2022年1月8日青海门源MS6.9地震强地面运动模拟及烈度分布估计

尹晓菲 王芃 张伟 邵志刚 曹文忠 熊仁伟

尹晓菲,王芃,张伟,邵志刚,曹文忠,熊仁伟. 2022. 2022年1月8日青海门源MS6.9地震强地面运动模拟及烈度分布估计. 地震学报,44(2):237−244 doi: 10.11939/jass.20220011
引用本文: 尹晓菲,王芃,张伟,邵志刚,曹文忠,熊仁伟. 2022. 2022年1月8日青海门源MS6.9地震强地面运动模拟及烈度分布估计. 地震学报,44(2):237−244 doi: 10.11939/jass.20220011
Yin X F,Wang P,Zhang W,Shao Z G,Cao W Z,Xiong R W. 2022. Strong ground motion simulation and intensity distribution estimation for the MS6.9 Menyuan,Qinghai,earthquake on 8 January 2022. Acta Seismologica Sinica,44(2):237−244 doi: 10.11939/jass.20220011
Citation: Yin X F,Wang P,Zhang W,Shao Z G,Cao W Z,Xiong R W. 2022. Strong ground motion simulation and intensity distribution estimation for the MS6.9 Menyuan,Qinghai,earthquake on 8 January 2022. Acta Seismologica Sinica44(2):237−244 doi: 10.11939/jass.20220011

2022年1月8日青海门源MS6.9地震强地面运动模拟及烈度分布估计

doi: 10.11939/jass.20220011
基金项目: 国家自然科学基金项目(41804139)和国家重点研发计划项目(2017YFC1500501)共同资助
详细信息
    作者简介:

    尹晓菲,博士,副研究员,主要从事高频面波多道分析方法和强地面运动模拟等研究,e-mail:yxf@cea-ies.ac.cn

    通讯作者:

    王芃,博士,副研究员,主要从事综合地震概率预测方面研究,e-mail:stonite@ief.ac.cn

  • 中图分类号: 315.9

Strong ground motion simulation and intensity distribution estimation for the MS6.9 Menyuan,Qinghai,earthquake on 8 January 2022

  • 摘要: 2022年1月8日青海省海北藏族自治州门源回族自治县发生MS6.9地震。门源地震序列的重定位结果认为门源地区还存在一定的应力积累,未来该地区具有发生强震的可能。本文结合震源区地形数据、三维速度结构,根据门源地震震源破裂过程的初步结果,采用曲线网格有限差分方法模拟了门源地震的波场传播过程,得到烈度分布。结果表明:沿平行断层走向方向的地震动衰减明显小于垂直断层走向方向;门源地震的最大烈度为Ⅷ度,位于震源破裂起始点附近区域,理论烈度与野外调查的地震烈度分布基本一致;受强地面运动方向性效应和起伏地表的影响,地震灾害主要沿发震断层的WNW方向和ESE方向集中分布。

     

  • 图  1  研究区及周边的地质概况和2022年1月8—20日震源区MS≥3.0 地震分布

    Figure  1.  Geological overview of the study area and its surrounding regions,spatial distribution of MS≥3.0 earthquakes in source zone during the period of 8 to 20 January,2022

    图  2  横波速度结构

    Figure  2.  S-wave velocity structure

    图  3  本文所用的门源MS6.9地震震源模型

    Figure  3.  Source model of Menyuan MS6.9 earthquake used in this study

    图  4  门源MS6.9地震x分量粒子速度波场快照

    Figure  4.  Wavefield snapshots of the x component particle velocity of Menyuan MS6.9 earthquake

    图  5  门源MS6.9地震烈度分布图

    Figure  5.  The simulated intensity of Menyuan MS6.9 earthquake

    图  6  门源MS6.9地震仪器观测的烈度分布(引自中国地震局工程力学研究所强震动观测组,2022

    Figure  6.  Instrumental seismic intensity distribution of Menyuan MS6.9 earthquake (after Strong Motion Observation Group,Institute of Engineering Mechanics,China Earthquake Administration,2022

