Characteristics of subway stray current in geoelectrical resistivity observation
-
摘要: 在对地铁杂散电流产生机理的讨论的基础上,定量计算了地铁运行时杂散电流在地电阻率观测中所呈现的影响幅度,结果表明地铁杂散电流传播范围可以达到几十甚至上百千米。通过对城市周边的北京通州、天津青光、宝坻、塘沽、江苏江宁和辽宁新城子等六个地电阻率观测台站观测到的该类信号的研究,分析了其幅值、主要频率范围以及空间分布特征,结果表明该类信号的幅值从几mV至几十mV不等,与源距关系密切,周期主要集中在50—200 s范围内,在分析地震异常前兆信号时该类信号可使信噪比降低10—30 dB左右,其相对方差最大超出标准20倍左右。根据地铁运行时杂散电流传播的特征,本文提出了几种压制该类信号的措施,为识别地震前地电阻率异常信息及排除噪声提供依据。Abstract: The geoelectrical resistivity observation is one of the most important methods in the study of earthquake precursor, and the characteristics of the stray current during subway operation in the geoelectrical resistivity observation are useful for analyzing the geoelectric observation data and the anomaly variation before earthquakes. Based on the study on the generation mechanism, the quantitatively results of the influence of stray current on geoelectrical resistivity observation were given in this paper. The result shows that the effect distance can reach dozens or even a hundred kilometers. Through monitoring the stray current in some geoelectrical resistivity observation stations around cities, such as Tongzhou station in Beijing, Qingguang, Baodi and Tanggu stations in Tianjin, Jiangning station in Jiangsu and Xinchengzi station in Liaoning, the amplitude and frequency range of the stray current signal as well as its spatial distribution characteristics were analyzed. It shows that the amplitude of the signal ranges from several to tens millivolt, and the period range is mainly from 50 s to 200 s. Due to the influence of stray current, the signal-to-noise ratio is decreased by 10 to 30 dB, and the accuracy of the observation data is more than 20 times worse than the specified requirement. According to the characteristics of the stray current propagation, several methods which can be used to suppress the signal were proposed in this paper, and it will provide a foundation for the identification of anomaly information from the observation data and anti-interference technology study.
-
3 各观测台南北(左)、东西(右)测道记录的地铁杂散电流信号
(a) 北京通州台 (2014-04-21 13:00开始);(b) 天津青光台 (2014-05-16 16:00开始);(c) 天津塘沽台(2014-05-13 17:00开始);(d) 天津宝坻台 (2014-05-12 11:00开始)
3. The stray current signals recorded from north-south (left) and east-west (right) channel at different observations
(a) Tongzhou station in Beijing (from 13:00,April 21,2014);(b) Qingguang station in Tianjin (from 16:00,May 16,2014);(c) Tanggu station in Tianjin (from 17:00,May 13,2014);(d) Baodi station in Tianjin (from 11:00,May 12,2014)
图 3 各观测台南北(左)、东西(右)测道记录的地铁杂散电流信号
(e) 江苏江宁台 (2014-10-13 15:00开始);(f) 辽宁新城子台 (2014-07-30 17:00开始)
Figure 3. The stray current signals recorded from north-south (left) and east-west (right) channe at different observations
