Geodynamical simulation of the effects of ridge subduction on the scale of the seismogenic zone south of Chile Triple Junction
-
摘要: 智利三联点以北地震较多,智利三联点以南地震很少且热异常显著。为探究洋脊俯冲对由温度定义的孕震区的影响,以智利三联点区域的地质背景为基础建立二维有限元数值模型,对洋脊俯冲过程进行数值模拟,并将俯冲角度和汇聚速率等因素对孕震区的影响进行了对比。结果表明,洋脊俯冲过程中孕震区宽度减小,导致智利三联点以南的地震远少于智利三联点以北。剖面附近的观测数据与数值模拟结果的对比表明,数值模拟可以大致反映智利三联点区域板块间的孕震区宽度和地表热流特征。当俯冲汇聚量相同时,板块间的汇聚速率越大,洋脊俯冲过程中孕震区则越宽且其下边界越深,海沟附近的地表热流越高。与汇聚速率相比,俯冲角度等因素对地表热流的影响较小。俯冲角度越大,洋脊俯冲过程中孕震区越窄。当数值模型包含剪切生热时,洋脊俯冲过程中孕震区宽度大约可减小至15 km,且孕震区很浅。这可导致智利三联点以南部分区域难以发生地震,出现观测不到和达-贝尼奥夫带的现象。Abstract: Earthquakes are much more frequent to the north of Chile Triple Junction than to the south, where the thermal anomaly is also more significant. To study the effects of ridge subduction on the thermally defined seismogenic zone, two-dimensional finite element models were established based on the geology of Chile Triple Junction, the process of ridge subduction was simulated, and the effects of the initial slab dip and the convergence rate on the seismogenic zone were compared. The results show that the width of the seismogenic zone decreases during the ridge subduction, inducing earthquakes to occur much less to the south than to the north of Chile Triple Junction. By comparing the observed data in the vicinity of the profiles with the numerical simulation results, we find that the numerical simulation can roughly reflect the width of the interplate seismogenic zone and the surface heat flow in the area of Chile Triple Junction. At the same convergence distance, a larger convergence rate comes with a wider seismogenic zone and the deeper the downdip limit of the seismogenic zone, the higher the surface heat flow in the vicinity of the trench. Compared with the convergence rate, factors such as slab dip have little effect on the surface heat flow. In the process of ridge subduction, larger the slab dips leads to narrower seismogenic zones. When the effect of shear heating is included in the simulation, the width of the seismogenic zone in the process of ridge subduction can shrink to about 15 km and the depth of the seismogenic zone is small. Such a narrow and shallow seismogenic zone makes it hard for earthquakes to occur and for the Wadati-Benioff plane to be observed in some areas south of Chile Triple Junction.
-
Key words:
- Chile Triple Junction /
- ridge subduction /
- seismogenic zone /
- numerical simulation
-
图 1 智利三联点区域构造背景
(a)智利三联点区域1906—2021年地震分布,数据来自ISC (2021)(Bondár,Storchak,2011;Storchak et al,2017;2020);(b)智利三联点区域热流数据分布(Lucazeau,2019)
Figure 1. Geotectonic background of the Chile Triple Junction
(a) Earthquake distribution in the area of CTJ from 1906 to 2021. The seismicity data are from the ISC (2021)(Bondár,Storchak,2011;Storchak et al,2017;2020);(b) The heat flow data in the area of CTJ (Lucazeau,2019)
图 2 参考模型初始设置及边界条件
这些参数由干橄榄岩(Hirth,Kohlstedt,2013)的位错蠕变和扩散蠕变的流变实验获得
Figure 2. Initial setups and boundary conditions of the reference model
All these parameters come from the rheological experiments on dislocation creep and diffusion creep of dry olivine (Hirth,Kohlstedt,2013)
图 7 海沟附近地表热流分布
(a)剖面1各模型热流结果;(b)剖面1不同初始俯冲角度模型热流结果(汇聚速率=4.2 cm/a);(c)剖面2不同初始俯冲角度模型热流结果(汇聚速率=1.8 cm/a)
Figure 7. Surface heat flow in the vicinity of the trench
(a) Heat flow result of different models of profile 1;(b) heat flow result of models of different initial slab dips of profile 1 (convergence rate=4.2 cm/a);(c) heat flow result of models of different initial slab dips of profile 2 (convergence rate=1.8 cm/a)
