Spatial autocorrelation method based on dense short-period seismic array and its application in the Guangdong-Hong Kong-Macao Greater Bay
-
摘要: 基于空间自相关法从短周期密集地震台阵所记录的微动信号中提取了瑞雷波频散曲线,进而进行台阵下方的S波速度结构反演. 以布设在粤港澳大湾区的短周期密集台阵为例,选取21个观测点的实测数据,按照不同台间距对台站对进行组合,利用空间自相关法得到了广州市番禺区内布设的观测点下方1 km深度范围内的浅层S波速度结构。结果显示:台阵下方0.25 km深度以内的速度明显偏低,介于1.17 km/s到1.59 km/s之间;0.25—1 km深度之间的速度平稳增加至2.88 km/s,表明通过空间自相关法可以有效获取观测台阵下方稳定可靠的浅层速度结构。因此短周期密集台阵技术与空间自相关法结合是在人口稠密的城市群地区进行地下浅层精细结构探测的一种有效、经济、环保的手段,将在未来城市地区浅层结构探测中发挥重要作用。
-
关键词:
- 短周期密集台阵 /
- 空间自相关(SPAC)法 /
- 频散曲线 /
- S波速度结构
Abstract: Based on the spatial autocorrelation (SPAC) method, the dispersion curves of Rayleigh wave have been extracted from the ambient noise recorded by the dense short-period seismic array, and then the inversion of S-wave velocity structure beneath the observation nodes were carried out. We used the SPAC method to process the records of 21 stations belong to the dense short-period seismic array in the Guangdong-Hong Kong-Macao Greater Bay area. The dispersion curves have been obtained by combining the station-pairs with different distances, and then the inversion for shallow S-wave velocity structures within a depth of 1 km beneath the Panyu district, Guangzhou city, have been performed. The results show that the velocity beneath the array is obviously low above 0.25 km, ranging from 1.17 km/s to 1.59 km/s, while the velocity increases steadily to 2.88 km/s between 0.25 km to 1 km. This indicates that the stability and the reliability of the method, which also implies that the SPAC is an effective, economical and environmentally method for detecting the shallow fine structures in densely populated urban areas, and it will play an increasingly important role in the detection of shallow structure in urban areas in the future. -
表 1 研究区所用地震仪的主要性能指标
Table 1. Main parameters of the seismometers used in the studied region
地震仪 记录道数 ADC分辨率/bits 采样频率/ms 动态范围/dB 时间精度/μs SmartSolo IGU-16HR 3C 3 24 0.25,0.5,1,2,4,8,10,20 125 ±10,GPS驯服 Zland 3C 3 24 0.5,1,2,4 127 ±10,GPS驯服 -
雷华,潘素珍,田晓峰,刘巧霞. 2019. 短周期密集台阵探测的应用进展[J]. 地质论评,65(增刊1):287–288. doi: 10.16509/j.georeview.2019.s1.135 Lei H,Pan S Z,Tian X F,Liu Q X. 2019. Recent application progress of short-period seismic dense array[J]. Geological Review,65(S1):287–288 (in Chinese). 刘庆华,鲁来玉,何正勤,胡刚,王凯明,龚艳. 2016. 地脉动空间自相关方法反演浅层S波速度结构[J]. 地震学报,38(1):86–95. doi: 10.11939/jass.2016.01.008 Liu Q H,Lu L Y,He Z Q,Hu G,Wang K M,Gong Y. 2016. Inversion of S-wave velocity structure near the surface by spatial autocorrelation technique of microtremors[J]. Acta Seismologica Sinica,38(1):86–95 (in Chinese). 裴文. 2011. 广州亚运城场区地层土性相关关系研究[D]. 广州: 华南理工大学: 35–37. Pei W. 2011. A Study of the Correlations Between Different Characteristic Index of Strata Soils in the Area of Asia Game Town, Guangzhou[D]. Guangzhou: South China University of Technology: 35–37 (in Chinese). 任彦宗,卢占武,张新彦,薛帅,刘子龙,程永志,蔡玉国. 2021. 便携式节点地震仪数据采集和处理技术进展[J]. 地球物理学进展,36(2):779–791. doi: 10.6038/pg2021EE0097 Ren Y Z,Lu Z W,Zhang X Y,Xue S,Liu Z L,Cheng Y Z,Cai Y G. 2021. Progress in data acquisition and processing technology of portable node seismographs[J]. Progress in Geophysics,36(2):779–791 (in Chinese). 孙勇军,徐佩芬,凌甦群,李传金. 2009. 微动勘查方法及其研究进展[J]. 地球物理学进展,24(1):326–334. Sun Y J,Xu P F,Ling S Q,Li C J. 2009. Microtremor survey method and its progress[J]. Progress in Geophysics,24(1):326–334 (in Chinese). 王振东. 1990. 微动应用技术讲座(第一讲)[J]. 国外地质勘探技术,(4):12–16. Wang Z D. 1990. The lecture on microtremor application technology (chapter one)[J]. Foreign Geoexploration Technology,(4):12–16 (in Chinese). 