基于多台站的接收函数和重力联合反演确定莫霍面起伏和地壳平均波速比

郝奥伟 张海江 韩守诚 高磊

郝奥伟,张海江,韩守诚,高磊. 2022. 基于多台站的接收函数和重力联合反演确定莫霍面起伏和地壳平均波速比. 地震学报,44(0):1−16 doi: 10.11939/jass.20210179
引用本文: 郝奥伟,张海江,韩守诚,高磊. 2022. 基于多台站的接收函数和重力联合反演确定莫霍面起伏和地壳平均波速比. 地震学报,44(0):1−16 doi: 10.11939/jass.20210179
Hao A W,Zhang H J,Han S C,Gao L. 2022. Joint inversion of multi-station receiver functions and gravity data for imaging Moho variations and average crustal vP/vS ratios. Acta Seismologica Sinica,44(0):1−16 doi: 10.11939/jass.20210179
Citation: Hao A W,Zhang H J,Han S C,Gao L. 2022. Joint inversion of multi-station receiver functions and gravity data for imaging Moho variations and average crustal vP/vS ratios. Acta Seismologica Sinica44(0):1−16 doi: 10.11939/jass.20210179

基于多台站的接收函数和重力联合反演确定莫霍面起伏和地壳平均波速比

doi: 10.11939/jass.20210179
基金项目: 国家自然科学基金委联合基金项目(U1839205)资助
详细信息
    作者简介:

    郝奥伟,在读博士研究生,主要从事地震定位和成像以及地震和重力联合反演方面的研究,e-mail:aowei_hao@126.com

    通讯作者:

    张海江,博士,教授,主要从事先进地球物理成像算法研究及在不同尺度地下结构成像中的应用,e-mail:zhang11@ustc.edu.cn

  • 中图分类号: P315.31

Joint inversion of multi-station receiver functions and gravity data for imaging Moho variations and average crustal vP/vS ratios

  • 摘要: 地壳厚度和波速比是研究地壳结构和组分的两个重要参数,可为区域构造研究提供重要约束。接收函数被广泛地用于确定地壳厚度和波速比,例如H-κ方法或H-κ-c方法。但是该方法只能确定台站下方的地壳厚度和速度比,当地震台站分布稀疏时,很难约束台站间的横向不均匀性。另一方面,重力数据也可用于莫霍面的起伏变化研究,它在横向上有很好的覆盖和分辨率,但在纵向上分辨率相对较低。为此,本研究提出了一种联合反演算法求解莫霍面深度和地壳波速比参数。联合反演算法综合考虑了接收函数在纵向上的较高分辨率和重力数据在横向上的较高分辨率,同时拟合区域内所有台站上的接收函数和区域重力数据。模型测试表明联合反演算法比单一的接收函数反演更精确,特别是对于地壳厚度的确定。

     

  • 图  1  莫霍面起伏模型(a)和地壳平均波速比模型(b),其中三角形为虚拟台站的分布位置Fig.1Synthetic Moho model (a) andthe average crustal Vp/Vs model (b).The black triangles indicate virtual seismic stations

    图  2  虚拟台站(东向坐标x=350 km,北向坐标y=250 km)下方的简单P波速度结构(a)和根据该模型正演出的对应不同射线参数的理论接收函数(b),以及图1a中莫霍面起伏所引起的重力异常(c)

    Figure  2.  The simple crustal P-wave velocity structure beneath one virtual seismic station at x=350 km in the east direction and y=250 km in the north direction (a),and the theoretical receiver functions for different ray parameters (b),and gravity anomalies caused by Moho variations in Fig. 1a (c)

    图  3  联合反演L-曲线分析

    图(a)—(c)表示通过接收函数确定的不同平滑参数,阻尼参数下的归一化模型和数据残差的关系,最优的参数为$ {\varpi }_{H}=300 $,$ {\lambda }_{H}=300 $,$ {\lambda }_{k}=8\;000 $;图(d)为接收函数和重力之间权重关系曲线,重力$\gamma $的最优参数为$ \gamma =25 $。

    Figure  3.  L-curve analysis for the joint inversion

    (a)−(c) Trade-off between the normalized model residuals and data residuals for different smoothing or damping parameters used in receiver function inversion ($ {\varpi }_{H}=300 $,$ {\lambda }_{H}=300 $,$ {\lambda }_{k}=8\;000 $); (d) Tradeoff analysis between the normalized model residuals and data residuals for different weights between receiver function and gravity data,and the optimal weight $ \gamma =25 $.

