基于短周期密集地震台阵观测的空间自相关法及其在粤港澳大湾区的应用

潘啟安 沈旭章

潘啟安,沈旭章. 2023. 基于短周期密集地震台阵观测的空间自相关法及其在粤港澳大湾区的应用. 地震学报,45(2):1−12 doi: 10.11939/jass.20220003
引用本文: 潘啟安,沈旭章. 2023. 基于短周期密集地震台阵观测的空间自相关法及其在粤港澳大湾区的应用. 地震学报,45(2):1−12 doi: 10.11939/jass.20220003
Pan Q,Shen X Z. 2023. Spatial autocorrelation method based on dense short-period seismic array and its application in the Guangdong-Hong Kong-Macao Greater Bay. Acta Seismologica Sinica,45(2):1−12 doi: 10.11939/jass.20220003
Citation: Pan Q,Shen X Z. 2023. Spatial autocorrelation method based on dense short-period seismic array and its application in the Guangdong-Hong Kong-Macao Greater Bay. Acta Seismologica Sinica45(2):1−12 doi: 10.11939/jass.20220003

基于短周期密集地震台阵观测的空间自相关法及其在粤港澳大湾区的应用

doi: 10.11939/jass.20220003
基金项目: 国家自然科学基金(42230305)、第二次青藏高原综合科学考察研究(2019QZKK0701)、广东省防震减灾协同创新中心(2018B020207011)和广东省引进人才创业创新团队(2017ZT07Z066)共同资助
详细信息
    作者简介:

    潘啟安,在读硕士研究生,主要从事面波成像以及短周期密集台阵技术方面的研究,e-mail:panqan@mail2.sysu.edu.cn

    通讯作者:

    沈旭章,博士,教授,博士生导师,主要从事地震学、地球深部结构及定点形变等方面的研究,e-mail:shenxzh5@mail.sysu.edu.cn

  • 中图分类号: P315.31

Spatial autocorrelation method based on dense short-period seismic array and its application in the Guangdong-Hong Kong-Macao Greater Bay

  • 摘要: 基于空间自相关法从短周期密集地震台阵所记录的微动信号中提取了瑞雷波频散曲线,进而进行台阵下方的S波速度结构反演. 以布设在粤港澳大湾区的短周期密集台阵为例,选取21个观测点的实测数据,按照不同台间距对台站对进行组合,利用空间自相关法得到了广州市番禺区内布设的观测点下方1 km深度范围内的浅层S波速度结构。结果显示:台阵下方0.25 km深度以内的速度明显偏低,介于1.17 km/s到1.59 km/s之间;0.25—1 km深度之间的速度平稳增加至2.88 km/s,表明通过空间自相关法可以有效获取观测台阵下方稳定可靠的浅层速度结构。因此短周期密集台阵技术与空间自相关法结合是在人口稠密的城市群地区进行地下浅层精细结构探测的一种有效、经济、环保的手段,将在未来城市地区浅层结构探测中发挥重要作用。

     

  • 图  1  研究区台站分布示意图(图中黑色三角形示意短周期地震台站位置)

    Figure  1.  Distribution map of stations in the studied region (Black triangles denote the location of stations)

    图  2  SPAC法台阵(a)及不同台间距(b−f)下的台站对组合示意图

    Figure  2.  Schematic diagram of the SPAC subarray (a) and the combinations of stations with different station spacing (b−f)

    图  3  原始微动记录(a)和预处理后的微动记录(b)

    Figure  3.  Raw records of the original waveforms (a) and records of the microtremors after pretreatment (b)

    图  4  五种台间距下的台站对的实测空间自相关系数(a)以及平滑后的空间自相关系数(b)

    Figure  4.  The SPAC coefficients of the station-pairs with five different interval distance (a) and corresponding coefficient after smoothing (b)

