊,王江,丁志华. 2023. 怀涿盆地北缘断裂带土壤气体地球化学特征. 地震学报,45(1):84−97 doi: 10.11939/jass.20210116
Tang J,Zhang S X,Sheng Y R,Wang J,Ding Z H. 2023. Geochemical characteristics of soil gas in the north margin fault of Huaizhuo basin,Hebei Province. Acta Seismologica Sinica,45(1):84−97 doi: 10.11939/jass.20210116
Citation: Tang J,Zhang S X,Sheng Y R,Wang J,Ding Z H. 2023. Geochemical characteristics of soil gas in the north margin fault of Huaizhuo basin,Hebei Province. Acta Seismologica Sinica45(1):84−97 doi: 10.11939/jass.20210116

怀涿盆地北缘断裂带土壤气体地球化学特征

doi: 10.11939/jass.20210116
基金项目: 河北地震科技星火计划攻关项目(DZ2021121600004)、中国地震局震情跟踪定向工作任务(2021010306)和河北省地震局震情跟踪定向工作任务(202111)共同资助
详细信息
    通讯作者:

    唐杰,硕士,工程师,主要从事地震地下流体和气体地球化学研究,e-mail:237661980@qq.com

  • 中图分类号: P315. 72+ 4

Geochemical characteristics of soil gas in the north margin fault of Huaizhuo basin,Hebei Province

  • 摘要: 在河北怀涿盆地的郝家坡和小水峪布设两条测线开展了四期土壤气Rn,CO2和Hg的浓度测量,并基于此研究该盆地北缘断裂带南西段和北东段土壤气地球化学特征的空间分布差异及其与断裂活动的关系。结果显示:郝家坡剖面土壤气Rn,CO2和Hg的浓度平均值分别为8 371.16 Bq/m3,0.85 %和14.82 ng/m3;小水峪剖面土壤气Rn,CO2和Hg的浓度平均值分别为2 813.18 Bq/m3,0.42 %和13.08 ng/m3,可见郝家坡地区土壤气Rn,CO2和Hg的浓度平均值均高于小水峪地区,这种浓度空间分布的差异性可能是断裂活动性和断裂破碎程度不同所致。对区域土壤Hg浓度(total mercury,简称为THg)与土壤气测量浓度的对比分析可知,深层THg浓度与土壤气Rn,CO2和Hg浓度在空间分布上具有一定的一致性,且高值异常点分布于断裂带附近。结合区域定点前兆观测数据及地震活动性分析认为,该断裂目前活动水平相对较弱。结果表明,利用土壤气浓度的分布情况探测该区域隐伏断裂的浅层位置具有一定可行性,同时土壤气浓度连续观测对判定该区域断裂的活动性具有一定指示意义。

     

  • 图  1  怀涿盆地周边地区断裂与破坏性地震分布图(引自冉志杰等,2019

    Figure  1.  Distribution map of faults and destructive earthquakes around Huaizhuo basin (after Ran et al,2019

    图  2  剖面土壤气浓度测点分布示意图 (单位:m)

    Figure  2.  Distribution of soil gas concentration measuring points ( unit:m )

    图  3  郝家坡剖面土壤气浓度分布特征

    Figure  3.  Distribution characteristics of soil gas concentration in Haojiapo profile

    图  4  小水峪剖面土壤气浓度分布特征

    Figure  4.  Distribution characteristics of soil gas concentration in Xiaoshuiyu profile

    图  5  怀涿盆地土壤深层Hg (深度2 m)浓度分布图

    Figure  5.  Distribution of Hg (2 m depth) content in deep soil layer of Huaizhuo basin

    图  6  怀涿盆地土壤表层Hg浓度分布图

    Figure  6.  Distribution of Hg content in shallow soil layer of Huaizhuo basin

    图  7  怀涿盆地北缘断裂土壤气时空分布图

    底图DEM地形数据来自NASA提供的SRTM数据

    Figure  7.  Spatio-temporal distribution of soil gases in the north margin fault of Huaizhuo basin