    图  4  对应于图2中所示模型的接收函数(a)和重力异常(b)的RMS迭代收敛曲线

    图中黑色圆点为只采用接收函数到时数据,红色菱形点为采用接收函数和重力异常两种数据联合反演的结果

    Figure  4.  The RMS residuals of receiver function data (a) and gravity data(b) with iterations

    The black circle points denote the results only by receiver function data and the red quadrangle points denote the results by joint inversion

    图  5  (a,(b) 仅采用接收函数数据反演和联合反演获取的莫霍面;(c,d) 采用接收函数反演和联合反演的莫霍面结果和理论模型的残差分布;(e,f)分别为采用接收函数和联合反演得到的地壳平均波速比;(g,h) 反演的平均地壳波速比结果和理论模型之间的残差

    Figure  5.  (a,b) The Moho results determined by receiver function analysis and joint inversion,respectively; (c,d) The deviations of inverted Moho models in (a) and (b) from theoretical Moho model in Fig. 1a,respectively;(e,f) The average crustal vP/vS ratios by receiver function analysis and joint inversion,respectively; (g,h) The deviations between inverted vP/vS models in Figs. (e) and (f) with the theoretical vP/vS model in Fig. 1b,respectively.

    图  6  虚拟台站(x坐标350 km,y坐标250 km)下的地壳P波速度结构(a)和正演的接收函数(b)

    Figure  6.  The crustal P-wave velocity structure (a) at one virtual seismic station (x=350 km,y=250 km) and the theoretical receiver functions (b)

    图  7  复杂速度模型情况下接收函数(a)和重力异常(b)的RMS迭代收敛曲线(其中黑色圆点为接收函数反演,红色菱形点为接收函数和重力联合反演)

    Figure  7.  Same as Fig.4 but for the complex velocity model, the RMS residuals of receiver function (a) and gravity data (b)

    图  8  (a)和(b)分别为只采用接收函数反演和联合反演得到的莫霍面结果和原始模型的残差;(c)和(d)分别为只采用接收函数反演和联合反演获取的速度比结果和原始模型的残差

    Figure  8.  Deviations between theoretical Moho model in Fig. 1a and inverted Moho models from only receiver functions (a) and joint inversion (b),and deviations of inverted vP/vS models from theoretical vP/vS model in Fig. 1b. from only receiver functions (c) and joint inversion (d),respectively

    表  1  不同P波速度对联合反演的影响

    Table  1.   The effect of different P-wave velocities on joint inversion

    vp/(km·s−1联合反演RMS拟合 联合反演残差
    莫霍面/km 波速比vP/vS
    接收函数/s重力异常/mGal最大残差标准差 最大残差标准差
    6.0 0.362 2.905 0.664 0.285 0.177 0.041
    6.1 0.361 2.842 0.607 0.263 0.164 0.033
    6.2 0.363 2.794 0.554 0.251 0.152 0.033
    6.3 0.363 2.743 0.526 0.249 0.139 0.041
    6.4 0.363 2.695 0.569 0.256 0.126 0.054
    6.5 0.362 2.649 0.612 0.268 0.123 0.062
    6.6 0.364 2.602 0.653 0.286 0.142 0.068
    下载: 导出CSV