图 8 剖面1(左)和剖面2(右)的P波速度扰动(Simmons et al,2010)
Figure 8. Vertical cross sections of P wave velocity perturbations (Simmons et al,2010) along the profile 1 (left) and the profile 2 (right)
表 1 数值模型的相关参数
Table 1. Relevant parameters of numerical model
物质
名称厚度
/km热扩散率κ
/(m2·s−1)比热容Cp
/(J·kg−1·
K−1)密度ρ 热膨胀
系数α/K−1内摩擦角
φ/°黏聚力
C/Pa生热率
A/(W·m−3)流变
准则a晶粒大小
指数m前因子b/ Pa−n·m−p·s−1
diff/disl应力指数n 活化能E 活化体积V diff disl diff disl diff disl diff disl 地幔 to 660 9.89×10−7 750 3 300 2×10−5 20 20×106 — 干橄榄岩 3 2.37×10−15 6.52×10−16 1 3.5 375×103 530×103 4×10−6 13×10−6 大陆上
地壳20 1.21×10−6 750 2 800 2×10−5 20 20×106 10−6 湿石英 1 1×10−50 8.57×10−28 1 4.0 0 223×103 0 0 大陆下
地壳20 1.15×10−6 750 2 900 2×10−5 20 20×106 4×10−7 湿钙长石 1 1×10−50 7.13×10−18 1 3 0 345×103 0 0 岩石层
地幔0—87 9.87×10−7 750 3 300 2×10−5 20 20×106 — 干橄榄岩 3 2.37×10−15 6.52×10−16 1 3.5 375×103 530×103 4×10−6 18×10−6 沉积层 4 1.21×10−6 750 3 000 2×10−5 5 10×106 — 辉长岩 1 1×10−50 1.12×10−10 1 3.4 0 497×103 0 0 大洋
地壳8 1.15×10−6 750 3 100 2×10−5 20 10×106 — 辉长岩 1 1×10−50 1.12×10−10 1 3.4 0 497×103 0 0 薄弱带 1.21×10−6 750 3 300 2×10−5 0.03 1×106 — 辉长岩 1 1×10−50 1.12×10−10 1 3.4 0 497×103 0 0 注:a流变准则:干橄榄岩来自Hirth和Kohlstedt (2013);湿石英来自Gleason和Tullis (1995);湿钙长石来自Rybacki (2006);辉长岩来自Wilks和Carter (1990)。b黏滞系数的前因子来自Ranalli (1995)的平面应变单轴试验结果(Naliboff,Buiter,2015)(刘梦雪等,2019). 表 2 参考模型孕震区宽度演化
Table 2. Evolution of the width of the seismogenic zone of the reference model
时间/Ma 闭锁区宽度/km
x(350℃)-x(100℃)过渡带宽度/km
x(450℃)-x(350℃)孕震区宽度/km
x(350℃)-x(100℃) +0.5×(x(450℃) -x(350℃))洋脊与海沟横
坐标差/km0 86 36 104 −164 3 70 31 86 −60 6 89 34 106 −13 10 68 44 90 32 15 52 39 72 78 19.5 49 34 66 112 表 3 不同初始俯冲角度模型孕震区宽度演化
Table 3. Evolution of the width of the seismogenic zone of models of different initial slab dips
时间/Ma 孕震区宽度/km 洋脊与海沟横坐标差/km 15° 30° 45° 15° 30° 45° 0 111 104 66 −145 −164 −158 3 96 86 76 −67 −60 −36 6 85 106 74 −33 −13 8 10 94 90 60 14 32 36 15 90 72 51 46 78 67 19.5 80 66 52 77 112 92 表 4 部分模型孕震区深度演化
Table 4. Evolution of the depth of the seismogenic zone of some models
时间/Ma 参考模型 汇聚速率=6.6 cm/a 俯冲角度=45° 剪切生热 孕震区上边界
深度/km孕震区下边界
深度/km孕震区上边界
深度/km孕震区下边界
深度/km孕震区上边界
深度/km孕震区下边界
深度/km孕震区上边界
深度/km孕震区下边界
深度/km0 7 47 7 47 8 39 8 43 3 23 70 23 70 12 74 24 67 6 14 74 18 94 7 71 11 73 10 17 71 17 91 10 60 11 66 15 17 69 − − 5 51 9 51 19.5 19 70 − − 1 47 19 26 -
贾鸿瑞,魏东平. 2021. 智利三联点相关的板块相对运动及其地球动力学意义[J]. 地球物理学报,64(10):3567–3575. doi: 10.6038/cjg2021O0470 Jia H R,Wei D P. 2021. Relativemotion of plates related to the Chile triple junction and geodynamic significance[J]. Chinese Journal of Geophysics,64(10):3567–3575 (in Chinese). doi: 10.6038/cjg2021O0470 李忠海,石耀霖. 2016. 三维板块几何形态对大陆深俯冲动力学的制约[J]. 地球物理学报,59(8):2806–2817. doi: 10.6038/cjg20160808 Li Z H,Shi Y L. 2016. Constraints of 3-D plate geometry on the dynamics of continental deep subduction[J]. Chinese Journal of Geophysics,59(8):2806–2817 (in Chinese). 刘梦雪,魏东平,史亚男. 2019. 俯冲初始时板块分界面形状对俯冲过程的影响[J]. 地球物理学报,62(1):78–87. doi: 10.6038/cjg2019L0717 Liu M X,Wei D P,Shi Y N. 2019. Effect of plate interface geometry on the evolution of subduction[J]. Chinese Journal of Geophysics,62(1):78–87 (in Chinese). 史亚男,魏东平,皇甫鹏鹏,李忠海,刘梦雪. 2019. 海洋板块俯冲作用下上覆大陆岩石层减薄机制的动力学模拟[J]. 地球物理学报,62(1):63–77. doi: 10.6038/cjg2019L0785 Shi Y N,Wei D P,Huangfu P P,Li Z H,Liu M X. 2019. Dynamics of thinning of overriding continental lithosphere induced by oceanic plate subduction:Numerical modeling[J]. Chinese Journal of Geophysics,62(1):63–77 (in Chinese). 