不同注水方式下断层动力学响应数值模拟研究

祝爱玉 孙子涵 蒋长胜 陈石 张东宁 崔光磊

祝爱玉,孙子涵,蒋长胜,陈石,张东宁,崔光磊. 2021. 不同注水方式下断层动力学响应数值模拟研究. 地震学报,43(0):1−15 doi: 10.11939/jass.20210137
引用本文: 祝爱玉,孙子涵,蒋长胜,陈石,张东宁,崔光磊. 2021. 不同注水方式下断层动力学响应数值模拟研究. 地震学报,43(0):1−15 doi: 10.11939/jass.20210137
Zhu A Y,Sun Z H,Jiang C S,Chen S,Zhang D N,Cui G L. 2021. The dynamic mechanical response of the fault under different water injection schedules. Acta Seismologica Sinica,43(0):1−15 doi: 10.11939/jass.20210137
Citation: Zhu A Y,Sun Z H,Jiang C S,Chen S,Zhang D N,Cui G L. 2021. The dynamic mechanical response of the fault under different water injection schedules. Acta Seismologica Sinica43(0):1−15 doi: 10.11939/jass.20210137

不同注水方式下断层动力学响应数值模拟研究

doi: 10.11939/jass.20210137
基金项目: 中国地震局地球物理研究所中央级公益性科研院所基本科研业务费专项(DQJB19A0125,DQJB21Y43)和国家科技部重点研发课题(2018YFC1503200)
详细信息
    通讯作者:

    祝爱玉,Email:aiyuzhu@cea-igp.ac.cn

  • 中图分类号: P315.1

The dynamic mechanical response of the fault under different water injection schedules

  • 摘要: 工业开采注水能导致现存断层活化,从而诱发大量的破坏型地震。因此,研究注水作用下断层的动力学响应对探索诱发地震的力学机理具有重要的意义。本文基于孔弹性弹簧-滑块模型,采用多孔介质弹性耦合数值模拟,计算分析了三类典型注水方式(上升型、迅速上升/下降型和间歇性)对断层稳定性的影响。研究结果表明:随着流体的不断注入,断层内部孔隙压力会经过缓慢上升、迅速上升和稳定上升三个阶段。针对于不同的注水方式,这三个阶段并不完全相同,体现形式存在差异;在注水方式相同的条件下,储层的渗透率越小,井口附近孔隙压力越大,断层处孔隙压力越小,两者间的孔隙压力差值越大;注水过程中断层临界刚度的变化与是否发生滑移并引发地震密切相关,数值越大越易诱发地震,其数值与注入储层流体的流体压力呈负相关,与流体压力变化率呈正相关;临界刚度由于孔隙压力变化率的增加在前期呈现快速增长趋势,后期则是由于孔隙压力的影响开始减小。迅速上升/下降型注水方式极大增加了注水前期诱发地震的可能性,间歇性注水方式在注水后期引起的临界刚度变化值较大,增大了诱发地震的可能性。该研究可以为注水诱发地震的危险性评价提供定量的科学依据。

     

  • 图  1  孔弹性弹簧-滑块模型示意图(Alghannam,Juanes,2020

    Figure  1.  Schematic diagram of poroelastic spring–slider model (Alghannam,Juanes,2020

    图  2  三维模型

    (a)几何模型;(b)网格划分示意图

    Figure  2.  The three-dimensional model (a) Geometric model;(b) Meshing of the model

    图  3  不同注水方式下注水体积与注水时间的关系曲线

    Figure  3.  The relationship between injection volume and injection time under different water injection schedules

    图  4  不同的注水方式下,断层上部、中部及下部孔隙压力与注水时间的关系曲线

    Figure  4.  The pore pressure in the middle, upper and lower parts of the fault under different water injection schedules

    图  5  不同注水方式和不同渗透率下孔隙压力在储层(a)和断层(b)中随时间的变化

    Figure  5.  Pore pressure changes with time in reservoir (a) and fault (b) under different permeabilities and water injection schedules