徐佩芬,李传金,凌甦群,张胤彬,侯超,孙勇军. 2009. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报,52(7):1923–1930. doi: 10.3969/j.issn.0001-5733.2009.07.028 Xu P F,Li C J,Ling S Q,Zhang Y B,Hou C,Sun Y J. 2009. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics,52(7):1923–1930 (in Chinese). 徐佩芬,侍文,凌苏群,郭慧丽,李志华. 2012. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报,55(6):2120–2128. doi: 10.6038/j.issn.0001-5733.2012.06.034 Xu P F,Shi W,Ling S Q,Guo H L,Li Z H. 2012. Mapping spherically weathered ‘Boulders’ using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics,55(6):2120–2128 (in Chinese). Aki K. 1957. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bull Earthq Res Inst,35(3):415–456. Asten M W. 2006. On bias and noise in passive seismic data from finite circular array data processed using SPAC methods[J]. Geophysics,71(6):V153–V162. doi: 10.1190/1.2345054 Asten M W,Stephenson W J,Hartzell S. 2019. Spatially averaged coherencies (krSPAC) and Rayleigh effective-mode modeling of microtremor data from asymmetric arrays[J]. Geophysics,84(3):EN47–EN56. doi: 10.1190/geo2018-0524.1 Capon J. 1969. High-resolution frequency-wavenumber spectrum analysis[J]. Proc IEEE,57(8):1408–1418. doi: 10.1109/PROC.1969.7278 Herrmann R B, Ammon C J. 2002. Computer programs in seismology: Surface waves, receiver functions and crustal structure [CP/OL]. [2015-02-18]. http: //www.eas.slu.edu/eqc/eqccps.html. Li Z W,Ni S D,Zhang B L,Bao F,Zhang S Q,Deng Y,Yuen D A. 2016. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array[J]. Geophys Res Lett,43(10):4954–4961. doi: 10.1002/2016GL068895 Li Z W,Ni S D,Roecker S,Bao F,Wei X,Yuen D A. 2018. Seismic imaging of source region in the 1976 MS7.8 Tangshan earthquake sequence and its implications for the seismogenesis of intraplate earthquakes[J]. Bull Seismol Soc Am,108(3A):1302–1313. doi: 10.1785/0120170389 Lin F C,Li D Z,Clayton R W,Hollis D. 2013. High-resolution 3D shallow crustal structure in Long Beach,California:Application of ambient noise tomography on a dense seismic array[J]. Geophysics,78(4):Q45–Q56. doi: 10.1190/geo2012-0453.1 Okada H, Suto K. 2003. The Microtremor Survey Method[M]. Tulsa: Society of Exploration Geophysicists with the cooperation of Society of Exploration Geophysicists of Japan and Australian Society of Exploration Geophysicists: 40–45. Okada H. 2006. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Explor Geophys,37(1):73–85. doi: 10.1071/EG06073 Roux P,Moreau L,Lecointre A,Hillers G,Campillo M,Ben-Zion Y,Zigone D,Vernon F. 2016. A methodological approach towards high-resolution surface wave imaging of the San Jacinto fault zone using ambient-noise recordings at a spatially dense array[J]. Geophys J Int,206(2):980–992. doi: 10.1093/gji/ggw193 Savitzky A,Golay M J E. 1964. Smoothing and differentiation of data by simplified least squares procedures[J]. Anal Chem,36(8):1627–1639. doi: 10.1021/ac60214a047 Wei Y H,Tian X B,Duan Y H,Tian X F. 2018. Imaging the topography of crust-mantle boundary from a high-density seismic array beneath the middle-lower Yangtze River,eastern China[J]. Seismol Res Lett,89(5):1690–1697. doi: 10.1785/0220180045 Wessel P, Luis J F, Uieda L, Scharroo R, Wobbe F, Smith W H F, Tian D. 2019. The Generic Mapping Tools version 6[J]. Geochem, Geophys, Geosyst, 20(11): 5556–5564. Xia J H,Miller R D,Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,64(3):691–700. doi: 10.1190/1.1444578 -