    Bottom DEM topographic datas from SRTM datas provided by NASA

    图  8  怀4井水Rn,CO2及水Hg测项时序图

    Figure  8.  Variation curve of contents of radon,carbon dioxide and mercury in water of Huai-4 well

    图  9  怀涿盆地周边地区现代地震空间分布图

    Figure  9.  Spatial distribution of modern earthquakes around Huaizhuo basin

    表  1  怀涿盆地北缘断裂南西段和北东段土壤气测量结果统计表

    Table  1.   Statistics on soil gas measurement results in the southwest and northeast sections of the north margin fault of Huaizhuo basin

    剖面测量
    年月
    Rn浓度/(Bq·m−3CO2浓度/%Hg浓度/(ng·L−1
    变化范围平均值标准差异常
    下限
    变化范围平均
    标准
    异常
    下限
    变化范围平均
    标准
    异常
    下限


    2020-06 2 794—11 151 5 515.56 1 899.31 9 314.17 0.18—0.81 0.37 0.18 0.73 13.24—31.82 19.82 4.82 29.45
    2020-09 3 286—15 608 8 166.87 3 287.19 14 741.25 0.54—2.86 1.26 0.64 2.55 6.40—10.14 8.74 1.07 10.88
    2021-05 5 000—13 000 9 633.34 2 418.58 14 470.49 0.20—1.00 0.58 0.21 1.00 6.50—13.00 8.24 1.79 11.82
    2021-09 6 100—17 675 10 168.87 3 234.12 16 637.11 0.64—2.62 1.21 0.58 2.37 7.80—20.60 10.49 3.40 17.28


    2020-06 1 020—3 831 2 271.80 1 011.91 4 295.62 0.06—0.46 0.22 0.12 0.47 6.54—35.65 14.97 7.00 28.96
    2020-09 1 247—6 796 3 345.40 1 525.84 6 397.08 0.22—1.03 0.58 0.25 1.08 6.07—9.95 8.29 0.94 10.17
    2021-05 1 010—4 500 2 730.00 1 177.08 5 084.16 0.29—0.64 0.41 0.13 0.65 9.00—63.00 31.40 17.89 67.17
    2021-09 1 400—4348 2 905.53 1 043.05 4 991.64 0.31—0.64 0.49 0.10 0.69 7.76—13.00 9.67 1.53 12.73
    下载: 导出CSV

    表  2  怀涿盆地北缘断裂带南西段和北东段土壤气释放强度$K_Q $

    Table  2.   Soil gas release intensity KQ in the southwest and northeast segments of the north margin fault of Huaizhuo basin

    Rn浓度平均值/(Bq·m−3Rn浓度
    KQ
    CO2浓度平均值CO2含量
    KQ
    Hg浓度平均值/(ng·L−1Hg浓度
    KQ
    剖面中部测点两端测点中部测点两端测点中部测点两端测点
    郝家坡8 666.887 616.161.140.28%0.23%1.2618.4211.511.61
    小水峪2 876.272 639.691.080.11%0.14%0.7818.0011.691.53
    下载: 导出CSV