    图  6  方案AC (a)和方案B (b)的断层临界刚度随时间的变化

    Figure  6.  The fault critical stiffness changes with time under cases AC (a) and case B (b)

    图  7  方案AC(a)和方案B(b)在分别考虑孔隙压力(负半轴)及孔隙压力变化率(正半轴)时断层临界刚度随时间的变化

    Figure  7.  The critical stiffness changes of fault with time when considering the pore pressure (the negative half axis) and pore pressure change rate (the positive half axis) respectively for cases A,C and case B

    图  8  方案A中不同渗透率下断层临界刚度随时间的变化

    (a)同时考虑孔隙压力(负半轴)及孔隙压力变化率(正半轴);(b)分别考虑孔隙压力(负半轴)及孔隙压力变化率(正半轴)

    Figure  8.  The critical stiffness changes of fault with time under different permeability in case A

    (a) Considering both of pore pressure (the negative half axis) and pore pressure change rate (the positive half axis);(b) Considering pore pressure (the negative half axis) and pore pressure change rate (the positive half axis) respectively

    图  9  方案B中不同渗透率下断层临界刚度随时间的变化

    (a)同时考虑孔隙压力(负半轴)及孔隙压力变化率(正半轴);(b)分别考虑孔隙压力(负半轴)及孔隙压力变化率(正半轴)

    Figure  9.  The critical stiffness changes of fault with time under different permeability in case B

    (a) Considering both of pore pressure (the negative half axis) and pore pressure change rate (the positive half axis);(b) Considering pore pressure (the negative half axis) and pore pressure change rate (the positive half axis) respectively

    图  10  方案C中不同渗透率下断层临界刚度随时间的变化

    (a)同时考虑孔隙压力(负半轴)及孔隙压力变化率(正半轴);(b)分别考虑孔隙压力(负半轴)及孔隙压力变化率(正半轴)

    Figure  10.  The critical stiffness changes of fault with time under different permeability in case C

    (a) Considering both of pore pressure (the negative half axis) and pore pressure change rate (the positive half axis);(b) Considering pore pressure (the negative half axis) and pore pressure change rate (the positive half axis) respectively

