洋脊俯冲对智利三联点南部孕震区尺度影响的动力学模拟

郭长升 孙鹏超 魏东平

郭长升,孙鹏超,魏东平. 2023. 洋脊俯冲对智利三联点南部孕震区尺度影响的动力学模拟. 地震学报,45(0):1−17 doi: 10.11939/jass.20210192
引用本文: 郭长升,孙鹏超,魏东平. 2023. 洋脊俯冲对智利三联点南部孕震区尺度影响的动力学模拟. 地震学报,45(0):1−17 doi: 10.11939/jass.20210192
Guo C S,Sun P C,Wei D P. 2023. Geodynamical simulation of the effects of ridge subduction on the scale of the seismogenic zone south of Chile Triple Junction. Acta Seismologica Sinica,45(0):1−17 doi: 10.11939/jass.20210192
Citation: Guo C S,Sun P C,Wei D P. 2023. Geodynamical simulation of the effects of ridge subduction on the scale of the seismogenic zone south of Chile Triple Junction. Acta Seismologica Sinica45(0):1−17 doi: 10.11939/jass.20210192

洋脊俯冲对智利三联点南部孕震区尺度影响的动力学模拟

doi: 10.11939/jass.20210192
基金项目: 国家自然科学基金项目(41874115)资助
详细信息
    作者简介:

    郭长升,学历,职称,研究方向,e-mail

    通讯作者:

    魏东平,博士,教授,研究方向,e-mail:dongping@ucas.ac.cn

  • 中图分类号: P315,P541

Geodynamical simulation of the effects of ridge subduction on the scale of the seismogenic zone south of Chile Triple Junction

  • 摘要: 智利三联点以北地震较多,智利三联点以南地震很少且热异常显著。为探究洋脊俯冲对由温度定义的孕震区的影响,以智利三联点区域的地质背景为基础建立二维有限元数值模型,对洋脊俯冲过程进行数值模拟,并将俯冲角度和汇聚速率等因素对孕震区的影响进行了对比。结果表明,洋脊俯冲过程中孕震区宽度减小,导致智利三联点以南的地震远少于智利三联点以北。剖面附近的观测数据与数值模拟结果的对比表明,数值模拟可以大致反映智利三联点区域板块间的孕震区宽度和地表热流特征。当俯冲汇聚量相同时,板块间的汇聚速率越大,洋脊俯冲过程中孕震区则越宽且其下边界越深,海沟附近的地表热流越高。与汇聚速率相比,俯冲角度等因素对地表热流的影响较小。俯冲角度越大,洋脊俯冲过程中孕震区越窄。当数值模型包含剪切生热时,洋脊俯冲过程中孕震区宽度大约可减小至15 km,且孕震区很浅。这可导致智利三联点以南部分区域难以发生地震,出现观测不到和达-贝尼奥夫带的现象。

     

  • 图  1  智利三联点区域构造背景

    (a)智利三联点区域1906—2021年地震分布,数据来自ISC (2021)(Bondár,Storchak,2011Storchak et al,20172020);(b)智利三联点区域热流数据分布(Lucazeau,2019

    Figure  1.  Geotectonic background of the Chile Triple Junction

    (a) Earthquake distribution in the area of CTJ from 1906 to 2021. The seismicity data are from the ISC (2021)(Bondár,Storchak,2011Storchak et al,20172020);(b) The heat flow data in the area of CTJ (Lucazeau,2019

    图  2  参考模型初始设置及边界条件

    这些参数由干橄榄岩(Hirth,Kohlstedt,2013)的位错蠕变和扩散蠕变的流变实验获得

    Figure  2.  Initial setups and boundary conditions of the reference model

    All these parameters come from the rheological experiments on dislocation creep and diffusion creep of dry olivine (Hirth,Kohlstedt,2013

    图  3  参考模型成分场(a)和黏滞系数η场的演化(b)

    图中橙色实线为等温线,最低为100 ℃,最高为1 250 ℃

    Figure  3.  Evolutions of the material field (a) and the viscosity field η (b) of the reference model

    Orange solid lines are isotherms,with a minimum of 100 ℃ and a maximum of 1 250 ℃

