基于褶积原理和改进广义S变换的震动波衰减补偿试验研究

贾宝新 刘国昱 周琳力

贾宝新,刘国昱,周琳力. 2023. 基于褶积原理和改进广义S变换的震动波衰减补偿试验研究. 地震学报,45(1):116−125 doi: 10.11939/jass.20210136
引用本文: 贾宝新,刘国昱,周琳力. 2023. 基于褶积原理和改进广义S变换的震动波衰减补偿试验研究. 地震学报,45(1):116−125 doi: 10.11939/jass.20210136
Jia B X,Liu G Y,Zhou L L. 2023. Experimental study on seismic wave attenuation compensation based on convolution principle and improved generalized S-transform. Acta Seismologica Sinica,45(1):116−125 doi: 10.11939/jass.20210136
Citation: Jia B X,Liu G Y,Zhou L L. 2023. Experimental study on seismic wave attenuation compensation based on convolution principle and improved generalized S-transform. Acta Seismologica Sinica45(1):116−125 doi: 10.11939/jass.20210136

基于褶积原理和改进广义S变换的震动波衰减补偿试验研究

doi: 10.11939/jass.20210136
基金项目: 国家自然科学基金面上项目(51774173)、辽宁工程技术大学学科创新团队资助项目(LNTU20TD08)和辽宁省“兴辽英才计划”项目(XLYC2007163)共同资助
详细信息
    通讯作者:

    贾宝新,博士,教授,主要从事岩土工程、防灾减灾与防护工程和矿山动力灾害防治等领域研究,e-mail:jbx_811010@126.com

  • 中图分类号: P315. 8

Experimental study on seismic wave attenuation compensation based on convolution principle and improved generalized S-transform

  • 摘要: 为了恢复震动波能量在传播过程中产生的衰减损耗,提出基于褶积原理求取品质因子Q的方法与改进广义S变换相结合的反Q滤波法。通过震动波衰减补偿模型试验,对试验数据进行改进广义S变换的时频特性分析,得出了信号的能量分布情况以及时间频率对应关系;采用基于褶积原理求取品质因子的方法,得到时变Q值;对试验数据进行反Q滤波处理,使震动波能量得到了补偿。结果表明本文提出的反Q滤波法提高了对震动波能量衰减补偿的效果,拓宽了地震资料的频带,提高了地震资料分辨率,有利于进行高分辨率地震勘探、深部信号增强和油气藏预测工作的开展。

     

  • 图  1  室内试验模型

    (a) 模型搭建;(b) 模型A

    Figure  1.  The model of indoor experiment

    (a) Model building;(b)A-side of the model

    图  2  传感器布置图

    Figure  2.  Sensor layout diagram

    图  3  1号(a)和4号(b)传感器接收的原始信号

    Figure  3.  Original microseism signals of sensor 1 (a) and 4 (b)

    图  4  1号(a)和4号(b)传感器接收到的原始信号经过改进广义S变换后的时频谱

    Figure  4.  Time-frequency spectrum of the original signals received by sensor 1 (a) and 4 (b) after the improved generalized S transform

    图  5  1号(a)和4号(b)传感器的重构信号

    Figure  5.  Reconstructed signal of sensor 1 (a) and sensor 4 (b)

    图  6  1号(a)和4号(b)传感器接收到原始信号补偿前后的幅值谱

    Figure  6.  Amplitude spectrum of original signal received by sensor 1 (a) and sensor 4 (b) before and after compensation

    图  7  1号(a)和4号(b)传感器接收的原始信号补偿后时频谱

    Figure  7.  Time-frequency spectrum of original signal received by the sensor 1 (a) and sensor 4 (b) after compensation