    表  1  模型材料参数

    Table  1.   The material parameters of the model

    变量含义变量参数
    ρf流体密度1 000 kg/m3uf流体动态粘度系数0.001 Pa·s
    Cf流体压缩系数4×10−10 Pa−1kf储层渗透率10−14 m2
    ϕf储层孔隙率0.1E储层杨氏模量20 GPa
    p0储层泊松比0.25αbBiot系数1
    σyy方向应力100 MPaσxx方向应力80 MPa
    a摩擦常数0.015b摩擦常数0.02
    Dc滑移距离100 μm$ \hat \alpha $摩擦常数0.5
    下载: 导出CSV
  • [1] 管全中,董大忠,张华玲,孙莎莎,张素荣,郭雯. 2021. 富有机质页岩生物成因石英的类型及其耦合成储机制:以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发,48(4):700–709.
    [2] Guan Q Z,Dong D Z,Zhang H L,Sun S S,Zhang S R,Guo W. 2021. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales:A case study of the Upper Ordovician Wufeng formation to lower Silurian Longmaxi formation in the Sichuan Basin,SW China[J]. Petroleum Exploration and Development,48(4):700–709 (in Chinese).
    [3] 洪汉净. 1994. 从地震模拟看匀阻段与大震的关系[J]. 地震地质,16(2):109–114.
    [4] Hong H J. 1994. Seismic simulation:correlation of resistance-homogeneous fault segment with large earthquakes[J]. Seismology and Geology,16(2):109–114 (in Chinese).
    [5] 李大虎,詹艳,丁志峰,高家乙,吴萍萍,孟令媛,孙翔宇,张旭. 2021. 四川长宁Ms6.0地震震区上地壳速度结构特征与孕震环境[J]. 地球物理学报,64(1):18–35. doi: 10.6038/cjg2021O0241
    [6] Li D H,Zhan Y,Ding Z F,Gao J Y,Wu P P,Meng L Y,Sun X Y,Zhang X. 2021. Upper crustal velocity and seismogenic environment of the Changning Ms6.0 earthquake region in Sichuan,China[J]. Chinese Journal of Geophysics,64(1):18–35 (in Chinese).
    [7] 涂毅敏,陈运泰. 2002. 德国大陆超深钻井注水诱发地震的精确定位[J]. 地震学报,24(6):587–598. doi: 10.3321/j.issn:0253-3782.2002.06.004
    [8] Tu Y M,Chen Y T. 2002. The acurate location of the injection-induced microearthquakes in German continental deep drilling program[J]. Acta Seismologica Sinica,24(6):587–598 (in Chinese).
    [9] 薛霆虓,傅容珊,陈宇卫,邵志刚. 2009. 大尺度断层活动性数值模拟及地震学类比[J]. 地球物理学进展,24(5):1616–1626. doi: 10.3969/j.issn.1004-2903.2009.05.010
    [10] Xue T X,Fu R S,Chen Y W,Shao Z G. 2009. Numerical simulation of large scale fault activity and it's seismological analogy[J]. Progress in Geophysics,24(5):1616–1626 (in Chinese).
    [11] 易桂喜,龙锋,梁明剑,赵敏,王思维,宫悦,乔慧珍,苏金蓉. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报,62(9):3432–3447. doi: 10.6038/cjg2019N0297
    [12] Yi G X,Long F,Liang M J,Zhao M,Wang S W,Gong Y,Qiao H Z,Su J R. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics,62(9):3432–3447 (in Chinese).
    [13] 张致伟,程万正,梁明剑,王晓山,龙锋,许艳,陈文康,王世元. 2012. 四川自贡—隆昌地区注水诱发地震研究[J]. 地球物理学报,55(5):1635–1645. doi: 10.6038/j.issn.0001-5733.2012.05.021
    [14] Zhang Z W,Cheng W Z,Liang M J,Wang X S,Long F,Xu Y,Chen W K,Wang S Y. 2012. Study on earthquakes induced by water injection in Zigong-Longchang area,Sichuan[J]. Chinese Journal of Geophysics,55(5):1635–1645 (in Chinese).
    [15] 周仕勇. 2008. 川西及邻近地区地震活动性模拟和断层间相互作用研究[J]. 地球物理学报,51(1):165–174. doi: 10.3321/j.issn:0001-5733.2008.01.021
    [16] Zhou S Y. 2008. Seismicity simulation in western Sichuan of China based on the fault interactions and its implication on the estimation of the regional earthquake risk[J]. Chinese Journal of Geophysics,51(1):165–174 (in Chinese).
    [17] 朱航,何畅. 2014. 注水诱发地震序列的震源机制变化特征:以四川长宁序列为例[J]. 地球科学——中国地质大学学报,39(12):1776–1782.
    [18] Zhu H,He C. 2014. Focal mechanism changing character of earthquake sequence induced by water injection:a case study of Changning sequence,Sichuan province[J]. Earth Science——Journal of China University of Geosciences,39(12):1776–1782 (in Chinese). doi: 10.3799/dqkx.2014.161
