高阶瑞雷面波对低速层的约束

冯宣政 鲁来玉 王少曈 秦彤威

冯宣政,鲁来玉,王少曈,秦彤威. 2023. 高阶瑞雷面波对低速层的约束. 地震学报,45(2):1−20 doi: 10.11939/jass.20210189
引用本文: 冯宣政,鲁来玉,王少曈,秦彤威. 2023. 高阶瑞雷面波对低速层的约束. 地震学报,45(2):1−20 doi: 10.11939/jass.20210189
Feng X Z,Lu L Y,Wang S T,Qin T W. 2023. Constrain low-velocity layer using higher-mode Rayleigh waves. Acta Seismologica Sinica,45(2):1−20 doi: 10.11939/jass.20210189
Citation: Feng X Z,Lu L Y,Wang S T,Qin T W. 2023. Constrain low-velocity layer using higher-mode Rayleigh waves. Acta Seismologica Sinica45(2):1−20 doi: 10.11939/jass.20210189

高阶瑞雷面波对低速层的约束

doi: 10.11939/jass.20210189
基金项目: 国家自然科学基金地震联合基金(U1839209)、国家重点研发计划(2017YFC1500200)及国家自然科学基金(41674062)共同资助
详细信息
    作者简介:

    冯宣政,在读博士研究生,主要从事主、被动源多模式频散曲线提取及反演研究,e-mail:fengxuanzheng@cea-igp.ac.cn

    通讯作者:

    鲁来玉,博士,研究员,主要从事与波动现象有关的理论和应用方面的工作,e-mail: laiyulu@cea-igp.ac.cn

  • 中图分类号: P315. 2

Constrain low-velocity layer using higher-mode Rayleigh waves

  • 摘要: 在实际中常遇到一类含有低速层的介质,其频散曲线在感兴趣的频率范围并无视觉上的交叉现象,也无明显的低速层指示。针对此类介质,基于地震反射资料中的面波信息,通过数值模拟和实例分析发现:如果观测的基阶模式频散曲线不包含对低速层深度灵敏的频段,单独基于基阶模式的频散曲线可能无法恢复模型的低速特征;但如果同时利用相同频段的多阶模式信息,即使观测的频散曲线没有明显的低速特征指示,也可以通过多模式频散信息反演重建模型的低速特征。

     

  • 图  1  跨天津北断裂地震勘探测线及钻孔位置示意图(陈宇坤等,2013

    Figure  1.  Schematic diagram of seismic survey line and borehole location across the north fault of Tianjin (Chen et al,2013

    图  2  天津某活动断层浅层地震勘探数据的时间序列

    Figure  2.  Time series of the shallow seismic reflection data for an active fault collected in Tianjin

    图  3  图2所示时间序列在频率-波数域和频率-相速度域中的能量分布

    (a) 未剔除体波的结果;(b) 剔除体波后的结果;(c) 提取的三个模式的频散点

    Figure  3.  The energy distribution in the frequency-wavenumber and frequency-phase velocity domains for the time series shown in Fig. 2

    (a) The result before removing body waves;(b) The result after removing body waves; (c) The extraction of surface-wave dispersion curves for three modes

    图  4  基于多模式瑞雷面波频散曲线的反演(左)及与观测频散曲线的拟合(右)

    (a) 仅用基阶模式;(b) 基阶、1阶高阶模式联合;(c) 基阶、1阶高阶和2阶高阶模式联合

    Figure  4.  The inversion based on multimode Rayleigh-wave dispersion curves (left) and the fitting between the theoretical and observed dispersion curves (right)

    (a) Using only the fundamental mode;(b) Using the fundamental and the first higher modes;(c) Using the fundamental,the first higher and the second higher modes

    图  5  表2中两个模型的理论频散曲线

    红点表示的频率范围与本文实际数据采集得到的观测频散曲线的频带范围相同,如图3c所示(a) 模型1:速度递增模型;(b) 模型2:含有低速层的模型

    Figure  5.  The theoretical dispersion curves calculated from two models 1 and 2 listed in Table 2

    The red dots indicate the theoretical dispersion curves with the same frequency range as the observed dispersion curves shown in Fig. 3c (a) Model 1:A normal layered model with S-wave velocity increasing with depth; (b) Model 2:A model with a low-velocity layer

