三峡库区秭归段浅层速度结构和孕震环境

胡锦涛 谢军 危自根 金超

胡锦涛,谢军,危自根,金超. 2022. 三峡库区秭归段浅层速度结构和孕震环境. 地震学报,44():1−12 doi: 10.11939/jass.20210194
引用本文: 胡锦涛,谢军,危自根,金超. 2022. 三峡库区秭归段浅层速度结构和孕震环境. 地震学报,44():1−12 doi: 10.11939/jass.20210194
Hu J T,Xie J,Wei Z G,Jin C. 2022. Shallow velocity structure and seismogenic environment in the Zigui section of the Three Gorges Reservoir region of China. Acta Seismologica Sinica,44():1−12 doi: 10.11939/jass.20210194
Citation: Hu J T,Xie J,Wei Z G,Jin C. 2022. Shallow velocity structure and seismogenic environment in the Zigui section of the Three Gorges Reservoir region of China. Acta Seismologica Sinica44():1−12 doi: 10.11939/jass.20210194

三峡库区秭归段浅层速度结构和孕震环境

doi: 10.11939/jass.20210194
基金项目: 自然资源部深地动力学重点实验室开发研究课题(J1901-16)、国家自然科学基金(U20A2095)和国家重大研究计划专项基金(92162105)联合资助
详细信息
    作者简介:

    胡锦涛,在读硕士研究生,主要从事地震学研究,e-mail: 1298985349@qq.com

    通讯作者:

    金超,博士,副教授,从事沉积地质学、地质灾害防治与评价,e-mail:349680286@qq.com

  • 中图分类号: P315.2

Shallow velocity structure and seismogenic environment in the Zigui section of the Three Gorges Reservoir region of China

  • 摘要: 收集了湖北省秭归地区24个流动地震台站2020年6—7月期间的垂直分量连续波形记录,利用背景噪声互相关得到了各台站之间的经验格林函数,提取了0.6—5 s的瑞雷波群速度频散曲线,并反演获得了该区域近地表6 km以内的三维S波速度模型。结果显示:秭归盆地及其南部邻区S波速度明显低于东侧断裂区S波速度,与研究区不同构造地块的构造演化和沉积特征一致;2014年MS4.2地震发生在研究区垂向高低速交界区;断裂区在长江区域附近S波速度明显降低,表明长江水渗透到断层区,因此秭归地区地震频发与三峡库水荷载和水渗透作用有关。

     

  • 图  1  2009—2021年期间地震和本文所用地震台站的分布

    红色六角表示近些年研究区域所发生的MS>4.0地震位置,蓝色圆点代表2009—2021年间该区域发生的ML<4.0中小地震位置(郑秀芬等,2009);黑色三角代表台站位置;天蓝色实线代表长江;Ⅰ. 秭归盆地;Ⅱ. 黄陵背斜(盆地和背斜区域划分参考李小勇等,2014

    Figure  1.  Distribution of earthquakes in the period of 2009−2021 and seismic stations used in the study

    The red hexagonal stars indicate the location of Ms>4.0 earthquakes in the study area in recent years,blue dots represent the location of ML<4.0 small and moderate earthquakes in the region from 2009 to 2021 (Zheng et al,2009);black triangles represent the stations used in this study,and red dotted line represents Xiannvshan and Jiuwanxi fault zones;Ⅰ. Zigui basin,Ⅱ. Huangling anticline (Basin and anticline regional division refer to Li et al, 2014

    图  2  截取长度不同时的信噪比变化对比图

    实线表示数据有50%的重叠,虚线表示没有重叠。不同颜色的曲线代表不同周期

    Figure  2.  Comparison of SNR variation with different interception lengths

    Solid lines represent 50% overlapping, while dashed lines represent no overlapping. Colors denote different period (1−5 s)

    图  3  (a) 台站对互相关函数;(b) 进行正反向反序求平均后的互相关函数

    Figure  3.  (a) Noise cross-correlation function (NCFs) for all stations pairs;(b) NCFs after averaged over positive and negative lag

    图  4  (a) S04-S21台站对叠加模型预测的瑞雷波群速度色散和模态谱振幅,图中黑色小方块为频散点,红色区域为最大振幅区域;(b)所有台站对的群速度频散曲线,红色虚线表示平均值

    Figure  4.  (a) Rayleigh wave group velocity dispersion and modal spectrum amplitude predicted by the superposition model for the station-pair S04-S21. The small black square is the dispersion point,and the red area is the maximum amplitude area;(b) Group velocity dispersion curves for all station-pairs where the red dotted line represents the mean value