    [19] 邹才能,赵群,董大忠,杨智,邱振,梁峰,王南,黄勇,端安详,张琴,胡志明. 2017. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,28(12):1781–1796.
    [20] Zou C N,Zhao Q,Dong D Z,Yang Z,Qiu Z,Liang F,Wang N,Huang Y,Duan A X,Zhang Q,Hu Z M. 2017. Geological characteristics,main challenges and future prospect of shale gas[J]. Natural Gas Geoscience,28(12):1781–1796 (in Chinese).
    [21] 邹才能,董大忠,王玉满,李新景,黄金亮,王淑芳,管全中,张晨晨,王红岩,刘洪林,拜文华,梁峰,吝文,赵群,刘德勋,杨智,梁萍萍,孙莎莎,邱振. 2016. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发,43(2):166–178. doi: 10.11698/PED.2016.02.02
    [22] Zou C N,Dong D Z,Wang Y M,Li X J,Huang J L,Wang S F,Guan Q Z,Zhang C C,Wang H Y,Liu H L,Bai W H,Liang F,Lin W,Zhao Q,Liu D X,Yang Z,Liang P P,Sun S S,Qiu Z. 2016. Shale gas in China:Characteristics,challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development,43(2):166–178 (in Chinese).
    [23] Alghannam M,Juanes R. 2020. Understanding rate effects in injection-induced earthquakes[J]. Nat Commun,11(1):3053. doi: 10.1038/s41467-020-16860-y
    [24] Andrés S,Santillán D,Mosquera J C,Cueto-Felgueroso L. 2019. Delayed weakening and reactivation of rate-and-state faults driven by pressure changes due to fluid injection[J]. J Geophys Res:Solid Earth,124(11):11917–11937. doi: 10.1029/2019JB018109
    [25] Biot M A. 1941. General theory of three-dimensional consolidation[J]. J Appl Phys,12(2):155–164. doi: 10.1063/1.1712886
    [26] Brace W F,Byerlee J D. 1966. Stick-slip as a mechanism for earthquakes[J]. Science,153(3739):990–992. doi: 10.1126/science.153.3739.990
    [27] Cappa F,Scuderi M M,Collettini C,Guglielmi Y,Avouac J P. 2019. Stabilization of fault slip by fluid injection in the laboratory and in situ[J]. Sci Adv,5(3):eaau4065. doi: 10.1126/sciadv.aau4065
    [28] Chang K W,Segall P. 2016. Injection-induced seismicity on basement faults including poroelastic stressing[J]. J Geophys Res:Solid Earth,121(4):2708–2726. doi: 10.1002/2015JB012561
    [29] Chang K W,Yoon H,Kim Y,Lee M Y. 2020. Operational and geological controls of coupled poroelastic stressing and pore-pressure accumulation along faults:induced earthquakes in Pohang,South Korea[J]. Sci Rep,10(1):2073. doi: 10.1038/s41598-020-58881-z
    [30] Cheng H H,Zhang H,Shi Y L. 2016. High-resolution numerical analysis of the triggering mechanism of ML5.7 Aswan reservoir earthquake through fully coupled poroelastic finite[J]. Pure Appl Geophys,173(5):1593–1605. doi: 10.1007/s00024-015-1200-0
    [31] Cheng H H,Zhang H,Zhu B J,Sun Y J,Zheng L,Yang S H,Shi Y L. 2012. Finite element investigation of the poroelastic effect on the Xinfengjiang Reservoir-triggered earthquake[J]. Sci China Earth Sci,55(12):1942–1952. doi: 10.1007/s11430-012-4470-8
    [32] Cueto-Felgueroso L,Santillán D,Mosquera J C. 2017. Stick-slip dynamics of flow-induced seismicity on rate and state faults[J]. Geophys Res Lett,44(9):4098–4106. doi: 10.1002/2016GL072045
    [33] Dieterich J H. 1992. Earthquake nucleation on faults with rate-and state-dependent strength[J]. Tectonophysics,211(1/4):115–134.
    [34] Dieterich J H,Richards-Dinger K B,Kroll K A. 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQSim[J]. Seismol Res Lett,86(4):1102–1109. doi: 10.1785/0220150057
    [35] Ellsworth W L. 2013. Injection-induced earthquakes[J]. Science,341(6142):1225942. doi: 10.1126/science.1225942
    [36] Frohlich C. 2012. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale,Texas[J]. Proc Natl Acad Sci USA,109(35):13934–13938. doi: 10.1073/pnas.1207728109