    图  6  基于模型1多模式瑞雷面波频散曲线的反演(左)及与观测频散曲线的拟合(右)

    (a) 仅用基阶模式;(b) 基阶和1阶高阶模式联合;(c) 基阶、1阶高阶和2阶高阶模式联合

    Figure  6.  The inversion based on multimode Rayleigh-wave dispersion curves of model 1 (left) and the fitting between the theoretical and observed dispersion curves (right)

    (a) Using only the fundamental mode;(b) Using the fundamental and the first higher modes;(c) Using the fundamental,the first higher and the second higher modes;

    图  7  反演中仅考虑较窄频段(23—40 Hz)的数据,其它同图6

    Figure  7.  The results are the same as fig. 6 except only considering a narrower frequency band (23−40 Hz) data during inversion

    8  基于模型2多模式瑞雷面波频散曲线的反演(左)及与观测频散曲线的拟合 (右)

    (a) 仅用基阶模式;(b) 基阶、1阶高阶模式联合

    8.  The inversion based on multimode Rayleigh-wave dispersion curves of model 2 (left) and the fitting between the theoretical and observed dispersion curves (right)

    (a) Using only the fundamental mode;(b) Using the fundamental and the first higher modes

    图  8  基于模型2多模式瑞雷面波频散曲线的反演(左)及与观测频散曲线的拟合 (右)

    (c) 基阶、1阶高阶和2阶高阶模式联合;(d) 基阶、1阶高阶和2阶高阶模式联合,其中初始模型为(c)的最终模型;

    Figure  8.  The inversion based on multimode Rayleigh-wave dispersion curves of model 2 (left) and the fitting between the theoretical and observed dispersion curves (right)

    (c) Using the fundamental,the first higher and the second higher modes;(d) Using the fundamental,the first higher and the second higher modes,and the initial model is the final model of fig. c;

    图  9  基于模型2多模式瑞雷面波频散曲线的反演 (左) 及与观测频散曲线的拟合 (右)

    (a) 基阶、1阶高阶和2阶高阶模式联合(仅使用部分2阶高阶频散数据);(b) 基阶、1阶高阶和2阶高阶模式联合,其中初始模型为图8b的最终模型(仅使用部分2阶高阶频散数据)

    Figure  9.  The inversion based on multimode Rayleigh-wave dispersion curves of model 2 (left) and the fitting between the theoretical and observed dispersion curves (right)

    (a) Using the fundamental,the first higher and the second higher modes (only part of the second higher mode dispersion data are used);(b) Using the fundamental,the first higher and the second higher modes,and the initial model is the final model of fig. 8b (only part of the second higher mode dispersion data are used)

    图  10  反演中仅考虑较窄频段(23—40 Hz)的数据,其它同图8

    Figure  10.  The results are the same as fig. 8,except only considering a narrower frequency band (23−40 Hz) data during inversion

    图  11  模型1 (a)和模型2 (b)中不同频率和不同模式的相速度对S波速度的灵敏度

    Figure  11.  The sensitivity analysis of the multimode Rayleigh-wave phase velocities at different frequencies for models 1 (a) and 2 (b)

    图  12  模型1 (a)和模型2 (b)中采用不同模式基于较窄(左)和较宽(右)频带范围的频散曲线的反演结果

    Figure  12.  Inversed results for models 1 (a) and 2 (b) using different modes at narrower (left) and wider (right) frequency bands

    图  13  S波速度剖面 (a)及钻孔土层 (b)

    Figure  13.  S-wave velocity profile (a) and borehole soil layer (b)

    表  1  初始模型参数和各模式频散曲线联合反演S波速度

    Table  1.   The parameters of the initial model and the S-wave velocities inverted from multimode dispersion curves

    层数层厚/m深度/mρ/(g·cm−3vP/(m·s−1初始vS/(m·s−1 反演vS/(m·s−1
    11.01.01.60300152135.4
    21.02.01.73400156145.3
    31.03.01.77470163200.8
    41.04.01.79550165221.5
    51.05.01.79570170195.4
    61.06.01.79590180169.6
    71.07.01.79600185155.3
    81.08.01.79700190102.4
    92.010.01.79800200152.8
    10 3.013.01.79900210254.6
    11 4.017.01.801 100220259.3
    半空间$ \infty $$ \infty $1.801 200230250.1
    下载: 导出CSV

