2022年1月2日宁蒗MS5.5地震序列重定位与发震构造分析

王光明 吴中海 刘昌伟 张天宇 彭关灵

王光明,吴中海,刘昌伟,张天宇,彭关灵. 2022. 2022年1月2日宁蒗MS5.5地震序列重定位与发震构造分析. 地震学报,44(4):581−593 doi: 10.11939/jass.20220017
引用本文: 王光明,吴中海,刘昌伟,张天宇,彭关灵. 2022. 2022年1月2日宁蒗MS5.5地震序列重定位与发震构造分析. 地震学报,44(4):581−593 doi: 10.11939/jass.20220017
Wang G M,Wu Z H,Liu C W,Zhang T Y,Peng G L. 2022. Relocation and seismogenic structure analysis of the MS5.5 Ninglang earthquake sequence on January 2,2022. Acta Seismologica Sinica,44(4):581−593 doi: 10.11939/jass.20220017
Citation: Wang G M,Wu Z H,Liu C W,Zhang T Y,Peng G L. 2022. Relocation and seismogenic structure analysis of the MS5.5 Ninglang earthquake sequence on January 2,2022. Acta Seismologica Sinica44(4):581−593 doi: 10.11939/jass.20220017

2022年1月2日宁蒗MS5.5地震序列重定位与发震构造分析

doi: 10.11939/jass.20220017
基金项目: 国家自然科学基金 (U2002211),2022年度震情跟踪定向工作任务(2022010105),地震科技星火计划(XH20054Y)和云南省地震局“地震机理与孕震环境研究”创新团队项目共同资助
详细信息
    作者简介:

    王光明,硕士,工程师,主要从事地震活动性、地震精定位研究,e-mail:gmwang@whu.edu.cn

  • 中图分类号: P315.3+1

Relocation and seismogenic structure analysis of the MS5.5 Ninglang earthquake sequence on January 2,2022

  • 摘要: 2022年1月2日云南省丽江市宁蒗县发生MS5.5地震。采用地震编目系统提供的此次地震的震相到时数据,使用双差定位方法对此次宁蒗MS5.5地震序列进行重新定位,获得了694次地震的高精度相对位置。重定位后的地震空间分布显示:此次地震序列呈NNE至近NS向分布,与震源机制解的节面Ⅱ走向(191°)一致,主震位于地震序列南段;地震序列主体活动区长约11 km,宽约6 km,余震主要分布在4—11 km的深度范围内;地震序列在深度剖面上呈现出两组倾向不同的活动分支,其中东侧分支与震源机制解节面Ⅱ的倾角(81°)一致。此外,本次地震还可能触发了邻区的局部断裂活动。综合分析认为,2022年宁蒗MS5.5地震的发震构造应该是NNE至近NS向兼具正断层分量的左旋走滑断层,倾向为WNW,倾角约为81°,其活动性质与震源区已知的活动断层均不一致。尽管本次宁蒗MS5.5地震序列发生在2012年宁蒗—盐源MS5.7地震序列的北侧,但是两次地震序列的发震断层并不相同。库仑应力反演结果显示,2012年宁蒗—盐源MS5.7地震对本次宁蒗MS5.5地震的发生具有促进作用。

     

  • 图  1  宁蒗MS5.5地震震源区周边历史地震和断裂分布及研究区构造背景

    F1:德钦—中甸—大具断裂;F2:丽江—大具断裂;F3:丽江—小金河断裂;F4:程海断裂;F5:宁蒗断裂;F6:盐源—棉垭断裂;F7:博科—木里断裂;F8:日古鲁—岩瓦断裂;F9:永宁断裂。构造数据引自邓起东(2007)和常祖峰等(2013);地形起伏数据为SRTM15+ ,引自Tozer等(2019)

    Figure  1.  Distribution of historical earthquakes and faults around the focal area of the MS5.5 Ninglang earthquake

    F1:Deqin-Zhongdian-Daju fault;F2:Lijiang-Daju fault;F3:Lijiang-Xiaojinhe fault;F4:Chenghai fault;F5:Ninglang fault;F6:Yanyuan-Mianya fault;F7:Boke-Muli fault;F8:Rigulu-Yanwa fault;F9:Yongning fault. Geological data is cited from Deng (2007) and Chang et al (2013);topographic relief data is RTM15+ ,from Tozer et al (2019