    表  2  不同剩余密度参数对联合反演结果的影响

    Table  2.   Effect of different residual gravity anomalies on joint inversion

    剩余密度(kg·m−3反演结果
    联合反演RMS拟合联合反演残差
    莫霍面/km 波速比vP/vS
    接收函数/秒重力异常/mGal最大残差标准差 最大残差标准差
    350 0.375 6.550 1.410 0.794 0.168 0.055
    400 0.371 3.560 1.150 0.638 0.156 0.048
    450 0.364 3.070 0.940 0.372 0.147 0.044
    500 0.363 2.740 0.529 0.249 0.139 0.041
    550 0.365 2.510 0.710 0.318 0.132 0.040
    600 0.368 2.330 0.990 0.456 0.126 0.040
    650 0.372 2.190 1.250 0.595 0.121 0.041
    下载: 导出CSV

    表  3  不同参考界面深度对联合反演影响

    Table  3.   Effect of different reference interfaces on Joint inversion

    参考深度/km反演结果
    联合反演RMS拟合联合反演残差
    莫霍面/km波速比vP/vS
    接收函数/s重力异常/mGal最大残差标准差最大残差标准差
    38.5 0.363 2.745 1.908 1.410 0.136 0.076
    39 0.363 2.745 1.439 0.953 0.121 0.063
    39.5 0.363 2.745 0.971 0.515 0.130 0.051
    40 0.363 2.743 0.529 0.249 0.139 0.041
    40.5 0.363 2.742 0.994 0.545 0.148 0.034
    41 0.363 2.742 1.463 0.986 0.156 0.032
    41.5 0.363 2.743 1.931 1.444 0.165 0.034
    下载: 导出CSV
  • [1] 冯锐. 1986. 三维物性分布的位场计算[J]. 地球物理学报,29(4):399–406. doi: 10.3321/j.issn:0001-5733.1986.04.010
    [2] Feng R. 1986. A computation method of potential field with three-dimensional density and magnetization distributions[J]. Acta Geophysica Sinica,29(4):399–406 (in Chinese).
    [3] 郭良辉,孟小红,石磊,陈召曦. 2012. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用[J]. 地球物理学报,55(12):4078–4088. doi: 10.6038/j.issn.0001-5733.2012.12.020
    [4] Guo L H,Meng X H,Shi L,Chen Z X. 2012. Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent[J]. Chinese Journal of Geophysics,55(12):4078–4088 (in Chinese).
    [5] 宋婷,沈旭章,梅秀苹. 2020. 利用接收函数频率特征研究莫霍面形态及应用[J]. 地震学报,42(2):135–150. doi: 10.11939/jass.20190149
    [6] Song T,Shen X Z,Mei X P. 2020. Constraining Moho characteristics with frequency-dependence of receiver function and its application[J]. Acta Seismologica Sinica,42(2):135–150 (in Chinese).
    [7] 张洪双,田小波,滕吉文. 2009. 接收函数方法估计Moho倾斜地区的地壳速度比[J]. 地球物理学报,52(5):1243–1252. doi: 10.3969/j.issn.0001-5733.2009.05.013
    [8] Zhang H S,Tian X B,Teng J W. 2009. Estimation of crustal Vp/Vs with dipping Moho from receiver functions[J]. Chinese Journal of Geophysics,52(5):1243–1252 (in Chinese).
    [9] 张盛,孟小红. 2013. 约束变密度界面反演方法[J]. 地球物理学进展,28(4):1714–1720. doi: 10.6038/pg20130411
    [10] Zhang S,Meng X H. 2013. Constraint interface inversion with variable density model[J]. Progress in Geophysics,28(4):1714–1720 (in Chinese).
    [11] 张雪敏,付丽华,张海江,彭佳明. 2019. 基于正交秩-1矩阵追踪的天然地震数据重建研究:以加州San Jacinto断层密集地震台阵为例[J]. 地球物理学报,62(4):1427–1439. doi: 10.6038/cjg2019M0352
    [12] Zhang X M,Fu L H,Zhang H J,Peng J M. 2019. Reconstruction of natural earthquake data based on Orthogonal Rank-one Matrix Pursuit and its application to dense seismic array around the San Jacinto fault zone in California[J]. Chinese Journal of Geophysics,62(4):1427–1439 (in Chinese).
    [13] Aitken A R A. 2010. Moho geometry gravity inversion experiment (MoGGIE):A refined model of the Australian Moho,and its tectonic and isostatic implications[J]. Earth Planet Sci Lett,297(1/2):71–83.
    [14] Aitken A R A,Salmon M L,Kennett B L N. 2013. Australia’s Moho:A test of the usefulness of gravity modelling for the determination of Moho depth[J]. Tectonophysics,609:468–479. doi: 10.1016/j.tecto.2012.06.049