    表  1  相似材料用量表

    Table  1.   The list of similar material consumption

    岩层名称模型厚度/cm各相似材料用量/kg
    沙子石灰石膏
    泥岩层35963.2160.6160.6183.4
    煤层601694.0101.7237.3290.4
    细砂岩层351133.3149.9133.6202.4
    下载: 导出CSV
  • 白桦,李鲲鹏. 1999. 基于时频分析的地层吸收补偿[J]. 石油地球物理勘探,34(6):642–648.
    Bai H,Li K P. 1999. Stratigraphic absorption compensation based on time-frequency analysis[J]. Oil Geophysical Prospecting,34(6):642–648 (in Chinese).
    丁进杰,戴永寿,张亚南,陈健,魏玉琴,张漫漫. 2013. 基于高频补偿方法提高地震资料分辨率的初步研究[J]. 地球物理学进展,28(6):3214–3221.
    Ding J J,Dai Y S,Zhang Y N,Chen J,Wei Y Q,Zhang M M. 2013. Improving seismic data resolution based on high frequency compensation[J]. Progress in Geophysics,28(6):3214–3221 (in Chinese).
    高军,凌云,周兴元,牟永光. 1996. 时频域球面发散和吸收补偿[J]. 石油地球物理勘探,31(6):856–866.
    Gao J,Ling Y,Zhou X Y,Mou Y G. 1996. Compensation for spherical divergence and absorption in time-frequency domain[J]. Oil Geophysical Prospecting,31(6):856–866 (in Chinese).
    高静怀,汪文秉,朱光明,彭玉华,王玉贵. 1996. 地震资料处理中小波函数的选取研究[J]. 地球物理学报,39(3):392–400.
    Gao J H,Wang W B,Zhu G M,Peng Y H,Wang Y G. 1996. On the choice of wavelet functions for seismic data processing[J]. Acta Geophysica Sinica,39(3):392–400 (in Chinese).
    高静怀,陈文超,李幼铭,田芳. 2003. 广义S变换与薄互层地震响应分析[J]. 地球物理学报,46(4):526–532.
    Gao J H,Chen W C,Li Y M,Tian F. 2003. Generalized S transform and seismic response analysis of thin interbeds[J]. Chinese Journal of Geophysics,46(4):526–532 (in Chinese).
    何书梅,吴吉忠,魏朋朋,杨倩倩,吴吉厚. 2020. 一种井震融合求取反Q滤波Q体的方法[J]. 物探化探计算技术,42(4):442–450. doi: 10.3969/j.issn.1001-1749.2020.04.02
    He S M,Wu J Z,Wei P P,Yang Q Q,Wu J H. 2020. A method for the Q estimation of inverse Q filtering based on well seismic fusion[J]. Computing Techniques for Geophysical and Geochemical Exploration,42(4):442–450 (in Chinese).
    贾晓东,翟丽娜,陈石. 2021. 辽宁地区时变重力场源变化特征分析[J]. 地震,41(1):180–190.
    Jia X D,Zhai L N,Chen S. 2021. Analysis on the characteristics of time-varying gravity field source changes in Liaoning area[J]. Earthquake,41(1):180–190 (in Chinese).
    刘喜武,年静波,刘洪. 2006. 基于广义S变换的吸收衰减补偿方法[J]. 石油物探,45(1):9–14. doi: 10.3969/j.issn.1000-1441.2006.01.002
    Liu X W,Nian J B,Liu H. 2006. Generalized S-transform based compensation for stratigraphic absorption of seismic attenuation[J]. Geophysical Prospecting for Petroleum,45(1):9–14 (in Chinese).
    裴江云,何樵登. 1994. 基于Kjartansson模型的反Q滤波[J]. 地球物理学进展,9(1):90–99.
    Pei J Y,He Q D. 1994. Inverse Q filtering according to Kjartansson model[J]. Progress in Geophysics,9(1):90–99 (in Chinese).
    王小杰,栾锡武. 2017. 基于小波分频技术的地层Q值补偿方法研究[J]. 石油物探,56(2):203–209.
    Wang X J,Luan X W. 2017. The study of formation Q value compensation method based on wavelet frequency division technology[J]. Geophysical Prospecting for Petroleum,56(2):203–209 (in Chinese).
    熊晓军,贺振华,黄德济,陈学华. 2006. 广义S变换在地震高分辨处理中的应用[J]. 勘探地球物理进展,29(6):415–418.
    Xiong X J,He Z H,Huang D J,Chen X H. 2006. Application of generalized S transform in seismic high resolution processing[J]. Progress in Exploration Geophysics,29(6):415–418 (in Chinese).
    姚振兴,高星,李维新. 2003. 用于深度域地震剖面衰减与频散补偿的反Q滤波方法[J]. 地球物理学报,46(2):229–233.
    Yao Z X,Gao X,Li W X. 2003. The forward Q method for compensating attenuation and frequency dispersion used in the seismic profile of depth domain[J]. Chinese Journal of Geophysics,46(2):229–233 (in Chinese).
    张固澜,熊晓军,容娇君,张彦斌,蔡志东. 2010. 基于改进的广义S变换的地层吸收衰减补偿[J]. 石油地球物理勘探,45(4):512–515.
    Zhang G L,Xiong X J,Rong J J,Zhang Y B,Cai Z D. 2010. Stratum absorption and attenuation compensation based on improved generalized S-transform[J]. Oil Geophysical Prospecting,45(4):512–515 (in Chinese).
    张固澜,林进,王熙明,贺振华,曹俊兴,张建军,贺锡雷,林凯,薛雅娟. 2015. 一种自适应增益限的反Q滤波[J]. 地球物理学报,58(7):2525–2535.
    Zhang G L,Lin J,Wang X M,He Z H,Cao J X,Zhang J J,He X L,Lin K,Xue Y J. 2015. A self-adaptive approach for inverse Q-filtering[J]. Chinese Journal of Geophysics,58(7):2525–2535 (in Chinese).
    赵岩,毛宁波,陈旭. 2021. 基于时频域信噪比的自适应增益限反Q滤波方法[J]. 岩性油气藏,33(4):85–92.
    Zhao Y,Mao N B,Chen X. 2021. Self-adaptive gain-limit inverse Q filtering method based on SNR in time-frequency domain[J]. Lithologic Reservoirs,33(4):85–92 (in Chinese).
    Braga I L S,Moraes F S. 2013. High-resolution gathers by inverse Q filtering in the wavelet domain[J]. Geophysics,78(2):V53–V61. doi: 10.1190/geo2011-0508.1
    Hale D. 1981. An inverse Q-filter[J]. SEP Report,26:231–243.
    Wang Y H. 2002. A stable and efficient approach of inverse Q filtering[J]. Geophysics,67(2):657–663. doi: 10.1190/1.1468627
    Wang Y H. 2006. Inverse Q-filter for seismic resolution enhancement[J]. Geophysics,71(3):V51–V60. doi: 10.1190/1.2192912
    Zhao Y,Mao N B,Xu J. 2019. Generalized stable inverse Q filtering[J]. J Appl Geophys,169:214–225. doi: 10.1016/j.jappgeo.2019.07.007
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  29
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-14
  • 修回日期:  2022-01-01
  • 网络出版日期:  2022-12-29
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回