    图  2  宁蒗MS5.5地震震源区地质构造(引自薛代福,1980安晓文和常祖峰,2018

    F1:温泉断层;F2:永宁断层;F3:阿拉凹断层;F4:格瓦叶口断层;F5:马家坪断层;F6:安家村断裂;F7:广西山断裂

    Figure  2.  Geological structure of the source region of MS5.5 Ninglang earthquake focal area (after Xue,1980An and Chang,2018

    F1:Wenquan fault;F2:Yongning fualt;F3:Ala’ao fault;F4:Gewayekou fault;F5:Majiaping fault; F6:Anjiacun fault;F7:Guangxishan fault

    图  3  宁蒗MS5.5地震震中周边的台站分布

    Figure  3.  Distribution of stations around the epicenter of the MS5.5 Ninglang earthquake

    图  4  2022宁蒗MS5.5地震序列M-t

    Figure  4.  Magnitude-time distribution of the MS5.5 Ninglang earthquake sequence

    图  5  2022年宁蒗MS5.5地震序列重定位在空间分布

    (a) 震中分布;(b−e) 深度剖面

    Figure  5.  Spatial distribution of the MS5.5 Ninglang earthquake sequence and in 2022 after relocation

    (a) Epicenter distribution;(b−e) Depth profiles

    图  6  2012年宁蒗—盐源MS5.7 和2022年宁蒗MS5.5的地震序列重定位空间分布

    (a) 震中分布;(b−e) 深度剖面

    Figure  6.  Spatial distribution of the MS5.7 Ninglang-Yanyuan earthquake sequence in 2012 and the MS5.5 Ninglang earthquake sequence in 2022 after relocation

    (a) Epicenter distribution;(b−e) Depth profiles

    图  7  2022年宁蒗MS5.7地震引起的库仑剪应力变化及该地震与2012年MS5.5地震发震断层间的运动学关系

    Figure  7.  Change of Coulomb failure stress caused by the MS5.7 Ninglang earthquake and kinematic relationship between seismogenic faults of the MS5.7 earthquake in 2022 and the MS5.5 earthquake in 2012

    表  1  宁蒗地区速度模型(引自王光明等,2015

    Table  1.   Velocity model of Ninglang area (after Wang et al,2015

    层序号每层厚度/kmvP/(km·s−1vS/(km·s−1
    11.04.602.659
    210.06.353.671
    314.06.403.699
    410.56.553.786
    520.57.454.306
    618.08.154.711
    78.504.913
    下载: 导出CSV

    表  2  2012年宁蒗—盐源MS5.7和2022年宁蒗MS5.5地震的震源机制解(引自USGS,2022

    Table  2.   Focal mechanism solutions of the MS5.7 Ninglang-Yanyuan earthquake in 2012 and the MS5.5 Ninglang earthquake in 2022 (from USGS,2022