    图  5  根据SPAC系数零极点计算得到的观测频散点及其拟合频散曲线

    Figure  5.  The observed dispersion points calculated according to the zero-pole of SPAC coefficients and their polynomial fitting curve

    图  6  初始模型和反演所得的S波速度结构(a)及观测和反演的频散曲线(b)

    Figure  6.  Initial model and S-wave velocity structure from inversion (a) as well as the observed and predicted dispersion curves (b)

    图  7  按照台间距排列的S波速度结构(以第一个速度结构作为剖面线的起始点)

    Figure  7.  S-wave velocity structure sorted by station spacing (Taking the first velocity structure as the initial point of the profile line)

    图  8  S波速度结构(a)和标准差D (b)

    Figure  8.  Vertical sections of S-wave velocity obtained from different observation time periods (a) and standard deviation D (b)

    表  1  研究区所用地震仪的主要性能指标

    Table  1.   Main parameters of the seismometers used in the studied region

    地震仪记录道数ADC分辨率/bits采样频率/ms动态范围/dB时间精度/μs
    SmartSolo IGU-16HR 3C3240.25,0.5,1,2,4,8,10,20125±10,GPS驯服
    Zland 3C3240.5,1,2,4127±10,GPS驯服
    下载: 导出CSV
  • 雷华,潘素珍,田晓峰,刘巧霞. 2019. 短周期密集台阵探测的应用进展[J]. 地质论评,65(增刊1):287–288. doi: 10.16509/j.georeview.2019.s1.135
    Lei H,Pan S Z,Tian X F,Liu Q X. 2019. Recent application progress of short-period seismic dense array[J]. Geological Review,65(S1):287–288 (in Chinese).
    刘庆华,鲁来玉,何正勤,胡刚,王凯明,龚艳. 2016. 地脉动空间自相关方法反演浅层S波速度结构[J]. 地震学报,38(1):86–95. doi: 10.11939/jass.2016.01.008
    Liu Q H,Lu L Y,He Z Q,Hu G,Wang K M,Gong Y. 2016. Inversion of S-wave velocity structure near the surface by spatial autocorrelation technique of microtremors[J]. Acta Seismologica Sinica,38(1):86–95 (in Chinese).
    裴文. 2011. 广州亚运城场区地层土性相关关系研究[D]. 广州: 华南理工大学: 35–37.
    Pei W. 2011. A Study of the Correlations Between Different Characteristic Index of Strata Soils in the Area of Asia Game Town, Guangzhou[D]. Guangzhou: South China University of Technology: 35–37 (in Chinese).
    任彦宗,卢占武,张新彦,薛帅,刘子龙,程永志,蔡玉国. 2021. 便携式节点地震仪数据采集和处理技术进展[J]. 地球物理学进展,36(2):779–791. doi: 10.6038/pg2021EE0097
    Ren Y Z,Lu Z W,Zhang X Y,Xue S,Liu Z L,Cheng Y Z,Cai Y G. 2021. Progress in data acquisition and processing technology of portable node seismographs[J]. Progress in Geophysics,36(2):779–791 (in Chinese).
    孙勇军,徐佩芬,凌甦群,李传金. 2009. 微动勘查方法及其研究进展[J]. 地球物理学进展,24(1):326–334.
    Sun Y J,Xu P F,Ling S Q,Li C J. 2009. Microtremor survey method and its progress[J]. Progress in Geophysics,24(1):326–334 (in Chinese).
    王振东. 1990. 微动应用技术讲座(第一讲)[J]. 国外地质勘探技术,(4):12–16.
    Wang Z D. 1990. The lecture on microtremor application technology (chapter one)[J]. Foreign Geoexploration Technology,(4):12–16 (in Chinese).
    徐佩芬,李传金,凌甦群,张胤彬,侯超,孙勇军. 2009. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报,52(7):1923–1930. doi: 10.3969/j.issn.0001-5733.2009.07.028
    Xu P F,Li C J,Ling S Q,Zhang Y B,Hou C,Sun Y J. 2009. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics,52(7):1923–1930 (in Chinese).
    徐佩芬,侍文,凌苏群,郭慧丽,李志华. 2012. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报,55(6):2120–2128. doi: 10.6038/j.issn.0001-5733.2012.06.034
    Xu P F,Shi W,Ling S Q,Guo H L,Li Z H. 2012. Mapping spherically weathered ‘Boulders’ using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics,55(6):2120–2128 (in Chinese).