(e) Jiangning station in Jiangsu (from 15:00,October 13,2014);(f) Xinchengzi station in Liaoning (from 17:00,July 30,2014)
图 4 地铁运行时段和停运时段功率谱密度PSD对比
(a) 北京通州台;(b) 天津青光台;(c) 天津塘沽台;(d) 天津宝坻台;(e) 江苏江宁台;(f) 辽宁新城子台
Figure 4. Comparison of PSDs in subway operation with those in non-operation time period
(a) Tongzhou station in Beijing;(b) Qingguang station in Tianjin;(c) Tanggu station in Tianjin;(d) Baodi station in Tianjin;(e) Jiangning station in Jiangsu;(f) Xinchengzi station in Liaoning
图 9 江苏江宁台地电阻率交、直流小时观测数据曲线(2016年9月29日至30日)
(a) 南北方向地电阻率;(b) 东西方向地电阻率;(c) 南北方向测量均方差;(d) 东西方向测量均方差
Figure 9. Comparison of AC & DC hourly geoelectrical resistivity observation data of Jiangning station
(a) Geoelectrical resistivity of NS direction;(b) Geoelectrical resistivity of EW direction;(c) RMS value of NS direction;(d) RMS value of EW direction
表 1 地铁杂散电流导致的地电阻率测量相对误差δ随距离的变化(P1=75,P2=1,C=3.33)
Table 1. The influence of stray current on geoelectrical resistivity varies with distance (P1=75,P2=1,C=3.33)
测区至地铁
距离r1/kmδ dAB=1000 m dAB=500 m dAB=200 m 10 8.530% 2.132% 0.341% 20 2.132% 0.533% 0.085% 30 0.948% 0.237% 0.038% 40 0.533% 0.133% 0.021% 50 0.341% 0.085% 0.014% 60 0.237% 0.059% 0.009% 70 0.174% 0.044% 0.007% 80 0.133% 0.033% 0.005% 90 0.105% 0.026% 0.004% 100 0.085% 0.021% 0.003% 表 2 各个台站观测装置及与地铁最近距离
Table 2. The configuration in geoelectrical resistivity observation station and its distance from the subway
序号 台站名称 与地铁最近距离/km 观测装置 测道方向 供电极距/m 测量极距/m 装置系数/m 1 北京通州台 11.0 南北、东西 1 760 320 7 351 2 天津青光台 7.6 南北、东西 1 000 316 2 237 3 天津塘沽台 城区线:40.0
九号线:7.0南北、东西
南北、东西南北:1 500
东西:1 000南北:500
东西:3003 141
2 3824 天津宝坻台 52.0 南北、东西 1 000 200 3 769 5 江苏江宁台 城区线:30.0
机场线:3.0南北、东西
南北、东西1 000
1 000300
3002 382
2 3826 辽宁新城子台 19.4 南北、东西 1 000 300 2 382 表 3 不同台站地铁运行时杂散电流不同周期功率占比
Table 3. The distribution of power in different periods at different stations during subway operation
周期范围/s 北京通州台 天津青光台 天津塘沽台 天津宝坻台 江苏江宁台 辽宁新城子台 50—100 10.17% 19.02% 8.74% 14.78% 33.34% 24.26% 100—150 29.56% 60.50% 11.66% 54.55% 6.77% 57.57% 150—200 56.87% 18.13% 76.35% 27.00% 9.13% 15.67% 200—250 2.38% 1.68% 0.85% 1.12% 39.28% 2.10% 250—300 0.17% 0.20% 1.81% 0.57% 0.77% 0.00% 300—350 0.83% 0.47% 0.59% 1.97% 10.71% 0.40% 表 4 六个台站记录的地铁杂散电流信号幅度及测量信噪比
Table 4. The stray current signal amplitude and the SNR for the six stations
台站名称 测道方向 人工电位差/mV 噪声幅度/mV 测量信噪比/dB 信噪比降低/dB 停运时段 运行时段 停运时段 运行时段 北京通州 南北 7 0.14 1.33 34.0 14.4 19.6 东西 7 0.17 1.16 32.3 15.6 16.7 天津青光 南北 9 0.09 4.96 40.0 5.2 34.8 东西 9 0.36 2.25 28.0 12.0 15.9 天津塘沽 南北 7 0.06 1.94 41.3 11.1 30.2 东西 10 0.40 0.79 28.0 22.0 5.9 天津宝坻 南北 41 0.07 0.48 55.4 38.6 16.7 东西 41 0.06 0.25 56.7 44.3 12.4 江苏江宁 南北 93 0.19 3.60 53.8 28.2 25.6 东西 73 0.56 13.86 42.3 14.4 27.9 辽宁新城子 南北 26 0.13 1.02 34.0 14.4 19.6 东西 26 0.10 0.46 32.3 15.6 16.7 表 5 六个台站的地电阻率变幅与相对方差