    图  4  不同汇聚速率模型在俯冲汇聚量相同时的成分场(a)和黏滞系数场η(b)

    Figure  4.  The material field (a) and the viscosity field η (b) of different convergence rate models when the convergence distances are the same

    图  5  不同初始俯冲角度模型在t=19.5 Ma时的成分场(a)和黏滞系数场η(b)

    Figure  5.  The material field (a) and the viscosity field η (b) of models of different initial slab dips at t=19.5 Ma

    图  6  对比模型孕震区宽度的演化

    Figure  6.  Evolution of the width of the seismogenic zone of contrast models

    图  7  海沟附近地表热流分布

    (a)剖面1各模型热流结果;(b)剖面1不同初始俯冲角度模型热流结果(汇聚速率=4.2 cm/a);(c)剖面2不同初始俯冲角度模型热流结果(汇聚速率=1.8 cm/a)

    Figure  7.  Surface heat flow in the vicinity of the trench

    (a) Heat flow result of different models of profile 1;(b) heat flow result of models of different initial slab dips of profile 1 (convergence rate=4.2 cm/a);(c) heat flow result of models of different initial slab dips of profile 2 (convergence rate=1.8 cm/a)

    图  8  剖面1(左)和剖面2(右)的P波速度扰动(Simmons et al,2010

    Figure  8.  Vertical cross sections of P wave velocity perturbations (Simmons et al,2010) along the profile 1 (left) and the profile 2 (right)

    图  9  剖面1 (a)和剖面2 (b)的地震分布及孕震区

    白色圆点为地震活动性数据。图a汇聚速率为4.2 cm/a;图b汇聚速率为1.8 cm/a

    Figure  9.  Seismogenic zones and earthquake distributions of the profile 1 (a) and the profile 2 (b)

    Seismicity data are indicated by the white dots. The convergence rate of fig. a is 4.2 cm/a and 4.2 cm/a for fig. b

    表  1  数值模型的相关参数

    Table  1.   Relevant parameters of numerical model

    物质
    名称
    厚度
    /km
    热扩散率κ
    /(m2·s−1
    比热容Cp
    /(J·kg−1·
    K−1
    密度ρ热膨胀
    系数α/K−1
    内摩擦角
    φ
    黏聚力
    C/Pa
    生热率
    A/(W·m−3
    流变
    准则a
    晶粒大小
    指数m
    前因子b/ Pa−n·m−p·s−1
    diff/disl
    应力指数n 活化能E 活化体积V
    diffdisl diffdisl diffdisl diffdisl
    地幔 to 660 9.89×10−7 750 3 300 2×10−5 20 20×106 干橄榄岩 3 2.37×10−15 6.52×10−16 1 3.5 375×103 530×103 4×10−6 13×10−6
    大陆上
    地壳
    20 1.21×10−6 750 2 800 2×10−5 20 20×106 10−6 湿石英 1 1×10−50 8.57×10−28 1 4.0 0 223×103 0 0
    大陆下
    地壳
    20 1.15×10−6 750 2 900 2×10−5 20 20×106 4×10−7 湿钙长石 1 1×10−50 7.13×10−18 1 3 0 345×103 0 0
    岩石层
    地幔
    0—87 9.87×10−7 750 3 300 2×10−5 20 20×106 干橄榄岩 3 2.37×10−15 6.52×10−16 1 3.5 375×103 530×103 4×10−6 18×10−6
    沉积层 4 1.21×10−6 750 3 000 2×10−5 5 10×106 辉长岩 1 1×10−50 1.12×10−10 1 3.4 0 497×103 0 0
    大洋
    地壳
    8 1.15×10−6 750 3 100 2×10−5 20 10×106 辉长岩 1 1×10−50 1.12×10−10 1 3.4 0 497×103 0 0
    薄弱带 1.21×10−6 750 3 300 2×10−5 0.03 1×106 辉长岩 1 1×10−50 1.12×10−10 1 3.4 0 497×103 0 0
    注:a流变准则:干橄榄岩来自Hirth和Kohlstedt (2013);湿石英来自Gleason和Tullis (1995);湿钙长石来自Rybacki (2006);辉长岩来自Wilks和Carter (1990)。b黏滞系数的前因子来自Ranalli (1995)的平面应变单轴试验结果(Naliboff,Buiter,2015)(刘梦雪等,2019).
    下载: 导出CSV