    表  3  土壤气断裂活动性评价标准

    Table  3.   Evaluation criteria of soil gas fracture activity

    异常衬度C断层活动性评价
    1<C<2 现今已基本停止活动
    2≤C<5 在较近的地质年代曾发生过较强活动,
    现今活动较弱或活动不明显
    5≤C<8 在较近的地质年代曾发生过较强活动,
    现今仍具有较强的活动性
    C≥8 现今活动强烈
    下载: 导出CSV
  • 陈绍绪,张跃刚,乔子云,丁瑞同,吴晓岚,孟娣,何彦英. 2003. 晋冀蒙交界地区主要断裂的现今活动[J]. 华北地震科学,21(2):16–22. doi: 10.3969/j.issn.1003-1375.2003.02.003
    Chen S X,Zhang Y G,Qiao Z Y,Ding R T,Wu X L,Meng D,He Y Y. 2003. The current activity of main faults in the joint area of Shanxi,Hebei and Inner Mongolia[J]. North China Earthquake Sciences,21(2):16–22 (in Chinese).
    杜建国,刘连柱,康春丽. 1997. 地震活动中地壳深部流体的作用研究进展[J]. 地球科学进展,12(5):416–420.
    Dun J G,Liu L Z,Kang C L. 1997. The role of deep-crust fluids in earthquake activity[J]. Advance in Earth Sciences,12(5):416–420 (in Chinese).
    杜建国,康春丽. 2000. 强地震前兆异常特征与深部流体作用探讨[J]. 地震,20(3):95–101. doi: 10.3969/j.issn.1000-3274.2000.03.015
    Dun J G,Kang C L. 2000. Characteristics of earthquake precursors and its geological significance[J]. Earthquake,20(3):95–101 (in Chinese).
    耿杰. 2020. 断层逸出气测量在活动断裂研究中的应用[J]. 地震研究,43(4):620–629. doi: 10.3969/j.issn.1000-0666.2020.04.003
    Geng J. 2020. Application of measurements of fault overflow gases in active fault research[J]. Journal of Seismological Research,43(4):620–629 (in Chinese).
    何超枫,陈州丰,齐信,王秋良,林亚洲. 2016. 麻城—团风断裂带土氡特征及活动性研究[J]. 大地测量与地球动力学,36(6):504–507.
    He C F,Chen Z F,Qi X,Wang Q L,Lin Y Z. 2016. Study on soild radon features and activity analysis of the Macheng−Tuanfeng fault[J]. Journal of Geodesy and Geodynamics,36(6):504–507 (in Chinese).
    李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,32(1):82–91.
    Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing−Huailai basin,North China[J]. Acta Seismologica Sinica,32(1):82–91 (in Chinese).
    刘雷,杜建国,周晓成,李营,谢超,崔月菊. 2012. 青海玉树MS7.1地震震后断层流体地球化学连续观测[J]. 地球物理学进展,27(3):888–893.
    Liu L,Du J G,Zhou X C,Li Y,Xie C,Cui Y J. 2012. Continuously observation of fault fluid geochemistry after Yushu MS7.1 earthquake[J]. Progress in Geophysics,27(3):888–893 (in Chinese).
    刘晓辉,童纯菡. 2009. 河床地区地气测量找隐伏断裂[J]. 物探与化探,33(2):128–131.
    Liu X H,Tong C H. 2009. The application of geogas survey to the prospecting for concealed faults in rever bed areas[J]. Geophysical &Geochemical Exploration,33(2):128–131 (in Chinese).
    刘晓辉,童纯菡,周四春,李巨初,朱礼学. 2009. 成都平原西部土壤汞异常来源研究[J]. 长江流域资源与环境,18(11):1058–1062. doi: 10.3969/j.issn.1004-8227.2009.11.011
    Liu X H,Tong C H,Zhou S C,Li J C,Zhu L X. 2009. On the source of mercury anomaly in soil of west Chengdu plain[J]. Resources and Environment in the Yangtze Basin,18(11):1058–1062 (in Chinese).
    刘耀炜,陈华静,车用太. 2006. 我国地震地下流体观测研究40年发展与展望[J]. 国际地震动态,(7):3–12. doi: 10.3969/j.issn.0253-4975.2006.07.003
    Liu Y W,Chen H J,Che Y T. 2006. Retrospect and prospect of observation and study on seismic underground fluid in China[J]. Recent Developments in World Seismology,(7):3–12 (in Chinese).
    孟广魁,何开明,班铁,焦德成. 1997. 氡、汞测量用于断裂活动性和分段的研究[J]. 中国地震,13(1):43–51.