    发震日期MW震源深度/km节面Ⅰ节面Ⅱ
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    2012-06-24 5.5 13.0 335 30 −92 158 60 −89
    2022-01-02 5.4 40.5 293 35 −165 191 81 −56
    下载: 导出CSV
  • [1] 安晓文, 常祖峰. 2018. 云南第四纪活动断裂暨: 云南第四纪活动断裂分布图[M]. 北京: 地震出版社: 11–19.
    [2] An X W, Chang Z F. 2018. Quaternary Active Faults in Yunnan: Distribution Map of Quaternary Active Faults in Yunnan[M]. Beijing: Seismological Press: 11–19 (in Chinese).
    [3] 常祖峰,杨盛用,周青云,张艳凤,谢英情. 2013. 2012年6月24日宁蒗—盐源MS5.7地震发震构造刍议[J]. 地震地质,35(1):37–49. doi: 10.3969/j.issn.0253-4967.2013.01.003
    [4] Chang Z F,Yang S Y,Zhou Q Y,Zhang Y F,Xie Y Q. 2013. Discussion of seismogenic structure of the June 24,2012 Ninglang-Yanyuan MS5.7 earthquake[J]. Seismology and Geology,35(1):37–49 (in Chinese).
    [5] 常祖峰,毛泽斌,马保起,代博洋. 2019. 滇西南阿墨江断裂带与2018年墨江M5.9地震[J]. 地质通报,38(6):967–976.
    [6] Chang Z F,Mao Z B,Ma B Q,Dai B Y. 2019. The Amojiang fault zone and Mojiang M5.9 earthquake in 2018 in southern Yunnan Province[J]. Geological Bulletin of China,38(6):967–976 (in Chinese).
    [7] 邓起东. 2007. 中国活动构造图(1 ∶ 400万)[M]. 北京: 地震出版社:1.
    [8] Deng Q D. 2007. Map of Active Tectonics in China (1 ∶ 4000000)[M]. Beijing: Seismological Press:1 (in Chinese).
    [9] 杜方,吴江. 2008. 四川盐源—云南宁蒗间5.8级地震发震特征[J]. 四川地震,(3):11–19. doi: 10.3969/j.issn.1001-8115.2008.03.003
    [10] Du F,Wu J. 2008. Character of Yanyuan M5.8 earthquake on 24 May 2001[J]. Earthquake Research in Sichuan,(3):11–19 (in Chinese).
    [11] 胡朝忠,杨攀新,熊仁伟. 2012. 2012年6月24日宁蒗—盐源5.7级地震的发震构造浅析[J]. 地震,32(4):140–147. doi: 10.3969/j.issn.1000-3274.2012.04.015
    [12] Hu C Z,Yang P X,Xiong R W. 2012. Brief seismotectonic analysis of the June 24,2012 Ninglang−Yanyuan MS5.7 earthquake[J]. Earthquake,32(4):140–147 (in Chinese).
    [13] 黄小龙,吴中海,吴坤罡. 2021. 滇西北弥渡地区主要断裂晚新生代发育特征及其动力学机制[J]. 地质力学学报,27(6):913–927. doi: 10.12090/j.issn.1006-6616.2021.27.06.074
    [14] Huang X L,Wu Z H,Wu K G. 2021. Late Cenozoic development characteristics and dynamic mechanism of the main faults in the Midu area,northwestern Yunnan[J]. Journal of Geomechanics,27(6):913–927 (in Chinese).
    [15] 黄媛. 2008. 结合波形互相关技术的双差算法在地震定位中的应用探讨[J]. 国际地震动态,(4):29–34. doi: 10.3969/j.issn.0253-4975.2008.04.003
    [16] Huang Y. 2008. Study on the application and development of the DD algorithm with cross correlation of waveform data in the earthquake location[J]. Recent Developments in World Seismology,(4):29–34 (in Chinese).
    [17] 阚荣举,张四昌,晏凤桐,俞林胜. 1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报,20(2):96–109.
    [18] Kan R J,Zhang S C,Yan F T,Yu L S. 1977. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China[J]. Acta Geophysica Sinica,20(2):96–109 (in Chinese).
    [19] 雷兴林,王志伟,马胜利,何昌荣. 2021. 关于2021年5月滇西漾濞MS6.4地震序列特征及成因的初步研究[J]. 地震学报,43(3):261–286. doi: 10.11939/jass.20210100
    [20] Lei X L,Wang Z W,Ma S L,He C R. 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China[J]. Acta Seismologica Sinica,43(3):261–286 (in Chinese).