    [37] Goebel T H W,Brodsky E E. 2018. The spatial footprint of injection wells in a global compilation of induced earthquake sequences[J]. Science,361(6405):899–904. doi: 10.1126/science.aat5449
    [38] Goebel T H W,Walter J I,Murray K,Brodsky E E. 2017. Comment on “How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?” by C. Langenbruch and M. D. Zoback[J]. Sci Adv,3(8):e1700441. doi: 10.1126/sciadv.1700441
    [39] Goebel T H W,Rosson Z,Brodsky E E,Walter J I. 2019. Aftershock deficiency of induced earthquake sequences during rapid mitigation efforts in Oklahoma[J]. Earth Planet Sci Lett,522:135–143. doi: 10.1016/j.jpgl.2019.06.036
    [40] Guglielmi Y,Cappa F,Avouac J P,Henry P,Elsworth D. 2015. Seismicity triggered by fluid injection–induced aseismic slip[J]. Science,348(6240):1224–1226. doi: 10.1126/science.aab0476
    [41] Hsieh P A,Bredehoeft J D. 1981. A reservoir analysis of the Denver earthquakes:a case of induced seismicity[J]. J Geophys Res:Solid Earth,86(B2):903–920. doi: 10.1029/JB086iB02p00903
    [42] Jaeger J C, Cook N G W. 1969. Fundamentals of Rock Mechanics[M]. London: Methuen and Co. Ltd.
    [43] Jin L,Zoback M D. 2018. Fully dynamic spontaneous rupture due to quasi-static pore pressure and poroelastic effects:an implicit nonlinear computational model of fluid-induced seismic events[J]. J Geophys Res:Solid Earth,123(11):9430–9468. doi: 10.1029/2018JB015669
    [44] Keranen K M,Weingarten M,Abers G A,Bekins B A,Ge S. 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection[J]. Science,345(6195):448–451. doi: 10.1126/science.1255802
    [45] Keranen K M,Weingarten M. 2018. Induced seismicity[J]. Annu Rev Earth Planet Sci,46:149–174. doi: 10.1146/annurev-earth-082517-010054
    [46] Langenbruch C,Zoback M D. 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?[J]. Sci Adv,2(11):e1601542. doi: 10.1126/sciadv.1601542
    [47] Lei X L,Wang Z W,Su J R. 2019a. Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning,south Sichuan Basin,China[J]. Earth Planet Phys,3(6):510–525. doi: 10.26464/epp2019052
    [48] Lei X L,Wang Z W,Su J R. 2019b. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing[J]. Seismol Res Lett,90(3):1099–1110. doi: 10.1785/0220190029
    [49] Lei X L,Su J R,Wang Z W. 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Sci China Earth Sci,63(11):1633–1660. doi: 10.1007/s11430-020-9646-x
    [50] Li T,Sun J B,Bao Y X,Zhan Y,Shen Z K,Xu X W,Lasserre C. 2021. The 2019 Mw 5.8 Changning,China earthquake:a cascade rupture of fold-accommodation faults induced by fluid injection[J]. Tectonophysics,801:228721. doi: 10.1016/j.tecto.2021.228721
    [51] Lick W. 1965. The instability of a fluid layer with time-dependent heating[J]. J Fluid Mech,21(3):565–576. doi: 10.1017/S0022112065000332
    [52] Liu J Q,Zahradník J. 2020. The 2019 MW 5.7 Changning earthquake,Sichuan Basin,China:a shallow doublet with different faulting styles[J]. Geophys Res Lett,47(4):e2019GL085408.
    [53] Meng L Y,Mcgarr A,Zhou L Q,Zang Y. 2019. An investigation of seismicity induced by hydraulic fracturing in the Sichuan Basin of China based on data from a temporary seismic network[J]. Bull Seismol Soc Am,109(1):348–357. doi: 10.1785/0120180310