    Meng G K,He K M,Ban T,Jiao D C. 1997. Study on activity and segmentation of active fault using measurements of radon and mercury gases[J]. Earthquake Research in China,13(1):43–51 (in Chinese).
    冉勇康,方仲景,李志义,王景钵,李如成. 1992. 河北怀来—涿鹿盆地北缘活断层的古地震事件与断层分段[J]. 中国地震,8(3):74–85.
    Ran Y K,Fang Z J,Li Z Y,Wang J B,Li R C. 1992. Paleoseismicity and segmentation along the active fault at the north boundary of Huailai-Zhuolu basin,Hebei Province[J]. Earthquake Research in China,8(3):74–85 (in Chinese).
    冉洪流,周本刚. 2004. 断层地表潜在突发位移的概率评价初探[J]. 地震地质,26(1):133–140. doi: 10.3969/j.issn.0253-4967.2004.01.013
    Ran H L,Zhou B G. 2004. Research on the probabilistic assessment of potential ground offset along active fault[J]. Seismology and Geology,26(1):133–140 (in Chinese).
    冉志杰,孟立朋,范强,温超,刘洪良,董博,彭远黔,王燕. 2019. 怀涿盆地北缘断裂跨断层流动形变观测场地适宜性分析[J]. 震灾防御技术,14(1):191–199. doi: 10.11899/zzfy20190118
    Ran Z J,Meng L P,Fan Q,Wen C,Liu H L,Dong B,Peng Y Q,Wang Y. 2019. Analysis on suitability of observation sites for cross-fault deformation measurement in the northern margin of Huaizhuo basin[J]. Technology for Earthquake Disaster Prevention,14(1):191–199 (in Chinese).
    邵永新. 2012. 土壤氡方法用于断层活动性研究的讨论[J]. 中国地震,28(13):51–60. doi: 10.3969/j.issn.1001-4683.2012.01.006
    Shao Y X. 2012. A discussion of fault activity research using the measurement results of soil radon[J]. Earthquake Research in China,28(13):51–60 (in Chinese).
    盛艳蕊,张子广,周晓成,杜建国,周月玲,张冠亚,张瑞鑫,刘永梅,孙玉涛,丁志华. 2015. 新保安—沙城断裂带土壤气地球化学特征分析[J]. 地震,35(4):90–98. doi: 10.3969/j.issn.1000-3274.2015.04.010
    Sheng Y R,Zhang Z G,Zhou X C,Du J G,Zhou Y L,Zhang G Y,Zhang R X,Liu Y M,Sun Y T,Ding Z H. 2015. Geochemical characteristics of soil gas in the Xinbaoan−Shacheng fault[J]. Earthquake,35(4):90–98 (in Chinese).
    汪成民. 1990. 中国地震地下水动态观测网[M]. 北京: 地震出版社: 5–50.
    Wang C M. 1990. On Well Network Observing Underground Water Behavious for Earthquake Prediction in China[M]. Beijing: Seismological Press: 5–50 (in Chinese).
    王荔娟,胡恭任. 2007. 土壤/沉积物中汞污染地球化学及污染防治措施研究[J]. 岩石矿物学杂志,26(5):453–461. doi: 10.3969/j.issn.1000-6524.2007.05.009
    Wang L J,Hu G R. 2007. A study of pollution geochemistry and pollution prevention measures of mercury in soil/sediment[J]. Acta Petrologica et Mineralogica,26(5):453–461 (in Chinese).
    魏家珍,申春生. 1992. 汞测量用于地震预报研究实例剖析[J]. 物探与化探,16(3):216–222.
    Wei J Z,Shen C S. 1992. The application of mercurometric survey to earthquake prediction:An analysis of case studies[J]. Geophysical &Geochemical Exploration,16(3):216–222 (in Chinese).
    吴婷婷,王明猛,陈旭锋,刘文利,李太山,闫海鱼,何天容,李仲根. 2017. 唐山陡河水库沉积物汞的分布、来源及污染评价[J]. 环境科学,38(3):979–986.
    Wu T T,Wang M M,Chen X F,Liu W L,Li T S,Yan H Y,He T R,Li Z G. 2017. Distributions,sources and pollution assessment of Hg in sediments of Douhe reservoir in Tangshan city[J]. Environmental Science,38(3):979–986 (in Chinese).
    谢富仁,张红艳,崔效锋,荆振杰,李瑞莎. 2007. 延怀盆地活动断裂运动与现代构造应力场[J]. 地震地质,29(4):693–705. doi: 10.3969/j.issn.0253-4967.2007.04.001