Table 5. The maximum variation and relative RMS value of geoelectrical resistivity for six stations
台站 电阻率最大变幅/Ω·m 相对均方差 南北 东西 南北 东西 北京通州 1.83 3.99 0.65% 1.75% 天津青光 1.29 0.48 3.73% 1.72% 天津塘沽 1.72 0.59 7.57% 2.55% 天津宝坻 0.32 0.22 0.36% 0.20% 江苏江宁 1.50 5.22 1.13% 5.37% 辽宁新城子 0.09 0.05 0.15% 0.08% 表 6 六个台站的理论避让距离(P1=75,P2=1,δ=0.3%)
Table 6. The minimum distance between observation station and subway for the six stations (P1=75,P2=1,δ=0.3%)
台站名称 供电极距/m 测量极距/m C=dAB/dMN 最小避让距离/km 北京通州台 1 760 320 5.50 97 天津青光台 1 000 316 3.16 53 天津塘沽台 1 500 500 3.00 79 天津宝坻台 1 000 200 5.00 55 江苏江宁台 1 000 300 3.33 53 辽宁新城子 1 000 300 3.33 53 注:P1为地电阻率测量时噪声与信号之比,P2为地铁到台站电阻率与台站电阻率之比,δ为相对均方差。 -
董亮,姚知林,葛彩刚,石超杰,陈金泽. 2021. 地铁杂散电流干扰下管地电位波动特征的傅里叶分析[J]. 表面技术,50(2):294–303. doi: 10.16490/j.cnki.issn.1001-3660.2021.02.031 Dong L,Yao Z L,Ge C G,Shi C J,Chen J Z. 2021. Fourier analysis of the fluctuation characteristics of pipe-to-soil potential under metro stray current interference[J]. Surface Technology,50(2):294–303 (in Chinese). 杜学彬,马占虎,叶青,谭大诚,陈军营. 2006. 与强地震有关的视电阻率各向异性变化[J]. 地球物理学进展,21(1):93–100. doi: 10.3969/j.issn.1004-2903.2006.01.015 Du X B,Ma Z H,Ye Q,Tan D C,Chen J Y. 2006. Anisotropic changes in apparent resistivity associated with strong earthquakes[J]. Progress in Geophysics,21(1):93–100 (in Chinese). 桂燮泰,关华平,戴经安. 1989. 唐山、松潘地震前视电阻率短临异常图象重现性[J]. 西北地震学报,11(4):71–75. Gui X T,Guan H P,Dai J A. 1989. The short-term and immediate anomalous pattern recurrences of the apparent resistivity before the Tangshan and Songpan earthquakes of 1976[J]. Northwestern Seismological Journal,11(4):71–75 (in Chinese). 胡先茂. 2011. 城市轨道交通对埋地管线影响范围的分析[J]. 现代城市轨道交通,(3):74–76. doi: 10.3969/j.issn.1672-7533.2011.03.024 Hu X M. 2011. Analysis on influence scope of urban rail transit on buried pipelines[J]. Modern Urban Transit,(3):74–76 (in Chinese). 李金铭. 2005. 地电场与电法勘探[M]. 北京: 地质出版社: 60–67. Li J M. 2005. Geoelectric Field and Electrical Exploration[M]. Beijing: Geological Publishing House: 60–67 (in Chinese). 李雷,刘楠康,曾文,邵华锋. 2019. 轨道交通杂散电流在复杂地质条件下的分布[J]. 广东电力,32(8):133–140. doi: 10.3969/j.issn.1007-290X.2019.008.017 Li L,Liu N K,Zeng W,Shao H F. 2019. Distribution of stray current in rail transit under complex geological conditions[J]. Guangdong Electric Power,32(8):133–140 (in Chinese). 林江,唐华,于海学. 2002. 地铁迷流腐蚀及其防护技术[J]. 建筑材料学报,5(1):72–76. doi: 10.3969/j.issn.1007-9629.2002.01.014 Lin J,Tang H,Yu H X. 2002. Protection of stray current corrosion in metro[J]. Journal of Building Materials,5(1):72–76 (in Chinese). 刘国兴. 2005. 电法勘探原理与方法[M]. 