    [54] Norbeck J H,Horne R N. 2018. Maximum magnitude of injection-induced earthquakes:a criterion to assess the influence of pressure migration along faults[J]. Tectonophysics,733:108–118. doi: 10.1016/j.tecto.2018.01.028
    [55] Rajesh R,Gupta H K. 2021. Characterization of injection-induced seismicity at north central Oklahoma,USA[J]. J Seismol,25(1):327–337. doi: 10.1007/s10950-020-09978-5
    [56] Rao C V,Arkin A P. 2003. Stochastic chemical kinetics and the quasi-steady-state assumption:application to the Gillespie algorithm[J]. J Chem Phys,118(11):4999–5010. doi: 10.1063/1.1545446
    [57] Rice J R,Cleary M P. 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Rev Geophys,14(2):227–241. doi: 10.1029/RG014i002p00227
    [58] Robinson J L. 1976. Theoretical analysis of convective instability of a growing horizontal thermal boundary layer[J]. Phys Fluids,19(6):778–791. doi: 10.1063/1.861570
    [59] Rubinstein J L,Ellsworth W L,Dougherty S L. 2018. The 2013-2016 induced earthquakes in harper and Sumner counties,southern Kansas[J]. Bull Seismol Soc Am,108(2):674–689. doi: 10.1785/0120170209
    [60] Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res:Solid Earth,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359
    [61] Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. Cambridge: Cambridge University Press.
    [62] Segall P,Lu S. 2015. Injection-induced seismicity:poroelastic and earthquake nucleation effects[J]. J Geophys Res:Solid Earth,120(7):5082–5103. doi: 10.1002/2015JB012060
    [63] Segel L A,Slemrod M. 1989. The quasi-steady-state assumption:a case study in perturbation[J]. SIAM Rev,31(3):446–477. doi: 10.1137/1031091
    [64] Sun X L,Yang P T,Zhang Z W. 2017. A study of earthquakes induced by water injection in the Changning salt mine area,SW China[J]. J Asian Earth Sci,136:102–109. doi: 10.1016/j.jseaes.2017.01.030
    [65] Talwani P. 1997. On the nature of reservoir-induced seismicity[J]. Pure Appl Geophys,150(3):473–492.
    [66] Walter J I,Chang J C,Dotray P J. 2017. Foreshock seismicity suggests gradual differential stress increase in the months prior to the 3 September 2016 Mw 5.8 Pawnee earthquake[J]. Seismol Res Lett,88(4):1032–1039. doi: 10.1785/0220170007
    [67] Wang H F. 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology[M]. Princeton: Princeton University Press.
    [68] Weingarten M,Ge S,Godt J W,Bekins B A,Rubinstein J L. 2015. High-rate injection is associated with the increase in U. S. mid-continent seismicity[J]. Science,348(6241):1336–1340. doi: 10.1126/science.aab1345
    [69] Xu P,Yu B M. 2008. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry[J]. Adv Water Resour,31(1):74–81. doi: 10.1016/j.advwatres.2007.06.003
    [70] Yeck W L,Weingarten M,Benz H M,McNamara D E,Bergman E A,Herrmann R B,Rubinstein J L,Earle P S. 2016. Far-field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure[J]. Geophys Res Lett,43(19):10198–10207. doi: 10.1002/2016GL070861
    [71] Yeo I W,Brown M R M,Ge S,Lee K K. 2020. Causal mechanism of injection-induced earthquakes through the Mw 5.5 Pohang earthquake case study[J]. Nat Commun,11(1):2614. doi: 10.1038/s41467-020-16408-0
    [72] Zhu W Q,Allison K L,Dunham E M,Yang Y Y. 2020. Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip[J]. Nat Commun,11(1):4833. doi: 10.1038/s41467-020-18598-z
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  13
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-11-23

目录

    /

    返回文章
    返回