    表  2  模型1和模型2的模型参数

    Table  2.   The parameters of models 1 and 2

    层数层厚/m深度/m模型1模型2
    $\mathrm{\rho }/ ( \mathrm{g}\cdot {\mathrm{c}\mathrm{m} }^{-3} ) $${v}_{{\rm{P}}}/ ( {\rm{m}}\cdot {{\rm{s}}}^{-1} ) $${{v} }_{{{\rm{S}}} }/ ( \mathrm{m}\cdot {\mathrm{s} }^{-1} ) $$\mathrm{\rho }/ ( \mathrm{g}\cdot {\mathrm{c}\mathrm{m} }^{-3} ) $${v}_{{\rm{P}}}/ ( {\rm{m}}\cdot {{\rm{s}}}^{-1} ) $${{v} }_{{{\rm{S}}} }/ ( \mathrm{m}\cdot {\mathrm{s} }^{-1} ) $
    1 1.0 1.0 1.581 7 249.1 126.5 1.605 3 266.2 135.4
    2 1.0 2.0 1.654 6 399.7 156.0 1.629 7 373.2 145.3
    3 1.0 3.0 1.728 3 556.2 192.9 1.724 1 580.1 200.8
    4 1.0 4.0 1.735 2 659.8 196.8 1.776 2 738.1 221.5
    5 1.0 5.0 1.739 5 646.0 199.2 1.732 7 654.9 195.4
    6 1.0 6.0 1.739 5 664.8 199.3 1.683 6 554.8 169.6
    7 1.0 7.0 1.739 7 653.0 199.4 1.653 0 505.1 155.3
    8 1.0 8.0 1.742 1 739.8 200.8 1.508 2 376.8 102.4
    9 2.0 10.0 1.754 8 832.9 208.2 1.647 2 611.3 152.8
    10 3.0 13.0 1.767 5 926.3 216.0 1.824 7 1 089.9 254.6
    11 4.0 17.0 1.780 3 1 120.5 224.1 1.831 0 1 297.7 259.3
    半空间 $ \infty $ $ \infty $ 1.792 9 1 210.7 232.3 1.818 5 1 303.7 250.1
    下载: 导出CSV
  • 陈宇坤,李振海,邵永新,王志胜,高武平,杨绪连. 2008. 天津地区第四纪年代地层剖面研究[J]. 地震地质,30(2):383–399. doi: 10.3969/j.issn.0253-4967.2008.02.005
    Chen Y K,Li Z H,Shao Y X,Wang Z S,Gao W P,Yang X L. 2008. Study on the Quaternary chronostratigraphic section in Tianjin area[J]. Seismology and Geology,30(2):383–399 (in Chinese).
    陈宇坤, 赵国敏, 闫成国, 李振海, 杨菲, 杨绪连, 王志胜, 刘芳, 刘红艳, 任峰, 纪静, 张春丽, 杨港生, 李文栋. 2013. 天津市活动断层探测与地震危险性评价[M]. 北京: 科学出版社: 171–175.
    Chen Y K, Zhao G M, Yan C G, Li Z H, Yang F, Yang X L, Wang Z S, Liu F, Liu H Y, Ren F, Ji J, Zhang C L, Yang G S, Li W D. 2013. Detection on Active Faults and Assessment on Seismic Risk in Tianjin[M]. Beijing: Science Press: 171–175 (in Chinese).
    凡友华,刘雪峰,陈晓非,刘家琦. 2009. 瑞雷波勘探的f-k域能量最大模方法[J]. 哈尔滨工业大学学报,41(1):105–107. doi: 10.3321/j.issn:0367-6234.2009.01.024
    Fan Y H,Liu X F,Chen X F,Liu J Q. 2009. Max-mode method of Rayleigh wave prospecting in frequency-wavenumber domain[J]. Journal of Harbin Institute of Technology,41(1):105–107 (in Chinese).
    李建平. 2018. 浅层地震反射资料的多阶振型面波反演[J]. 地震学报,40(1):24–31. doi: 10.11939/jass.20170116
    Li J P. 2018. Inversion of multi-mode surface waves extracted from the shallow seismic reflection data[J]. Acta Seismologica Sinica,40(1):24–31 (in Chinese).
    鲁来玉,张碧星,汪承灏. 2006. 基于瑞利波高阶模式反演的实验研究[J]. 地球物理学报,49(4):1082–1091. doi: 10.3321/j.issn:0001-5733.2006.04.021
    Lu L Y,Zhang B X,Wang C H. 2006. Experiment and inversion studies on Rayleigh wave considering higher modes[J]. Chinese Journal of Geophysics,49(4):1082–1091 (in Chinese).
    鲁来玉,丁志峰,何正勤. 2011. 浅层有限频率面波成像中的3D灵敏度核分析[J]. 地球物理学报,54(1):55–66. doi: 10.3969/j.issn.0001-5733.2011.01.007
    Lu L Y,Ding Z F,He Z Q. 2011. Analysis of 3D sensitivity kernels of the finite frequency surface wave tomography in shallow subsurface[J]. Chinese Journal of Geophysics,54(1):55–66 (in Chinese). doi: 10.1002/cjg2.1586