北京: 地质出版社: 7–13. Liu G X. 2005. The Principle and Method of Electrical Exploration[M]. Beijing: Geological Publishing House: 7–13 (in Chinese). 刘文权. 2014. 城市地铁杂散电流对埋地输油管道的危害[J]. 全面腐蚀控制,28(11):29–32. doi: 10.13726/j.cnki.11-2706/tq.2014.11.029.04 Liu W Q. 2014. Interference corrosion hazards of subway stray currents on buried jet fuel metal pipeline[J]. Total Corrosion Control,28(11):29–32 (in Chinese). 马钦忠. 2014. 中外几次重要地震预测与预报结果之启示[J]. 地震学报,36(3):500–513. doi: 10.3969/j.issn.0253-3782.2014.03.015 Ma Q Z. 2014. Enlightment of the success or failure prediction for some large earthquakes at home and abroad[J]. Acta Seismologica Sinica,36(3):500–513 (in Chinese). 毛先进,杨玲英,钱家栋. 2014. 水平层状介质中深埋装置系统地电阻率影响系数特征研究[J]. 地震学报,36(4):678–685. doi: 10.3969/j.issn.0253-3782.2014.04.013 Mao X J,Yang L Y,Qian J D. 2014. Characteristics of the influence coefficient in the cases of deeply-buried configurations for geoelectrical resistivity observation[J]. Acta Seismologica Sinica,36(4):678–685 (in Chinese). 梅进武,林国松. 2017. 多列车运行情况下的地铁杂散电流分析[J]. 电气化铁道,28(4):68–70. Mei J W,Lin G S. 2017. Analysis of metro stray current under multi-train operation[J]. Electric Railway,28(4):68–70 (in Chinese). 聂永安,巴振宁,聂瑶. 2010. 深埋电极的地电阻率观测研究[J]. 地震学报,32(1):33–40. doi: 10.3969/j.issn.0253-3782.2010.01.004 Nie Y A,Ba Z N,Nie Y. 2010. Study on buried electrode resistivity monitoring system[J]. Acta Seismologica Sinica,32(1):33–40 (in Chinese). 钱复业,赵玉林,于谋明,王志贤,刘小伟,常思敏. 1982. 地震前地电阻率的异常变化[J]. 中国科学:B辑,(9):831–839. Qian F Y,Zhao Y L,Yu M M,Wang Z X,Liu X W,Chang S M. 1982. Geoelectrical resistivity anomalies before earthquake[J]. Science in China:Series B,(9):831–839 (in Chinese). 钱家栋. 1993. 与大震孕育过程有关的地电阻率变化研究[J]. 中国地震,9(4):341–350. Qian J D. 1993. A study on the changes in geoelectrical resistivity associated with preparatory process of great earthquakes in China[J]. Earthquake Research in China,9(4):341–350 (in Chinese). 钱家栋,马钦忠,李劭秾. 2013. 汶川MS8.0地震前成都台NE测线地电阻率异常的进一步研究[J]. 地震学报,35(1):4–17. doi: 10.3969/j.issn.0253-3782.2013.01.002 Qian J D,Ma Q Z,Li S N. 2013. Further study on the anomalies in apparent resistivity in the NE configuration at Chengdu station associated with Wenchuan MS8.0 earthquake[J]. Acta Seismologica Sinica,35(1):4–17 (in Chinese). 澹台乐琰,韩肖清,王磊,袁铁江. 2020. 多列车运行下地铁杂散电流建模仿真[J]. 电测与仪表,57(22):7–16. Tantai L Y,Han X Q,Wang L,Yuan T J. 2020. Modeling and simulation of stray current in subway with multi-train operation[J]. Electrical Measurement &Instrumentation,57(22):7–16 (in Chinese). 王崇林,马草原,王智,潘春德,王雨扬. 2007. 地铁直流牵引供电系统杂散电流分析[J]. 城市轨道交通研究,10(3):51–53. Wang C L,Ma C Y,Wang Z,Pan C D,Wang Y Y. 2007. Analysis of stray current in metro DC traction power system[J]. Urban Mass Transit,10(3):51–53 (in Chinese). 