    [15] Aster R C, Borchers B, Thurber C H. 2013. Parameter Estimation and Inverse Problems[M]. 2nd ed. Burlington, MA, USA: Academic Press: 93–95.
    [16] Barbosa V C F,Silva J B C,Medeiros W E. 1999. Stable inversion of gravity anomalies of sedimentary basins with nonsmooth basement reliefs and arbitrary density contrast variations[J]. Geophysics,64(3):754–764. doi: 10.1190/1.1444585
    [17] Chai C P,Ammon C J,Maceira M,Herrmann R B. 2015. Inverting interpolated receiver functions with surface wave dispersion and gravity:Application to the western U. S. and adjacent Canada and Mexico[J]. Geophys Res Lett,42(11):4359–4366. doi: 10.1002/2015GL063733
    [18] Chakravarthi V,Sundararajan N. 2007. 3D gravity inversion of basement relief-a depth-dependent density approach[J]. Geophysics,72(2):I23–I32. doi: 10.1190/1.2431634
    [19] Cordell L,Henderson R G. 1968. Iterative three-dimensional solution of gravity anomaly data using a digital computer[J]. Geophysics,33(4):596–601. doi: 10.1190/1.1439955
    [20] Feng J,Meng X H,Chen Z X,Zhang S. 2014. Three-dimensional density interface inversion of gravity anomalies in the spectral domain[J]. J Geophys Eng,11(3):035001. doi: 10.1088/1742-2132/11/3/035001
    [21] Guo L H,Gao R,Shi L,Huang Z R,Ma Y W. 2019. Crustal thickness and Poisson’s ratios of South China revealed from joint inversion of receiver function and gravity data[J]. Earth Planet Sci Lett,510:142–152. doi: 10.1016/j.jpgl.2018.12.039
    [22] Han S C,Zhang H J,Xin H L,Shen W S,Yao H J. 2021. USTClitho2.0:Updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data[J]. Seismol Res Lett,93(1):201–215.
    [23] He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. Detailed Moho depth mapping of continental China by receiver function analysis[J]. Geophys J Int,199:1910–1918. doi: 10.1093/gji/ggu365
    [24] Hu S Q,Jiang X H,Zhu L P,Yao H J. 2019. Wavefield reconstruction of teleseismic receiver function with the stretching-and-squeezing interpolation method[J]. Seismol Res Lett,90(2A):716–726. doi: 10.1785/0220180197
    [25] Julià J,Mejía J. 2004. Thickness and Vp/Vs ratio variation in the iberian crust[J]. Geophys J Int,156(1):59–72. doi: 10.1111/j.1365-246X.2004.02127.x
    [26] Li J T,Song X D,Wang P,Zhu L P. 2019. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions[J]. J Geophys Res:Solid Earth,124(4):3782–3801. doi: 10.1029/2018JB016356
    [27] Li Y G,Oldenburg D W. 1998. 3-D inversion of gravity data[J]. Geophysics,63(1):109–119. doi: 10.1190/1.1444302
    [28] Li Y H,Gao M T,Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics,611:51–60. doi: 10.1016/j.tecto.2013.11.019
    [29] Lowry A R,Pérez-Gussinyé M. 2011. The role of crustal quartz in controlling Cordilleran deformation[J]. Nature,471(7338):353–357. doi: 10.1038/nature09912
    [30] Maceira M,Ammon C J. 2009. Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure[J]. J Geophys Res:Solid Earth,114(B2):B02314.
    [31] Niu F L,Bravo T,Pavlis G,Vernon F,Rendon H,Bezada M,Levander A. 2007. Receiver function study of the crustal structure of the southeastern Caribbean plate boundary and Venezuela[J]. J Geophys Res:Solid Earth,112(B11):B11308. doi: 10.1029/2006JB004802