  • [1] 国家市场监督管理总局, 国家标准化管理委员会. 2021. GB/T 17742—2020中国地震烈度表[S]. 北京: 中国标准出版社: 1–11.
    [2] State Administration for Market Regulatory, Standardization Administration. 2021. GB/T 17742−2020 China Seismic Intensity Scale[S]. Beijing: China Standard Press: 1–11 (in Chinese).
    [3] 胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509
    [4] Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).
    [5] 姜文亮. 2018. 冷龙岭断裂带全新世破裂模式、大震复发特征研究及其区域构造意义[D]. 北京: 中国地震局地质研究所: 1–168.
    [6] Jiang W L. 2018. Holocene Rupture Pattern, Seismic Recurrence Feature of the Lenglongling Fault Zone and Its Tectonic Implication for the Northeast Tibetan Plateau[D]. Beijing: Institute of Geology, China Earthquake Administration: 1–168 (in Chinese).
    [7] 颉满斌. 2022. 青海门源6.9级地震现场考察结果发布[EB/OL]. [2022-01-18]. http://www.stdaily.com/index/kejixinwen/202201/8b2a970831014fb4b6e9573276661278.shtml.
    [8] Jie M B. 2022. Qinghai Menyuan MS6.9 earthquake site inspection results released[EB/OL]. [2022-01-18] .http://www.stdaily.com/index/kejixinwen/202201/8b2a970831014fb4b6e9573276661278.shtml (in Chinese).
    [9] 李强,江在森,武艳强,赵静,魏文薪,刘晓霞. 2013. 海原—六盘山断裂带现今构造变形特征[J]. 大地测量与地球动力学,33(2):18–22.
    [10] Li Q,Jiang Z S,Wu Y Q,Zhao J,Wei W X,Liu X X. 2013. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics,33(2):18–22 (in Chinese).
    [11] 青海日报. 2022. 门源县抗震救灾工作基本结束[N/OL]. [2022-01-13]. https://epaper.tibet3.com/qhrb/html/202201/13/content_80039.html.
    [12] Qinghai Daily. 2022. Earthquake relief work in Menyuan country is basically completed[N/OL]. [2022-01-13]. https://epaper.tibet3.com/qhrb/html/202201/13/content_80039.html (in Chinese).
    [13] 青海省地震局. 2022. 青海门源“1·8”6.9级地震发现22公里地表破裂[EB/OL]. [2022-01-08]. https://www.qhdzj.gov.cn/Item/2/20969.aspx.
    [14] Qinghai Earthquake Agency. 2022. A 22 km surface rupture zone was discovered after “1·8” Qinghai Menyuan MS6.9 earthquake[EB/OL]. [2022-01-08]. https://www.qhdzj.gov.cn/Item/2/20969.aspx (in Chinese).
    [15] 徐剑侠,张振国,戴文杰,张伟,Akram N,文健,陈晓非. 2015. 2015年4月25日尼泊尔地震波场传播及烈度初步模拟分析[J]. 地球物理学报,58(5):1812–1817. doi: 10.6038/cjg20150531
    [16] Xu J X,Zhang Z G,Dai W J,Zhang W,Akram N,Wen J,Chen X F. 2015. Preliminary simulation of seismic wave propagation and the intensity map for the 25 April 2015 Nepal earthquake[J]. Chinese Journal of Geophysics,58(5):1812–1817 (in Chinese).
    [17] 许英才,郭祥云,冯丽丽. 2022. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制研究[J]. 地震学报,44(2):195–210. doi: 10.11939/jass.20210139
    [18] Xu Y C,Guo X Y,Feng L L. 2022. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,44(2):195–210 (in Chinese).
    [19] 央视网. 2022. 受青海门源地震影响兰新高铁列车停运[EB/OL]. [2022-01-08]. http://news.cctv.com/2022/01/08/ARTI3ZvEZmlKHWl62G7sSGqm220108.shtml.
    [20] CCTV. 2022. Affected by Qinghai Menyuan earthquake, Lanxin high-speed trains are suspended[EB/OL]. [2022-01-08]. http://news.cctv.com/2022/01/08/ARTI3ZvEZmlKHWl62G7sSGqm220108.shtml (in Chinese).
    [21] 赵宏阳,陈晓非. 2017. 1975年海城MS7.3地震强地面运动模拟[J]. 地球物理学报,60(7):2707–2715. doi: 10.6038/cjg20170717
    [22] Zhao H Y,Chen X F. 2017. Simulation of strong ground motion by the 1975 Haicheng MS7.3 earthquake[J]. Chinese Journal of Geophysics,60(7):2707–2715 (in Chinese).