    表  2  参考模型孕震区宽度演化

    Table  2.   Evolution of the width of the seismogenic zone of the reference model

    时间/Ma闭锁区宽度/km
    x(350℃)-x(100℃)
    过渡带宽度/km
    x(450℃)-x(350℃)
    孕震区宽度/km
    x(350℃)-x(100℃) +0.5×(x(450℃) -x(350℃))
    洋脊与海沟横
    坐标差/km
    08636104−164
    3703186−60
    68934106−13
    1068449032
    1552397278
    19.5493466112
    下载: 导出CSV

    表  3  不同初始俯冲角度模型孕震区宽度演化

    Table  3.   Evolution of the width of the seismogenic zone of models of different initial slab dips

    时间/Ma孕震区宽度/km 洋脊与海沟横坐标差/km
    15°30°45° 15°30°45°
    0 111 104 66 −145 −164 −158
    3 96 86 76 −67 −60 −36
    6 85 106 74 −33 −13 8
    10 94 90 60 14 32 36
    15 90 72 51 46 78 67
    19.5 80 66 52 77 112 92
    下载: 导出CSV

    表  4  部分模型孕震区深度演化

    Table  4.   Evolution of the depth of the seismogenic zone of some models

    时间/Ma参考模型汇聚速率=6.6 cm/a俯冲角度=45°剪切生热
    孕震区上边界
    深度/km
    孕震区下边界
    深度/km
    孕震区上边界
    深度/km
    孕震区下边界
    深度/km
    孕震区上边界
    深度/km
    孕震区下边界
    深度/km
    孕震区上边界
    深度/km
    孕震区下边界
    深度/km
    0 7 47 7 47 8 39 8 43
    3 23 70 23 70 12 74 24 67
    6 14 74 18 94 7 71 11 73
    10 17 71 17 91 10 60 11 66
    15 17 69 5 51 9 51
    19.5 19 70 1 47 19 26
    下载: 导出CSV
  • 贾鸿瑞,魏东平. 2021. 智利三联点相关的板块相对运动及其地球动力学意义[J]. 地球物理学报,64(10):3567–3575. doi: 10.6038/cjg2021O0470
    Jia H R,Wei D P. 2021. Relativemotion of plates related to the Chile triple junction and geodynamic significance[J]. Chinese Journal of Geophysics,64(10):3567–3575 (in Chinese). doi: 10.6038/cjg2021O0470
    李忠海,石耀霖. 2016. 三维板块几何形态对大陆深俯冲动力学的制约[J]. 地球物理学报,59(8):2806–2817. doi: 10.6038/cjg20160808
    Li Z H,Shi Y L. 2016. Constraints of 3-D plate geometry on the dynamics of continental deep subduction[J]. Chinese Journal of Geophysics,59(8):2806–2817 (in Chinese).
    刘梦雪,魏东平,史亚男. 2019. 俯冲初始时板块分界面形状对俯冲过程的影响[J]. 地球物理学报,62(1):78–87. doi: 10.6038/cjg2019L0717
    Liu M X,Wei D P,Shi Y N. 2019. Effect of plate interface geometry on the evolution of subduction[J]. Chinese Journal of Geophysics,62(1):78–87 (in Chinese).
    史亚男,魏东平,皇甫鹏鹏,李忠海,刘梦雪. 2019. 海洋板块俯冲作用下上覆大陆岩石层减薄机制的动力学模拟[J]. 地球物理学报,62(1):63–77. doi: 10.6038/cjg2019L0785
    Shi Y N,Wei D P,Huangfu P P,Li Z H,Liu M X. 2019. Dynamics of thinning of overriding continental lithosphere induced by oceanic plate subduction:Numerical modeling[J]. Chinese Journal of Geophysics,62(1):63–77 (in Chinese).
    沈晓明,张海祥,马林. 2010. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据[J]. 大地构造与成矿学,34(2):181–195. doi: 10.3969/j.issn.1001-1552.2010.02.004
    Shen X M,Zhang H X,Ma L. 2010. Ridge subduction and the possible evidences in Chinese Altay,Xinjiang[J]. Geotectonica et Metallogenia,34(2):181–195 (in Chinese).
    王振山,魏东平. 2018. 全球板块运动三联点形成与演化规律的研究进展[J]. 地球物理学进展,33(5):1834–1843. doi: 10.6038/pg2018BB0286
    Wang Z S,Wei D P. 2018. Research progress on the formation and evolution of triple junctions of global plate motions[J]. Progress in Geophysics,33(5):1834–1843 (in Chinese).
    徐佳静,王振山,王少坡,魏东平. 2019. 智利三联点南部扩张洋脊俯冲区域岩石层热结构的数值模拟[J]. 地球物理学报,62(12):4729–4737. doi: 10.6038/cjg2019M0592
    Xu J J,Wang Z S,Wang S P,Wei D P. 2019. Numerical simulation of the lithospheric thermal structure in the subduction zone of the South Chile triple junction[J]. Chinese Journal of Geophysics,62(12):4729–4737 (in Chinese).