    罗银河,夏江海,刘江平,刘庆生. 2008. 基阶与高阶瑞利波联合反演研究[J]. 地球物理学报,51(1):242–249. doi: 10.3321/j.issn:0001-5733.2008.01.030
    Luo Y H,Xia J H,Liu J P,Liu Q S. 2008. Joint inversion of fundamental and higher mode Rayleigh waves[J]. Chinese Journal of Geophysics,51(1):242–249 (in Chinese).
    王辉,丁志峰. 2006. 浅层地震勘探资料处理中的速度分析参数选取[J]. 地震地质,28(4):597–603. doi: 10.3969/j.issn.0253-4967.2006.04.007
    Wang H,Ding Z F. 2006. Parameters selection for velocity analysis in shallow seismic data processing[J]. Seismology and Geology,28(4):597–603 (in Chinese).
    夏江海. 2015. 高频面波方法[M]. 武汉: 中国地质大学出版社: 85–86.
    Xia J H. 2015. High-Frequency Surface-Wave Method[M]. Wuhan: China University of Geosciences Press: 85–86 (in Chinese).
    尹晓菲,胥鸿睿,郝晓菡,孙石达,王芃. 2020. 水平层状模型中多模式瑞雷波和拉夫波相速度频散曲线的灵敏度分析[J]. 石油地球物理勘探,55(1):136–146.
    Yin X F,Xu H R,Hao X H,Sun S D,Wang P. 2020. Sensitivity analysis of multi-mode Rayleigh and Love wave phase-velocity dispersion curves in horizontal layered models[J]. Oil Geophysical Prospecting,55(1):136–146 (in Chinese).
    张碧星,鲁来玉. 2002. 层状半空间中导波的传播[J]. 声学学报,27(4):295–304. doi: 10.3321/j.issn:0371-0025.2002.04.002
    Zhang B X,Lu L Y. 2002. Propagation of guided waves in stratified half space[J]. Acta Acustica,27(4):295–304 (in Chinese).
    Alleyne D,Cawley P. 1991. A two-dimensional Fourier transform method for the measurement of propagating multimode signals[J]. J Acoust Soc Am,89(3):1159–1168. doi: 10.1121/1.400530
    Forbriger T. 2003a. Inversion of shallow-seismic wavefields:I. Wavefield transformation[J]. Geophys J Int,153(3):719–734. doi: 10.1046/j.1365-246X.2003.01929.x
    Forbriger T. 2003b. Inversion of shallow-seismic wavefields:II. Inferring subsurface properties from wavefield transforms[J]. Geophys J Int,153(3):735–752. doi: 10.1046/j.1365-246X.2003.01985.x
    Forchap E A,Schmid G. 1998. Experimental determination of Rayleigh-wave mode velocities using the method of wave number analysis[J]. Soil Dyn Earthq Eng,17(3):177–183.
    Foti S. 2000. Multistation Methods for Geotechnical Characterization Using Surface Waves[D]. Turin: Politecnico di Torino: 63–65, 109–127.
    Gabriels P,Snieder R,Nolet G. 1987. In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves[J]. Geophys Prospect,35(2):187–196. doi: 10.1111/j.1365-2478.1987.tb00812.x
    Gao L L,Xia J H,Pan Y D. 2014. Misidentification caused by leaky surface wave in high-frequency surface wave method[J]. Geophys J Int,199(3):1452–1462. doi: 10.1093/gji/ggu337
    Ikeda T,Matsuoka T,Tsuji T,Hayashi K. 2012. Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method[J]. Geophys J Int,190(1):541–552. doi: 10.1111/j.1365-246X.2012.05496.x
    Liang Q,Chen C,Zeng C,Luo Y H,Xu Y X. 2008. Inversion stability analysis of multimode Rayleigh-wave dispersion curves using low-velocity-layer models[J]. Near Surf Geophys,6(3):157–165. doi: 10.3997/1873-0604.2007040