    图  5  各周期射线路径数目

    Figure  5.  Number of ray paths for each period

    图  6  不同周期下的检测板测试恢复结果和射线覆盖

    Figure  6.  Checkerboard test results and ray coverage with different periods

    图  7  周期为1.2 s时基阶瑞雷波初始残差与反演模型走时残差直方图

    Figure  7.  Histogram of initial (gray) and inversion (red) travel time residuals of base order Rayleigh wave with period of 1.2 s

    图  8  不同周期T的群速度图像

    多边形区域表示可信度较高的反演区域;Ⅰ为秭归盆地,Ⅱ为黄陵背斜;紫色星形为典型地震位置,黑色三角形为台站位置,红色虚线为断层,F1:九畹溪断裂;F2:仙女山断裂

    Figure  8.  Group velocity images of different periods T

    Polygonal regions represent inversion regions with high reliability;regions Ⅰ is Zigui basin and Ⅱ is Huangling anticline;the purple star is the typical earthquake location,the black triangles is the station,and the red dashed line is fault,F1:Jiuwanxi fault;F2:Xiannüshan fault

    图  9  S波反演模型及其频散曲线的拟合图

    绿线为最终模型,蓝线为初始模型; 红线为最终模型正演计算的理论频散,黑色三角为测量频散点(a) 无高低速异常的S波速度结构;(b) 含低速异常S波速度结构;(c) 含高速异常S波速度结构

    Figure  9.  S-wave inversion model and its dispersion curve fitting diagram

    The green line is the final model and the blue line is the initial model;the red line is the theoretical dispersion calculated by the forward modeling of the final model,and the black triangle is the measured dispersion point. (a) S-wave velocity structure without low and high velocity anomalies;(b) S-wave velocity structure with low velocity anomalies;(c) S-wave velocity structure with high velocity anomalies

    图  10  秭归地区三维S波速度结构

    (a—f) 不同深度的S波速度,紫色星形为典型地震位置,红色虚线代表断裂,F1:九畹溪断裂;F2:仙女山断裂;黑色实线为AA′、BB′以及CC′剖面位置;(g—i) AA′,BB′以及CC′剖面0—6 km深度的S波速度结构,菱形方块为地震位置

    Figure  10.  Maps of S-wave velocities at different depths in Zigui area

    (a−f) S-wave velocities at different depths. The purple stars is the typical earthquake location,and the red dotted line represents fault,F1:Jiuwanxi fault;F2:Xiannüshan fault. The black solid lines indicate the location of the sections AA′,BB′and CC′’;(g−i) S-wave velocity structure at the depth of 0−6 km along the sections AA′,BB′ and CC′ respectively,and the diamond is the seismic location