沈晓明,张海祥,马林. 2010. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据[J]. 大地构造与成矿学,34(2):181–195. doi: 10.3969/j.issn.1001-1552.2010.02.004 Shen X M,Zhang H X,Ma L. 2010. Ridge subduction and the possible evidences in Chinese Altay,Xinjiang[J]. Geotectonica et Metallogenia,34(2):181–195 (in Chinese). 王振山,魏东平. 2018. 全球板块运动三联点形成与演化规律的研究进展[J]. 地球物理学进展,33(5):1834–1843. doi: 10.6038/pg2018BB0286 Wang Z S,Wei D P. 2018. Research progress on the formation and evolution of triple junctions of global plate motions[J]. Progress in Geophysics,33(5):1834–1843 (in Chinese). 徐佳静,王振山,王少坡,魏东平. 2019. 智利三联点南部扩张洋脊俯冲区域岩石层热结构的数值模拟[J]. 地球物理学报,62(12):4729–4737. doi: 10.6038/cjg2019M0592 Xu J J,Wang Z S,Wang S P,Wei D P. 2019. Numerical simulation of the lithospheric thermal structure in the subduction zone of the South Chile triple junction[J]. Chinese Journal of Geophysics,62(12):4729–4737 (in Chinese). 张克亮,魏东平. 2011. 双地震带的影响因素探讨[J]. 地球物理学报,54(11):2838–2850. doi: 10.3969/j.issn.0001-5733.2011.11.014 Zhang K L,Wei D P. 2011. On the influence factors of double seismic zones[J]. Chinese Journal of Geophysics,54(11):2838–2850 (in Chinese). Agurto-Detzel H,Andreas R,Klaus B,Miller M,Iwamori H,Priestley K. 2014. Seismicity distribution in the vicinity of the Chile Triple Junction,Aysén Region,southern Chile[J]. J. South Am. Earth Sci.,51:1–11. doi: 10.1016/j.jsames.2013.12.011 Assumpção M,Mei F,Andrés T,Julià J. 2013. Models of crustal thickness for South America from seismic refraction,receiver functions and surface wave tomography[J]. Tectonophysics,609:82–96. doi: 10.1016/j.tecto.2012.11.014 Bagherbandi M,Bai Y,Sjöberg L E,Tenzer R,Abrehdary M,Miranda S,Alcacer Sanchez J M. 2017. Effect of the lithospheric thermal state on the Moho interface:A case study in South America[J]. J. South Am. Earth Sci.,76:198–207. doi: 10.1016/j.jsames.2017.02.010 Bangerth W, Dannberg J, Gassmoeller R, Heister T. 2020. ASPECT: Advanced Solver for Problems in Earth's ConvecTion, User Manual. Billen M I,Gurnis M. 2001. A low viscosity wedge in subduction zones[J]. Earth Planet. Sci. Lett.,193(1-2):227–236. doi: 10.1016/S0012-821X(01)00482-4 Bohm M,Lüth S,Echtler H,Bataille K,Group I W. 2002. The Southern Andes between 36 and 40 S latitude:Seismicity and average seismic velocities[J]. Tectonophysics,356(4):275–289. doi: 10.1016/S0040-1951(02)00399-2 Bondár I,Storchak D A. 2011. Improved location procedures at the International Seismological Centre[J]. Geophys. J. Int.,186:1220–1244. doi: 10.1111/j.1365-246X.2011.05107.x Bourgois J,Michaud F. 2002. Comparison between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12—10 Myr[J]. Earth Planet. Sci. Lett.,201:35–44. doi: 10.1016/S0012-821X(02)00653-2 Breitsprecher K,Thorkelson D J. 2009. Neogene kinematic history of Nazca-Antarctic Phoenix slab windows beneath Patagonia and the Antarctic Peninsula[J]. Tectonophysics,464(1-4):10–20. doi: 10.1016/j.tecto.2008.02.013 Contreras-Reyes E,Flueh E R,Grevemeyer I. 2010. Tectonic control on sediment accretion and subduction off south central Chile:Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes[J]. Tectonics,29:1–27. Eakin C M,Obrebski M,Allen R M,Boyarko D C,Brudzinski M R,Porritt R. 2010. Seismic anisotropy beneath Cascadia and the Mendocino triple junction:Interaction