    Lu L Y,Zhang B X. 2004. Analysis of dispersion curves of Rayleigh waves in the frequency-wavenumber domain[J]. Can Geotech J,41(4):583–598. doi: 10.1139/t04-005
    Lu L Y,Zhang B X. 2006. Inversion of Rayleigh waves using a genetic algorithm in the presence of a low-velocity layer[J]. Acoust Phys,52(6):701–712. doi: 10.1134/S106377100606011X
    Lu L Y,Wang C H,Zhang B X. 2007. Inversion of multimode Rayleigh waves in the presence of a low-velocity layer:Numerical and laboratory study[J]. Geophys J Int,168(3):1235–1246. doi: 10.1111/j.1365-246X.2006.03258.x
    Luo Y H,Xia J H,Liu J P,Liu Q S,Xu S F. 2007. Joint inversion of high-frequency surface waves with fundamental and higher modes[J]. J Appl Geophys,62(4):375–384.
    Maraschini M,Ernst F,Foti S,Socco L V. 2010. A new misfit function for multimodal inversion of surface waves[J]. Geophysics,75(4):G31–G43. doi: 10.1190/1.3436539
    Maraschini M,Foti S. 2010. A Monte Carlo multimodal inversion of surface waves[J]. Geophys J Int,182(3):1557–1566. doi: 10.1111/j.1365-246X.2010.04703.x
    Matsuzawa H,Yoshizawa K. 2019. Array-based analysis of multimode surface waves:Application to phase speed measurements and modal waveform decomposition[J]. Geophys J Int,218(1):295–312. doi: 10.1093/gji/ggz153
    Mcmechan G A,Yedlin M J. 1981. Analysis of dispersive waves by wave field transformation[J]. Geophysics,46(6):869–874. doi: 10.1190/1.1441225
    Socco L V,Foti S,Boiero D. 2010. Surface-wave analysis for building near-surface velocity models:Established approaches and new perspectives[J]. Geophysics,75(5):75A83–75A102. doi: 10.1190/1.3479491
    Tokimatsu K,Tamura S,Kojima H. 1992. Effects of multiple modes on Rayleigh wave dispersion characteristics[J]. J Geotech Eng,118(10):1529–1543. doi: 10.1061/(ASCE)0733-9410(1992)118:10(1529)
    Wang J N,Wu G X,Chen X F. 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. J Geophys Res:Solid Earth,124(4):3708–3723. doi: 10.1029/2018JB016595
    Xia J H,Miller R D,Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,64(3):659–992. doi: 10.1190/1.1444578
    Xia J H,Miller R D,Park C B,Tian G. 2003. Inversion of high frequency surface waves with fundamental and higher modes[J]. J Appl Geophys,52:45–57. doi: 10.1016/S0926-9851(02)00239-2
    Xu Y X,Xia J H,Miller R D. 2006. Quantitative estimation of minimum offset for multichannel surface-wave survey with attively exciting source[J]. J Appl Geophys,59(2):117–125. doi: 10.1016/j.jappgeo.2005.08.002
    Zhang S X,Chan L S. 2003. Possible effects of misidentified mode number on Rayleigh wave inversion[J]. J Appl Geophys,53(1):17–29. doi: 10.1016/S0926-9851(03)00014-4
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  10
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2022-06-16
  • 网络出版日期:  2023-03-15

目录

    /

    返回文章
    返回