  • [1] 车用太,陈俊华,张莉芬,鱼金子,刘成龙,张卫华. 2009. 长江三峡工程库首区胡家坪MS4.1水库诱发地震研究[J]. 地震,29(4):1–13.
    [2] Che Y T,Chen J H,Zhang L F,Yu J Z,Liu C L,Zhang W H. 2009. Study of the reservoir-induced Hujiaping MS4.1 earthquake in the Three Gorges Dam area[J]. Earthquake,29(4):1–13 (in Chinese).
    [3] 陈俊华,王秋良,廖武林,李井冈,张丽芬. 2016. 仙女山断裂北端微震群事件震源机制解研究[J]. 大地测量与地球动力学,36(增刊1):109–112.
    [4] Chen J H,Wang Q L,Liao W L,Li J G,Zhang L F. 2016. Focal mechanism solutions research of microquake swarm in the northern end of the Xiannushan fault zone[J]. Journal of Geodesy and Geodynamics,36(S1):109–112 (in Chinese).
    [5] 李安然, 曾心传, 严尊国. 1996. 峡东工程地震[M]. 北京: 地震出版社: 128–135.
    [6] Li A R, Zeng X C, Yan Z G. 1996. Engineering Earthquakes in the Eastern Yangtze Gorges Area[M]. Beijing: Seismological Press: 128–135 (in Chinese).
    [7] 李强,赵旭,蔡晋安,刘瑞丰. 2011. 三峡水库坝址及邻区中上地壳S波速度结构[J]. 地震学报,33(1):39–50. doi: 10.3969/j.issn.0253-3782.2011.01.004
    [8] Li Q,Zhao X,Cai J A,Liu R F. 2011. S-wave velocity structure of upper and middle crust beneath the Three Gorges reservoir dam and adjacent region[J]. Acta Seismologica Sinica,33(1):39–50 (in Chinese).
    [9] 李强,赵旭,蔡晋安,刘瑞丰,龙桂华,安艳茹. 2009. 三峡水库坝址及邻区中上地壳P波速度结构[J]. 中国科学:D辑,39(4):427–436.
    [10] Li Q,Zhao X,Cai J A,Liu R F,Long G H,An Y R. 2009. P wave velocity structure of upper and middle crust beneath the Three Gorges reservoir dam and adjacent region[J]. Science in China:Series D,52(4):567–578. doi: 10.1007/s11430-009-0047-6
    [11] 李小勇,朱培民,周强,彭松柏,刘江平,刘娇. 2014. 三峡库区上地壳横波速度结构[J]. 地球科学(中国地质大学学报),39(12):1842–1850.
    [12] Li X Y,Zhu P M,Zhou Q,Peng S B,Liu J P,Liu J. 2014. S-wave velocity structure of upper Crust in Three Gorges reservoir region of the Yangtze River[J]. Earth Science (Journal of China University of Geosciences) ,39(12):1842–1850 (in Chinese). doi: 10.3799/dqkx.2014.167
    [13] 廖武林,姚运生,丁志峰,张丽芬. 2007. 三峡地区P波速度层析成像研究[J]. 大地测量与地球动力学,27(3):80–84.
    [14] Liao W L,Yao Y S,Ding Z F,Zhang L F. 2007. Tomographic imagery of P wave velocity structure in Three Gorges Region[J]. Journal of Geodesy and Geodynamics,27(3):80–84 (in Chinese).
    [15] 马文涛,徐长朋,李海鸥,苑京立,徐锡伟,张新东,张兰凤. 2010. 长江三峡水库诱发地震加密观测及地震成因初步分析[J]. 地震地质,32(4):552–563. doi: 10.3969/j.issn.0253-4967.2010.04.003
    [16] Ma W T,Xu C P,Li H O,Yuan J L,Xu X W,Zhang X D,Zhang L F. 2010. Intensive observation of reservoir-induced earthquake and preliminary analysis on the causes of earthquakes in three gorges reservoir[J]. Seismology and Geology,32(4):552–563 (in Chinese).
    [17] 孟庆筱. 2012. 设定地震作用下三峡库区黄土坡滑坡稳定性分析[D]. 武汉: 中国地震局地震研究所: 17–18.
    [18] Meng Q X. 2012. Stability Analysis of Huangtupo Landslide in Three Gorges Reservoir Area under the Action of Scenario Earthquake[D]. Wuhan: Institute of seismology, China Earthquake Administration: 17–18 (in Chinese).
    [19] 宋庆伟,颜丹平,焦守涛,吴钪,董周宾. 2014. 大巴山与雪峰山逆冲构造带J3-K1复合过程的响应:鄂西秭归褶皱带构造样式与形成机制[J]. 地质学报,88(8):1382–1400.
    [20] Song Q W,Yan D P,Jiao S T,Wu K,Dong Z B. 2014. The response of compounding process of Dabashan and Xuefengshan Thrust Belt in J3-K1:The structural styles and formation mechanism of the Zigui Fold Belt,Western Hubei[J]. Acta Geologica Sinica,88(8):1382–1400 (in Chinese).
    [21] 王琼,高原. 2014. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学(地球科学),44(11):2440–2450.
    [22] Wang Q,Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences,57(10):2532–2542. doi: 10.1007/s11430-014-4908-2
    [23] 王秋良,张丽芬,廖武林,李井冈,申学林. 2013. 三峡库首区断裂构造与地震活动特征[J]. 大地测量与地球动力学,33(5):29–33.
    [24] Wang Q L,Zhang L F,Liao W L,Li J G,Shen X L. 2013. Fault tectonics and seismic activity characteristics of three gorges reservoir[J]. Journal of Geodesy and Geodynamics,33(5):29–33 (in Chinese).
    [25] 王秋良,张丽芬,廖武林,李井冈. 2016. 2014年3月湖北省秭归县M4.2、M4.5地震成因分析[J]. 地震地质,38(1):121–130. doi: 10.3969/j.issn.0253-4967.2016.01.009
    [26] Wang Q L,Zhang L F,Liao W L,Li J G. 2016. Research on genesis of M4.2 and M4.5 earthquake sequences in march 2014 in Zigui County,Hubei Province[J]. Seismology and Geology,38(1):121–130 (in Chinese).