    张克亮,魏东平. 2011. 双地震带的影响因素探讨[J]. 地球物理学报,54(11):2838–2850. doi: 10.3969/j.issn.0001-5733.2011.11.014
    Zhang K L,Wei D P. 2011. On the influence factors of double seismic zones[J]. Chinese Journal of Geophysics,54(11):2838–2850 (in Chinese).
    Agurto-Detzel H,Andreas R,Klaus B,Miller M,Iwamori H,Priestley K. 2014. Seismicity distribution in the vicinity of the Chile Triple Junction,Aysén Region,southern Chile[J]. J. South Am. Earth Sci.,51:1–11. doi: 10.1016/j.jsames.2013.12.011
    Assumpção M,Mei F,Andrés T,Julià J. 2013. Models of crustal thickness for South America from seismic refraction,receiver functions and surface wave tomography[J]. Tectonophysics,609:82–96. doi: 10.1016/j.tecto.2012.11.014
    Bagherbandi M,Bai Y,Sjöberg L E,Tenzer R,Abrehdary M,Miranda S,Alcacer Sanchez J M. 2017. Effect of the lithospheric thermal state on the Moho interface:A case study in South America[J]. J. South Am. Earth Sci.,76:198–207. doi: 10.1016/j.jsames.2017.02.010
    Bangerth W, Dannberg J, Gassmoeller R, Heister T. 2020. ASPECT: Advanced Solver for Problems in Earth's ConvecTion, User Manual.
    Billen M I,Gurnis M. 2001. A low viscosity wedge in subduction zones[J]. Earth Planet. Sci. Lett.,193(1-2):227–236. doi: 10.1016/S0012-821X(01)00482-4
    Bohm M,Lüth S,Echtler H,Bataille K,Group I W. 2002. The Southern Andes between 36 and 40 S latitude:Seismicity and average seismic velocities[J]. Tectonophysics,356(4):275–289. doi: 10.1016/S0040-1951(02)00399-2
    Bondár I,Storchak D A. 2011. Improved location procedures at the International Seismological Centre[J]. Geophys. J. Int.,186:1220–1244. doi: 10.1111/j.1365-246X.2011.05107.x
    Bourgois J,Michaud F. 2002. Comparison between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12—10 Myr[J]. Earth Planet. Sci. Lett.,201:35–44. doi: 10.1016/S0012-821X(02)00653-2
    Breitsprecher K,Thorkelson D J. 2009. Neogene kinematic history of Nazca-Antarctic Phoenix slab windows beneath Patagonia and the Antarctic Peninsula[J]. Tectonophysics,464(1-4):10–20. doi: 10.1016/j.tecto.2008.02.013
    Contreras-Reyes E,Flueh E R,Grevemeyer I. 2010. Tectonic control on sediment accretion and subduction off south central Chile:Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes[J]. Tectonics,29:1–27.
    Eakin C M,Obrebski M,Allen R M,Boyarko D C,Brudzinski M R,Porritt R. 2010. Seismic anisotropy beneath Cascadia and the Mendocino triple junction:Interaction of the subducting slab with mantle flow[J]. Earth Planet. Sci. Lett.,297:627–632. doi: 10.1016/j.jpgl.2010.07.015
    Fraters M,Thieulot C,van den Berg A,Spakman W. 2019. The geodynamic world builder:A solution for complex initial conditions in numerical modeling[J]. Solid Earth Discussions,10.5:1785–1807.
    Gleason G C,Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J]. Tectonophysics,247(1-4):1–23. doi: 10.1016/0040-1951(95)00011-B
    Goddard A,Fosdick J C. 2019. Multichronometer thermochronologic modeling of migrating spreading ridge subduction in southern patagonia[J]. Geology,47(6):555–558. doi: 10.1130/G46091.1