of the subducting slab with mantle flow[J]. Earth Planet. Sci. Lett.,297:627–632. doi: 10.1016/j.jpgl.2010.07.015 Fraters M,Thieulot C,van den Berg A,Spakman W. 2019. The geodynamic world builder:A solution for complex initial conditions in numerical modeling[J]. Solid Earth Discussions,10.5:1785–1807. Gleason G C,Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J]. Tectonophysics,247(1-4):1–23. doi: 10.1016/0040-1951(95)00011-B Goddard A,Fosdick J C. 2019. Multichronometer thermochronologic modeling of migrating spreading ridge subduction in southern patagonia[J]. Geology,47(6):555–558. doi: 10.1130/G46091.1 Guo C,Sun P,Wei D. 2021. Numerical simulation of the effects of wedge subduction on the lithospheric thermal structure and the seismogenic zone south of Chile Triple Junction[J]. Front. Earth Sci.,9:782458. doi: 10.3389/feart.2021.782458 Hamza V M,Dias F,Gomes A,Terceros Z. 2005. Numerical and functional representations of regional heat flow in South America[J]. Phys. Earth Planet. Inter.,152:223–56. doi: 10.1016/j.pepi.2005.04.009 Heister T,Dannberg J,Gassmöller R,Bangerth W. 2017. High accuracy mantle convection simulation through modern numerical methods,II:Realistic models and problems[J]. Geophys. J. Int.,210(2):833–851. doi: 10.1093/gji/ggx195 Hirth G, Kohlstedt D. 2013. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists[C]// Geophys. Monogr. Ser. American Geophysical Union: 83–105. Kirby S, Engdahl E R, Denlinger R. 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs[C]// Geophys. Monogr. Ser. Washington D. C: American Geophysical Union: 195–214. Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R. 2006. Long-Term Signals in the Present-Day Deformation Field of the Central and Southern Andes and Constraints on the Viscosity of the Earth’s Upper Mantle[M]. Springer Berlin Heidelberg: 65–89. doi: 10.1007/978-3-540-48684-8_4. Kronbichler M,Heister T,Bangerth W. 2012. High Accuracy mantle convection simulation through modern numerical methods[J]. Geophys. J. Int.,191(1):12–29. doi: 10.1111/j.1365-246X.2012.05609.x Lagabrielle Y,Christèle G,René C M,Bourgois J,Martin H. 2000. Magmatic–tectonic effects of high thermal regime at the site of active ridge subduction:The Chile Triple Junction model[J]. Tectonophysics,326:255–268. doi: 10.1016/S0040-1951(00)00124-4 Lange D,Rietbrock A,Haberland C,Bataille K,Dahm T,Tilmann F,Flüh E R. 2007. Seismicity and geometry of the south Chilean subduction zone (41.5°S—43.5°S):Implications for controlling parameters[J]. Geophys. Res. Lett.,34:L06311. Lucazeau F. 2019. Analysis and mapping of an updated terrestrial heat flow data set[J]. Geochem. Geophys. Geosyst.,20(8):4001–4024. doi: 10.1029/2019GC008389 Maksymowicz A,Eduardo C,Ingo G,Flueh E. 2012. Structure and geodynamics of the post-collision zone between the Nazca–Antarctic spreading center and South America[J]. Earth Planet. Sci. Lett.,345-348:27–37. Murdie R E,Prioe D J,Styles P,Flint S S,Agar S M. 1993. Seismic response to ridge-transform subduction:Chile triple junction[J]. Geology,21:1095–1098. Naliboff J,Buiter S J H. 2015. Rift reactivation and migration during multiphase extension[J]. Earth Planet. Sci. Lett.,421:58–67. doi: 10.1016/j.jpgl.2015.03.050 Oleskevich D A,Hyndman R D,Wang K. 1999. The updip and downdip limits to great subduction earthquakes:Thermal and structural models of Cascadia,south Alaska,SW Japan,and