    Xie F R,Zhang H Y,Cui X F,Jing Z J,Li R S. 2007. Active fault movement and recent tectonic stress field in Yanhuai basin[J]. Seismology and Geology,29(4):693–705 (in Chinese).
    徐锡伟, 吴卫民, 张先康, 马胜利, 马文涛, 于贵华, 顾梦林, 江娃利. 2002. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社: 70−73.
    Xu X W, Wu W M, Zhang X K, Ma S L, Ma W T, Yu G H, Gu M L, Jiang W L. 2002. Recent Crustal Tectonic Changes and Earthquakes in the Capital Circle[M]. Beijing: Science Press:70−73 (in Chinese).
    张凤秋,任佳,李海孝,张彦清,王长江. 2005. 怀4井地下流体异常与地震的关系[J]. 地震地质,27(1):123–130. doi: 10.3969/j.issn.0253-4967.2005.01.014
    Zhang F Q,Ren J,Li H X,Zhang Y Q,Wang C J. 2005. Relationship between the anomalies of underground fluid in the Huailai No.4 well and earthquake[J]. Seismology and Geology,27(1):123–130 (in Chinese).
    张磊,刘耀炜,包创,郭丽爽. 2019. 安宁河断裂带土壤汞的分布特征[J]. 地震学报,41(2):249–258. doi: 10.11939/jass.20180141
    Zhang L,Liu Y W,Bao C,Guo L S. 2019. Distribution characteristics of soil mercury in Anninghe fault zone[J]. Acta Seismologica Sinica,41(2):249–258 (in Chinese).
    张平安. 2006. 东莞某工程场地隐伏断裂a卡氡气勘测技术应用[J]. 西部探矿工程,18(4):118–120. doi: 10.3969/j.issn.1004-5716.2006.04.061
    Zhang P A. 2006. Application of radon survey technology in a buried fault a card in a project site in Dongguan[J]. West-China Exploration Engineering,18(4):118–120 (in Chinese).
    张晚霞,向宏发,李如成. 1995. 夏垫隐伏断裂土壤气氡分布特征的初步研究[J]. 西北地震学报,17(2):46–50.
    Zhang W X,Xiang H F,Li R C. 1995. Preliminary study on soil-Radon distribution along the Xiadian buried fault[J]. Northwestern Seismological Journal,17(2):46–50 (in Chinese).
    周晓成,杜建国,王传远,曹忠权,易丽,刘雷. 2007. 西藏拉萨市土壤气中氡、汞环境地球化学特征[J]. 环境科学,28(3):659–663. doi: 10.3321/j.issn:0250-3301.2007.03.038
    Zhou X C,Du J G,Wang C Y,Cao Z Q,Yi L,Liu L. 2007. Geochemical characteristics of radon and mercury in soil gas in Lhasa,Tibet,China[J]. Environmental Science,28(3):659–663 (in Chinese).
    周晓成,杜建国,陈志,崔月菊,刘雷. 2012. 地震地球化学研究进展[J]. 矿物岩石地球化学通报,31(4):340–346. doi: 10.3969/j.issn.1007-2802.2012.04.004
    Zhou X C,Du J G,Chen Z,Cui Y J,Liu L. 2012. Advance review of seismic geochemistry[J]. Bulletin of Mineralogy,Petrology and Geochemistry,31(4):340–346 (in Chinese).
    Al-Hilal M,Al-Ali A. 2010. The role of soil gas radon survey in exploring unknown subsurface faults at Afamia B dam,Syria[J]. Radiat Meas,45(2):219–224. doi: 10.1016/j.radmeas.2010.01.018
    Etiope G,Martinelli G. 2002. Migration of carrier and trace gases in the geosphere:An overview[J]. Phys Earth Planet Inter,129(3/4):185–204.
    Guerra M,Lombardi S. 2001. Soil-gas method for tracing neotectonic faults in clay basins:The Pisticci field (southern Italy)[J]. Tectonophysics,339(3/4):511–522.
    Ioannides K,Papachristodoulou C,Stamoulis K,Karamanis D,Pavlides S,Chatzipetros A,Karakala E. 2003. Soil gas radon:A tool for exploring active fault zones[J]. Appl Radiat Isot,59(2/3):205–213.
    Irwin W P,Barnes I. 1980. Tectonic relations of carbon dioxide discharges and earthquakes[J]. J Geophys Res:Solid Earth,85(B6):3115–3121. doi: 10.1029/JB085iB06p03115