    [27] 王泽,吴云龙,张毅,姚运生. 2020. 巴东-秭归地区地壳密度反演及其构造特征[J]. 武汉大学学报(信息科学版),45(11):1763–1770.
    [28] Wang Z,Wu Y L,Zhang Y,Yao Y S. 2020. Crustal density inversion and its tectonic structure in Badong-Zigui area[J]. Geomatics and Information Science of Wuhan University,45(11):1763–1770 (in Chinese).
    [29] 吴海波,申学林,杜承宸,陈俊华,王杰. 2015. 2014秭归4.5、4.7级地震前小震活动特征研究[J]. 大地测量与地球动力学,35(5):751–757.
    [30] Wu H B,Shen X L,Du C C,Chen J H,Wang J. 2015. Study of small earthquakes activity characteristics before the Zigui 4.5,4.7 earthquake in 2004[J]. Journal of Geodesy and Geodynamics,35(5):751–757 (in Chinese).
    [31] 吴海波,申学林,王杰,赵凌云,陈俊华. 2018. 三峡库区上地壳三维速度结构的双差层析成像研究[J]. 地球物理学报,61(7):2802–2814. doi: 10.6038/cjg2018L0345
    [32] Wu H B,Shen X L,Wang J,Zhao L Y,Chen J H. 2018. Three-dimensional velocity structure of upper crust in the Three Gorges Reservoir area derived from double-difference tomography[J]. Chinese Journal of Geophysics,61(7):2802–2814 (in Chinese).
    [33] 夏金梧. 2020. 三峡工程水库诱发地震研究概况[J]. 水利水电快报,41(1):28–35.
    [34] Xia J W. 2020. Overview of reservoir induced earthquake research on Three Gorges Project[J]. Express Water Resources &Hydropower Information,41(1):28–35 (in Chinese).
    [35] 谢军. 2016. 背景噪声的验证及应用[D]. 合肥: 中国科学技术大学: 34–50.
    [36] Xie J. 2016. Verification and Application of Surface Wave from Ambient Noise[D]. Hefei: University of Science and Technology of China: 34–50 (in Chinese).
    [37] 杨歧焱,吴庆举,盛艳蕊,高家乙,宋键,邸龙. 2018. 张渤地震带及邻区近震体波成像及孕震环境分析[J]. 地球物理学报,61(8):3251–3262. doi: 10.6038/cjg2018L0628
    [38] Yang Q Y,Wu Q J,Sheng Y R,Gao J Y,Song J,Di L. 2018. Regional seismic body wave tomography and deep seismogenic environment beneath Zhangbo seismic belt and its adjacent area[J]. Chinese Journal of Geophysics,61(8):3251–3262 (in Chinese).
    [39] 于品清. 1993. 从水文地质条件探讨未来三峡水库发生构造型水库地震的可能性[J]. 华南地震,13(1):76–83.
    [40] Yu P Q. 1993. Discussion on the possible tectonic earthquake in Changjiang Three-Gorge Reservoir area in relation to hydrogeologic conditions[J]. South China Journal of Seismology,13(1):76–83 (in Chinese).
    [41] 张毅,陈超,梁青,王林松,杜劲松,刘圣博. 2012. 三峡地区中上地壳密度结构[J]. 地球科学—中国地质大学学报,37(增刊1):213–222.
    [42] Zhang Y,Chen C,Liang Q,Wang L S,Du J S,Liu S B. 2012. Density structure of upper and middle crust in Three Gorges reservoir area[J]. Earth Science-Journal of China University of Geosciences,37(S1):213–222 (in Chinese).
    [43] 赵凌云,邓津,陈俊华,申学林,戴苗,魏贵春. 2010. 基于CAP方法的震源机制研究[J]. 长江科学院院报,27(5):81–84. doi: 10.3969/j.issn.1001-5485.2010.05.018
    [44] Zhao L Y,Deng J,Chen J H,Shen X L,Dai M,Wei G C. 2010. Study on source mechanism of MS 4.1 and MS 3.2 earthquakes in Hubei-Zigui with CAP method[J]. Journal of Yangtze River Scientific Research Institute,27(5):81–84 (in Chinese).
    [45] 郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031
    [46] Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).
    [47] Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
    [48] Hermann R B, Ammon C J. 2002. Computer Programs in Seismology Version 3.30: Surface Waves, Receiver Functions, and Crustal Structure[M]. St Louis, Missouri: St Louis University: 66–70.
    [49] Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096
    [50] Huang R,Zhu L P,Encarnacion J,Xu Y X,Tang C C,Luo S,Jiang X H. 2018. Seismic and geologic evidence of water-induced earthquakes in the Three Gorges Reservoir region of China[J]. Geophys Res Lett,45(12):5929–5936.
    [51] Rawlinson N,Sambridge M. 2003. Seismic traveltime tomography of the crust and lithosphere[J]. Adv Geophys,46:81–198.
    [52] Yao H J,Gouédard P,Collins J A,McGuire J J,van der Hilst R D. 2011. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves[J]. Compt Rend Geosci,343(8/9):571–583.
  • 加载中
图(10)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  27
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-04-02
  • 网络出版日期:  2022-05-11

目录

    /

    返回文章
    返回