Chile[J]. J. Geophys. Res. :Solid Earth,104:14965–14991. doi: 10.1029/1999JB900060 Ranalli G. 1995. Rheology of the Earth[M], 2nd ed. London: Chapman & Hall. Richards F D,Hoggard M J,Cowton L R,White N J. 2018. Reassessing the Thermal Structure of Oceanic Lithosphere With Revised Global Inventories of Basement Depths and Heat Flow Measurements[J]. J. Geophys. Res. :Solid Earth,123:9136–9161. doi: 10.1029/2018JB015998 Rose I,Buffett B,Heister T. 2017. Stability and accuracy of free surface time integration in viscous flows[J]. Phys. Earth Planet. Inter.,262:90–100. doi: 10.1016/j.pepi.2016.11.007 Rybacki E. 2006. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates[J]. J. Geophys. Res. :Solid Earth,200-201:1–9. Scherwath M, Flueh E, Grevemeyer I, Tillman F, Contreras-Reyes E, Weinrebe W. 2006. Investigating subduction zone processes in chile[C]//Eos Trans/American Geophysical Union, 87 (27), 265. Scherwath M,Contreras-Reyes E,Flueh E R,Grevemeyer I,Krabbenhoeft A,Papenberg C,Petersen C J,Weinrebe R W. 2009. Deep lithospheric structures along the southern central Chile margin from wide-angleP-wave modelling[J]. Geophys. J. Int.,179:579–600. doi: 10.1111/j.1365-246X.2009.04298.x Shi Y,Wei D,Li Z,Liu M Q,Liu M. 2018. Subduction mode selection during slab and mantle transition zone interaction:Numerical modeling[J]. Pure Appl. Geophys.,175(2):529–548. doi: 10.1007/s00024-017-1762-0,175(2):529—548 Simmons N A,Forte A M,Boschi L,Grand S P. 2010. GyPSuM:A joint tomographic model of mantle density and seismic wave speeds[J]. J. Geophys. Res.,115:B12310. doi: 10.1029/2010JB007631 Stein C A,Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature,359(6391):123–129. doi: 10.1038/359123a0 Storchak D A,Harris J,Brown L,Lieser K,Shumba B,Verney R,Giacomo D D,Korger E I M. 2017. Rebuild of the Bulletin of the International Seismological Centre (ISC),part 1:1964–1979[J]. Geosci. Lett.,4:32. doi: 10.1186/s40562-017-0098-z Storchak D A,Harris J,Brown L,Lieser K,Shumba B,Di Giacomo D. 2020. Rebuild of the Bulletin of the International Seismological Centre (ISC),part 2:1980–2010[J]. Geosci. Lett.,7:18. doi: 10.1186/s40562-020-00164-6 Tebbens S F,Cande S C,Kovacs L,Parra,J C,LaBrecque J L,Vergara H. 1997. The Chile ridge:A tectonic framework[J]. J. Geophys. Res. :Solid Earth,102:12035–12059. doi: 10.1029/96JB02581 Tichelaar B W,Ruff L J. 1991. Seismic coupling along the Chilean subduction zone[J]. J. Geophys. Res.,96(B7):11997. doi: 10.1029/91JB00200 Tetreault J L,Buiter S J H. 2012. Geodynamic models of terrane accretion:Testing the fate of island arcs,oceanic plateaus,and continental fragments in subduction zones[J]. J. Geophys. Res. :Solid Earth,117(B8):B08403. van der Hilst R,Hoop M. 2005. Banana-doughnut kernels and mantle tomography[J]. Geophys. J. Int.,163:956–961. doi: 10.1111/j.1365-246X.2005.02817.x Völker D,Ingo G,Michael S,Wang K,He J. 2011. Thermal control of the seismogenic zone of southern central Chile[J]. J. Geophys. Res.,116:1–20. Wei D, Seno T, 1998. Determination of the Amurian plate motion[J]. Mantle Dyn. Plate Interact. East Asia, 27: 337–346. Wilks K R,Carter N L. 1990. Rheology of some continental lower crustal rocks[J]. Tectonophysics,182(1-2):57–77. doi: 10.1016/0040-1951(90)90342-6 Zhang K,Wei D. 2012. Correlation between plate age and layer separation of double seismic zones[J]. Earthquake Science,25:95–101. doi: 10.1007/s11589-012-0835-5 -