    [23] 张振国,张伟,孙耀充,朱耿尚,文健,陈晓非. 2014a. 2014年2月12日新疆于田地震强地面运动初步模拟及烈度预测[J]. 地球物理学报,57(2):685–689.
    [24] Zhang Z G,Zhang W,Sun Y C,Zhu G S,Wen J,Chen X F. 2014a. Preliminary simulation of strong ground motion for Yutian,Xinjiang earthquake of 12 February 2014,and hazard implication[J]. Chinese Journal of Geophysics,57(2):685–689 (in Chinese).
    [25] 张振国,孙耀充,徐建宽,张伟,陈晓非. 2014b. 2014年8月3日云南鲁甸地震强地面运动初步模拟及烈度预测[J]. 地球物理学报,57(9):3038–3041.
    [26] Zhang Z G,Sun Y C,Xu J K,Zhang W,Chen X. 2014b. Preliminary simulation of strong ground motion for Ludian,Yunnan earthquake of 3 August 2014,and hazard implication[J]. Chinese Journal of Geophysics,57(9):3038–3041 (in Chinese).
    [27] 中国地震局. 2022. 中国地震局发布青海门源6.9级地震烈度图[EB/OL]. [2022-01-11].https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html.
    [28] China Earthquake Administration. 2022. China Earthquake Administration released the intensity map of Qinghai Menyuan MS6.9 earthquake[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html (in Chinese).
    [29] 中国地震局工程力学研究所强震动观测组.2022.2022年01月08日青海门源6.9级地震仪器烈度分布图[EB/OL]. [2022-01-20]. https://mp.weixin.qq.com/s/IGp1dw7KfFY3PiwWT2WY6A.
    [30] Strong Motion Observation Group, Institute of Engineering Mechanics, China Earthquake Administration. 2022. Instrument intensity distribution map of the Menyuan, Qinghai MS6.9 earthquake on January 8th, 2022[EB/OL]. [2022-01-20]. https://mp.weixin.qq.com/s/IGp1dw7KfFY3PiwWT2WY6A (in Chinese).
    [31] Bassin C,Laske G,Masters G. 2000. The current limits of resolution for surface wave tomography in North America[J]. EOS Trans AGU,81:F897.
    [32] Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bull Seismol Soc Am,95(6):2081–2092. doi: 10.1785/0120050077
    [33] Field E H,Arrowsmith R J,Biasi G P,Bird P,Dawson T E,Felzer K P,Jackson D D,Johnson K M,Jordan T H,Madden C,Michael A J,Milner K R,Page M T,Parsons T,Powers P M,Shaw B E,Thatcher W R,Weldon R J,Zeng Y H. 2014. Uniform California earthquake rupture forecast,version 3 (UCERF3):The time-independent model[J]. Bull Seismol Soc Am,104(3):1122–1180. doi: 10.1785/0120130164
    [34] Han S C,Zhang H J,Xin H L,Shen W S,Yao H J. 2022. USTClitho2.0:Updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data[J]. Seismol Res Lett,93(1):201–215. doi: 10.1785/0220210122
    [35] Laske G, Masters G, Ma Z, Pasyanos M E, 2012. CRUST1.0: An Updated Global Model of Earth’s Crust[C]//EGU General Assembly Conference Abstracts. Vienna: EGUGA: 3743.
    [36] Zhang W,Chen X F. 2006. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophys J Int,167(1):337–353. doi: 10.1111/j.1365-246X.2006.03113.x
    [37] Zhang W,Shen Y,Chen X F. 2008. Numerical simulation of strong ground motion for the MS8.0 Wenchuan earthquake of 12 May 2008[J]. Science in China:Series D,51(12):1673–1682. doi: 10.1007/s11430-008-0130-4
    [38] Zhang W,Zhang Z G,Chen X F. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated‐grid finite‐difference method on curvilinear grids[J]. Geophys J Int,190(1):358–378. doi: 10.1111/j.1365-246X.2012.05472.x
  • 加载中
图(6)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  139
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-02-22
  • 网络出版日期:  2022-03-16
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回