    [32] Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies[J]. Geophysics,39(4):526–536. doi: 10.1190/1.1440444
    [33] Owens T J,Zandt G. 1997. Implications of crustal property variations for models of Tibetan plateau evolution[J]. Nature,387(6628):37–43. doi: 10.1038/387037a0
    [34] Paige C C,Saunders M A. 1982. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. CAM Trans Math Softw,8(1):43–71. doi: 10.1145/355984.355989
    [35] Parker R L. 1973. The rapid calculation of potential anomalies[J]. Geophys J Roy Astron Soc,31(4):447–455. doi: 10.1111/j.1365-246X.1973.tb06513.x
    [36] Parker R L. 1974. Best bounds on density and depth from gravity data[J]. Geophysics,39(5):644–649. doi: 10.1190/1.1440454
    [37] Pavlis G L. 2011. Three-dimensional,wavefield imaging of broadband seismic array data[J]. Comput Geosci,37(8):1054–1066. doi: 10.1016/j.cageo.2010.11.015
    [38] Shi L,Guo L H,Ma Y W,Li Y H,Wang W L. 2018. Estimating crustal thickness and Vp/Vs ratio with joint constraints of receiver function and gravity data[J]. Geophys J Int,213(2):1334–1344. doi: 10.1093/gji/ggy062
    [39] Silva J B,Costa D C,Barbosa V C. 2006. Gravity inversion of basement relief and estimation of density contrast variation with depth[J]. Geophysics,71(5):J51–J58. doi: 10.1190/1.2236383
    [40] Song P H,Zhang X M,Liu Y S,Teng J W. 2017. Moho imaging based on receiver function analysis with teleseismic wavefield reconstruction:Application to South China[J]. Tectonophysics,718:118–131. doi: 10.1016/j.tecto.2017.05.031
    [41] Syracuse E M,Maceira M,Prieto G A,Zhang H J,Ammon C J. 2016. Multiple plates subducting beneath Colombia,as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data[J]. Earth Planet Sci Lett,444:139–149. doi: 10.1016/j.jpgl.2016.03.050
    [42] Syracuse E M,Zhang H J,Maceira M. 2017. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah,United States[J]. Tectonophysics,718:105–117. doi: 10.1016/j.tecto.2017.07.005
    [43] Tao K,Liu T Z,Ning J Y,Niu F L. 2014. Estimating sedimentary and crustal structure using wavefield continuation:Theory,techniques and applications[J]. Geophys J Int,197(1):443–457. doi: 10.1093/gji/ggt515
    [44] Tian X B,Zhang Z J. 2013. Bulk crustal properties in NE Tibet and their implications for deformation model[J]. Gondwana Res,24(2):548–559. doi: 10.1016/j.gr.2012.12.024
    [45] Zhang H J,Maceira M,Roux P,Thurber C. 2014. Joint inversion of body-wave arrival times and surface-wave dispersion for three-dimensional seismic structure around SAFOD[J]. Pure Appl Geophys,171(11):3013–3022. doi: 10.1007/s00024-014-0806-y
    [46] Zhang J H,Zheng T Y. 2015. Receiver function imaging with reconstructed wavefields from sparsely scattered stations[J]. Seismol Res Lett,86(1):165–172. doi: 10.1785/0220140028
    [47] Zhao Y,Guo L H,Guo Z,Chen YJ,Shi L,Li Y H. 2020. High resolution crustal model of SE Tibet from joint inversion of seismic P-wave travel-times and Bouguer gravity anomalies and its implication for the crustal channel flow[J]. Tectonophysics,792:228580. doi: 10.1016/j.tecto.2020.228580
    [48] Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  34
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-03-17
  • 网络出版日期:  2022-09-01

目录

    /

    返回文章
    返回