    Guo C,Sun P,Wei D. 2021. Numerical simulation of the effects of wedge subduction on the lithospheric thermal structure and the seismogenic zone south of Chile Triple Junction[J]. Front. Earth Sci.,9:782458. doi: 10.3389/feart.2021.782458
    Hamza V M,Dias F,Gomes A,Terceros Z. 2005. Numerical and functional representations of regional heat flow in South America[J]. Phys. Earth Planet. Inter.,152:223–56. doi: 10.1016/j.pepi.2005.04.009
    Heister T,Dannberg J,Gassmöller R,Bangerth W. 2017. High accuracy mantle convection simulation through modern numerical methods,II:Realistic models and problems[J]. Geophys. J. Int.,210(2):833–851. doi: 10.1093/gji/ggx195
    Hirth G, Kohlstedt D. 2013. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists[C]// Geophys. Monogr. Ser. American Geophysical Union: 83–105.
    Kirby S, Engdahl E R, Denlinger R. 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs[C]// Geophys. Monogr. Ser. Washington D. C: American Geophysical Union: 195–214.
    Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R. 2006. Long-Term Signals in the Present-Day Deformation Field of the Central and Southern Andes and Constraints on the Viscosity of the Earth’s Upper Mantle[M]. Springer Berlin Heidelberg: 65–89. doi: 10.1007/978-3-540-48684-8_4.
    Kronbichler M,Heister T,Bangerth W. 2012. High Accuracy mantle convection simulation through modern numerical methods[J]. Geophys. J. Int.,191(1):12–29. doi: 10.1111/j.1365-246X.2012.05609.x
    Lagabrielle Y,Christèle G,René C M,Bourgois J,Martin H. 2000. Magmatic–tectonic effects of high thermal regime at the site of active ridge subduction:The Chile Triple Junction model[J]. Tectonophysics,326:255–268. doi: 10.1016/S0040-1951(00)00124-4
    Lange D,Rietbrock A,Haberland C,Bataille K,Dahm T,Tilmann F,Flüh E R. 2007. Seismicity and geometry of the south Chilean subduction zone (41.5°S—43.5°S):Implications for controlling parameters[J]. Geophys. Res. Lett.,34:L06311.
    Lucazeau F. 2019. Analysis and mapping of an updated terrestrial heat flow data set[J]. Geochem. Geophys. Geosyst.,20(8):4001–4024. doi: 10.1029/2019GC008389
    Maksymowicz A,Eduardo C,Ingo G,Flueh E. 2012. Structure and geodynamics of the post-collision zone between the Nazca–Antarctic spreading center and South America[J]. Earth Planet. Sci. Lett.,345-348:27–37.
    Murdie R E,Prioe D J,Styles P,Flint S S,Agar S M. 1993. Seismic response to ridge-transform subduction:Chile triple junction[J]. Geology,21:1095–1098.
    Naliboff J,Buiter S J H. 2015. Rift reactivation and migration during multiphase extension[J]. Earth Planet. Sci. Lett.,421:58–67. doi: 10.1016/j.jpgl.2015.03.050
    Oleskevich D A,Hyndman R D,Wang K. 1999. The updip and downdip limits to great subduction earthquakes:Thermal and structural models of Cascadia,south Alaska,SW Japan,and Chile[J]. J. Geophys. Res. :Solid Earth,104:14965–14991. doi: 10.1029/1999JB900060
    Ranalli G. 1995. Rheology of the Earth[M], 2nd ed. London: Chapman & Hall.
    Richards F D,Hoggard M J,Cowton L R,White N J. 2018. Reassessing the Thermal Structure of Oceanic Lithosphere With Revised Global Inventories of Basement Depths and Heat Flow Measurements[J]. J. Geophys. Res. :Solid Earth,123:9136–9161. doi: 10.1029/2018JB015998