    Aki K. 1957. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bull Earthq Res Inst,35(3):415–456.
    Asten M W. 2006. On bias and noise in passive seismic data from finite circular array data processed using SPAC methods[J]. Geophysics,71(6):V153–V162. doi: 10.1190/1.2345054
    Asten M W,Stephenson W J,Hartzell S. 2019. Spatially averaged coherencies (krSPAC) and Rayleigh effective-mode modeling of microtremor data from asymmetric arrays[J]. Geophysics,84(3):EN47–EN56. doi: 10.1190/geo2018-0524.1
    Capon J. 1969. High-resolution frequency-wavenumber spectrum analysis[J]. Proc IEEE,57(8):1408–1418. doi: 10.1109/PROC.1969.7278
    Herrmann R B, Ammon C J. 2002. Computer programs in seismology: Surface waves, receiver functions and crustal structure [CP/OL]. [2015-02-18]. http: //www.eas.slu.edu/eqc/eqccps.html.
    Li Z W,Ni S D,Zhang B L,Bao F,Zhang S Q,Deng Y,Yuen D A. 2016. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array[J]. Geophys Res Lett,43(10):4954–4961. doi: 10.1002/2016GL068895
    Li Z W,Ni S D,Roecker S,Bao F,Wei X,Yuen D A. 2018. Seismic imaging of source region in the 1976 MS7.8 Tangshan earthquake sequence and its implications for the seismogenesis of intraplate earthquakes[J]. Bull Seismol Soc Am,108(3A):1302–1313. doi: 10.1785/0120170389
    Lin F C,Li D Z,Clayton R W,Hollis D. 2013. High-resolution 3D shallow crustal structure in Long Beach,California:Application of ambient noise tomography on a dense seismic array[J]. Geophysics,78(4):Q45–Q56. doi: 10.1190/geo2012-0453.1
    Okada H, Suto K. 2003. The Microtremor Survey Method[M]. Tulsa: Society of Exploration Geophysicists with the cooperation of Society of Exploration Geophysicists of Japan and Australian Society of Exploration Geophysicists: 40–45.
    Okada H. 2006. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Explor Geophys,37(1):73–85. doi: 10.1071/EG06073
    Roux P,Moreau L,Lecointre A,Hillers G,Campillo M,Ben-Zion Y,Zigone D,Vernon F. 2016. A methodological approach towards high-resolution surface wave imaging of the San Jacinto fault zone using ambient-noise recordings at a spatially dense array[J]. Geophys J Int,206(2):980–992. doi: 10.1093/gji/ggw193
    Savitzky A,Golay M J E. 1964. Smoothing and differentiation of data by simplified least squares procedures[J]. Anal Chem,36(8):1627–1639. doi: 10.1021/ac60214a047
    Wei Y H,Tian X B,Duan Y H,Tian X F. 2018. Imaging the topography of crust-mantle boundary from a high-density seismic array beneath the middle-lower Yangtze River,eastern China[J]. Seismol Res Lett,89(5):1690–1697. doi: 10.1785/0220180045
    Wessel P, Luis J F, Uieda L, Scharroo R, Wobbe F, Smith W H F, Tian D. 2019. The Generic Mapping Tools version 6[J]. Geochem, Geophys, Geosyst, 20(11): 5556–5564.
    Xia J H,Miller R D,Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,64(3):691–700. doi: 10.1190/1.1444578
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  29
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-02-24

目录

    /

    返回文章
    返回