王兰炜,张宇,张世中,颜蕊,王子影,张兴国,胡哲. 2015. 我国井下地电阻率观测技术现状分析[J]. 地震地磁观测与研究,36(2):95–102. doi: 10.3969/j.issn.1003-3246.2015.02.018 Wang L W,Zhang Y,Zhang S Z,Yan R,Wang Z Y,Zhang X G,Hu Z. 2015. The status of deep-well geo-electrical resistivity observation in China[J]. Seismological and Geomagnetic Observation and Research,36(2):95–102 (in Chinese). 王兰炜,张宇,张兴国,胡哲,王子影,马小溪. 2019. 地震地电阻率交流观测方法及观测实验[J]. 大地测量与地球动力学,39(7):738–742. Wang L W,Zhang Y,Zhang X G,Hu Z,Wang Z Y,Ma X X. 2019. AC geo-electrical resistivity observation method and experimental observation[J]. Journal of Geodesy and Geodynamics,39(7):738–742 (in Chinese). 王猛. 2005. 直流牵引供电系统钢轨电位与杂散电流分析[J]. 城市轨道交通研究,8(3):24–26. doi: 10.3969/j.issn.1007-869X.2005.03.008 Wang M. 2005. Rail potential and stray current of DC traction power system[J]. Urban Mass Transit,8(3):24–26 (in Chinese). 张世中,石航,王兰炜,胡哲,刘大鹏,魏连生,鞠永. 2013. 地电台站受城市轨道交通干扰的测试分析与抗干扰措施研究[J]. 地震学报,35(1):117–124. doi: 10.3969/j.issn.0253-3782.2013.01.012 Zhang S Z,Shi H,Wang L W,Hu Z,Liu D P,Wei L S,Ju Y. 2013. Test analysis on disturbances caused by urban rail transit at geoelectric stations and measures to reduce its influence[J]. Acta Seismologica Sinica,35(1):117–124 (in Chinese). 张晓东,蒋海昆,李正媛,卢显,安艳茹. 2011. 汶川地震对地震预报工作的一些启示[J]. 工程研究:跨学科视野中的工程,3(4):309–320. Zhang X D,Jiang H K,Li Z Y,Lu X,An Y R. 2011. The revelation of Wenchuan earthquake for earthquake forecast[J]. Journal of Engineering Studies,3(4):309–320 (in Chinese). 张宇,张兴国,王兰炜,马小溪,赵庆福,袁慎杰,王子影. 2016. 新型地电阻率交流观测系统研究及江宁台观测试验[J]. 地震学报,38(5):807–810. doi: 10.11939/jass.2016.05.015 Zhang Y,Zhang X G,Wang L W,Ma X X,Zhao Q F,Yuan S J,Wang Z Y. 2016. A new AC geo-electrical resistivity observation system and experimental observation in Jiangning seismic station[J]. Acta Seismologica Sinica,38(5):807–810 (in Chinese). 中国地震局. 2009. DB/T 33.1-2009地震地电观测方法地电阻率观测第1部分: 单极距观测[S]. 北京: 中国标准出版社: 3. China Earthquake Administration. 2009. DB/T 33.1−2009 The Method of Earthquake-Related Geoelectrical Monitoring: Geoelectrical Resistivity Observation: Part 1: Single Separation Configuration[S]. Beijing: Standards Press of China: 3 (in Chinese). 朱峰,李嘉成,曾海波,邱日强. 2018. 城市轨道交通轨地过渡电阻对杂散电流分布特性的影响[J]. 高电压技术,44(8):2738–2745. Zhu F,Li J C,Zeng H B,Qiu R Q. 2018. Influence of rail-to-ground resistance of urban transit systems on distribution characteristics of stray current[J]. High Voltage Engineering,44(8):2738–2745 (in Chinese). Lu J,Xie T,Li M,Wang Y L,Ren Y X,Gao S D,Wang L W,Zhao J L. 2016. Monitoring shallow resistivity changes prior to the 12 May 2008 MS8.0 Wenchuan earthquake on the Longmen Shan tectonic zone,China[J]. Tectonophysics,675:244–257. doi: 10.1016/j.tecto.2016.03.006 -