    Rose I,Buffett B,Heister T. 2017. Stability and accuracy of free surface time integration in viscous flows[J]. Phys. Earth Planet. Inter.,262:90–100. doi: 10.1016/j.pepi.2016.11.007
    Rybacki E. 2006. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates[J]. J. Geophys. Res. :Solid Earth,200-201:1–9.
    Scherwath M, Flueh E, Grevemeyer I, Tillman F, Contreras-Reyes E, Weinrebe W. 2006. Investigating subduction zone processes in chile[C]//Eos Trans/American Geophysical Union, 87 (27), 265.
    Scherwath M,Contreras-Reyes E,Flueh E R,Grevemeyer I,Krabbenhoeft A,Papenberg C,Petersen C J,Weinrebe R W. 2009. Deep lithospheric structures along the southern central Chile margin from wide-angleP-wave modelling[J]. Geophys. J. Int.,179:579–600. doi: 10.1111/j.1365-246X.2009.04298.x
    Shi Y,Wei D,Li Z,Liu M Q,Liu M. 2018. Subduction mode selection during slab and mantle transition zone interaction:Numerical modeling[J]. Pure Appl. Geophys.,175(2):529–548. doi: 10.1007/s00024-017-1762-0,175(2):529—548
    Simmons N A,Forte A M,Boschi L,Grand S P. 2010. GyPSuM:A joint tomographic model of mantle density and seismic wave speeds[J]. J. Geophys. Res.,115:B12310. doi: 10.1029/2010JB007631
    Stein C A,Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature,359(6391):123–129. doi: 10.1038/359123a0
    Storchak D A,Harris J,Brown L,Lieser K,Shumba B,Verney R,Giacomo D D,Korger E I M. 2017. Rebuild of the Bulletin of the International Seismological Centre (ISC),part 1:1964–1979[J]. Geosci. Lett.,4:32. doi: 10.1186/s40562-017-0098-z
    Storchak D A,Harris J,Brown L,Lieser K,Shumba B,Di Giacomo D. 2020. Rebuild of the Bulletin of the International Seismological Centre (ISC),part 2:1980–2010[J]. Geosci. Lett.,7:18. doi: 10.1186/s40562-020-00164-6
    Tebbens S F,Cande S C,Kovacs L,Parra,J C,LaBrecque J L,Vergara H. 1997. The Chile ridge:A tectonic framework[J]. J. Geophys. Res. :Solid Earth,102:12035–12059. doi: 10.1029/96JB02581
    Tichelaar B W,Ruff L J. 1991. Seismic coupling along the Chilean subduction zone[J]. J. Geophys. Res.,96(B7):11997. doi: 10.1029/91JB00200
    Tetreault J L,Buiter S J H. 2012. Geodynamic models of terrane accretion:Testing the fate of island arcs,oceanic plateaus,and continental fragments in subduction zones[J]. J. Geophys. Res. :Solid Earth,117(B8):B08403.
    van der Hilst R,Hoop M. 2005. Banana-doughnut kernels and mantle tomography[J]. Geophys. J. Int.,163:956–961. doi: 10.1111/j.1365-246X.2005.02817.x
    Völker D,Ingo G,Michael S,Wang K,He J. 2011. Thermal control of the seismogenic zone of southern central Chile[J]. J. Geophys. Res.,116:1–20.
    Wei D, Seno T, 1998. Determination of the Amurian plate motion[J]. Mantle Dyn. Plate Interact. East Asia, 27: 337–346.
    Wilks K R,Carter N L. 1990. Rheology of some continental lower crustal rocks[J]. Tectonophysics,182(1-2):57–77. doi: 10.1016/0040-1951(90)90342-6
    Zhang K,Wei D. 2012. Correlation between plate age and layer separation of double seismic zones[J]. Earthquake Science,25:95–101. doi: 10.1007/s11589-012-0835-5
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  60
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-02-19
  • 网络出版日期:  2023-02-23

目录

    /

    返回文章
    返回