    Iskandar D,Yamazawa H,Iida T. 2004. Quantification of the dependency of radon emanation power on soil temperature[J]. Appl Radiat Isot,60(6):971–973. doi: 10.1016/j.apradiso.2004.02.003
    Kobeissi M A,Gomez F,Tabet C. 2015. Measurement of anomalous radon gas emanation across the Yammouneh fault in southern Lebanon:A possible approach to earthquake prediction[J]. Int J Disaster Risk Sci,6(3):250–266. doi: 10.1007/s13753-015-0058-1
    Koike K,Yoshinaga T,Asaue H. 2014a. Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures:A case study from Mt. Aso,southwestern Japan[J]. J Volcanol Geotherm Res,275:85–102. doi: 10.1016/j.jvolgeores.2014.02.007
    Koike K,Yoshinaga T,Ueyama T,Asaue H. 2014b. Increased radon-222 in soil gas because of cumulative seismicity at active faults[J]. Earth Planets Space,66(1):57. doi: 10.1186/1880-5981-66-57
    Kumar G,Kumari P,Kumar A,Prasher S,Kumar M. 2017. A study of radon and thoron concentration in the soils along the active fault of NW Himalayas in India[J]. Ann Geophys,60(3):S0329.
    Mahajan S,Walia V,Bajwa B S,Kumar A,Singh S,Seth N,Dhar S,Gill G S,Yang T F. 2010. Soil-gas radon/helium surveys in some neotectonic areas of NW Himalayan foothills,India[J]. Nat Hazards Earth Syst Sci,10(6):1221–1227. doi: 10.5194/nhess-10-1221-2010
    Seminsky K Z,Bobrov A A. 2009. Radon activity of faults (western Baikal and southern Angara areas)[J]. Russ Geol Geophys,50(8):682–692. doi: 10.1016/j.rgg.2008.12.010
    Tawfiq N F,Jaleel J. 2015. Radon concentration in soil and radon exhalation rate at Al-dora refinery and surrounding area in Baghdad[J]. Detection,3(4):37–44. doi: 10.4236/detection.2015.34006
    Walia V,Yang T F,Hong W L,Lin S J,Fu C C,Wen K L,Chen C H. 2009. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Appl Radiat Isot,67(10):1855–1863. doi: 10.1016/j.apradiso.2009.07.004
    Yang D X,Zhang L,Liu Y W,Ren H W,Xie F R,Chen G C. 2015. Mercury indicating inflow zones and ruptures along the Wenchuan MS8.0 earthquake fault[J]. Chinese Journal of Gechemistry,34(2):201–207. doi: 10.1007/s11631-014-0028-0
    Yuce G,Fu C C,D’Alessandro,Gulbay A H,Lai C W,Bellomo S,Yang T F,Italiano F,Walia V. 2017. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea fault and Karasu fault in the Amik basin (Hatay),Turkey[J]. Chem Geol,469:129–146. doi: 10.1016/j.chemgeo.2017.01.003
    Zhang L,Liu Y W,Guo L S,Yang D X,Fang Z,Chen T,Ren H W,Yu B. 2014. Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1)[J]. Tectonophysics,619/620:79–85. doi: 10.1016/j.tecto.2013.08.025
    Zhou X C,Du J G,Chen Z,Cheng J W,Tang Y,Yang L M,Xie C,Cui Y J,Liu L,Yi L,Yang P X,Li Y. 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake,southwestern China[J]. Geochem Trans,11(1):5. doi: 10.1186/1467-4866-11-5
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  16
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-11-08
  • 网络出版日期:  2023-01-09
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回