    [21] 李姣,姜金钟,王光明,付虹. 2021. 2018年云南通海2次MS5.0地震震源机制解及深度测定[J]. 地震研究,44(2):133–144. doi: 10.3969/j.issn.1000-0666.2021.02.001
    [22] Li J,Jiang J Z,Wang G M,Fu H. 2021. Focal mechanism and focal depth determination of the two Tonghai,Yunnan,MS5.0 earthquakes in 2018[J]. Journal of Seismological Research,44(2):133–144 (in Chinese).
    [23] 李金,蒋海昆,魏芸芸,孙昭杰. 2021. 2021年1月19日伽师6.4级地震发震构造的初步研究[J]. 地震地质,43(2):357–376. doi: 10.3969/j.issn.0253-4967.2021.02.007
    [24] Li J,Jiang H K,Wei Y Y,Sun Z J. 2021. Preliminary study for seismogenic structure of the MS6.4 Jiashi earthquake on January 19,2020[J]. Seismology and Geology,43(2):357–376 (in Chinese).
    [25] 李乐,陈棋福,钮凤林,付虹,刘瑞丰,侯燕燕. 2008. 利用“重复地震”估算丽江—宁蒗断裂带的深部滑动速率[J]. 科学通报,53(23):2925–2932.
    [26] Li L, Chen Q F, Niu F L,Fu H, Liu R F, Hou Y Y. 2009. Slip rate along the Lijiang-Ninglang fault zone estimated from repeating microearthquakes[J]. Chinese Science Bulletin,54(2):447–455.
    [27] 刘晓霞,邵志刚. 2020. 丽江—小金河断裂带现今断层运动特征[J]. 地球物理学报,63(3):1117–1126. doi: 10.6038/cjg2020N0228
    [28] Liu X X,Shao Z G. 2020. Current fault movement characteristics in the Lijiang-Xiaojinhe fault zone[J]. Chinese Journal of Geophysics,63(3):1117–1126 (in Chinese).
    [29] 龙锋,祁玉萍,易桂喜,吴薇薇,王光明,赵小艳,彭关灵. 2021. 2021年5月21日云南漾濞MS6.4地震序列重新定位与发震构造分析[J]. 地球物理学报,64(8):2631–2646. doi: 10.6038/cjg2021O0526
    [30] Long F,Qi Y P,Yi G X,Wu W W,Wang G M,Zhao X Y,Peng G L. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21,2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese J. Geophys.,64(8):2631–2646 (in Chinese).
    [31] 罗睿洁,吴中海,黄小龙,黄小巾,周春景,田婷婷. 2015. 滇西北宾川地区主要活动断裂及其活动构造体系[J]. 地质通报,34(1):155–170. doi: 10.3969/j.issn.1671-2552.2015.01.013
    [32] Luo R J,Wu Z H,Huang X L,Huang X J,Zhou C J,Tian T T. 2015. The main active faults and the active tectonic system of Binchuan area,northwestern Yunnan[J]. Geological Bulletin of China,34(1):155–170 (in Chinese).
    [33] 钱晓东,苏有锦,李琼. 2012. 2012年云南宁蒗—盐源5.7级地震及震前异常分析[J]. 地震研究,35(4):455–463. doi: 10.3969/j.issn.1000-0666.2012.04.003
    [34] Qian X D,Su Y J,Li Q. 2012. Analysis for basic characteristic of Ninglang-Yanyuan MS5.7 earthquake and its precursory anomaly in Yunnan in 2012[J]. Journal of Seismological Research,35(4):455–463 (in Chinese).
    [35] 王光明,朱良保,苏有锦,王清东. 2015. 2012年6月24日宁蒗—盐源MS5.7地震的精确定位[J]. 地震学报,37(5):733–746. doi: 10.11939/jass.2015.05.003
    [36] Wang G M,Zhu L B,Su Y J,Wang Q D. 2015. Accurate location of the June 24,2012 Ninglang-Yanyuan MS5.7 earthquake[J]. Acta Seismologica Sinica,37(5):733–746 (in Chinese).
    [37] 王光明,吴中海,彭关灵,刘自凤,罗睿洁,黄小龙,陈浩朋. 2021. 2021年5月21日漾濞MS 6.4地震的发震断层及其破裂特征:地震序列的重定位分析结果[J]. 地质力学学报,27(4):662–678. doi: 10.12090/j.issn.1006-6616.2021.27.04.055
    [38] Wang G M,Wu Z H,Peng G L,Liu Z F,Luo R J,Huang X L,Chen H P. 2021. Seismogenic fault and it’s rupture characteristics of the 21 May,2021 Yangbi MS6.4 earthquake:Analysis results from the relocation of the earthquake sequence[J]. Journal of Geomechanics,27(4):662–678 (in Chinese).
    [39] 王金泽,万永革,侯江飞,崔华伟. 2018. 川滇菱形块体中部现今构造应力场精确求解[J]. 中国地震,34(4):632–641. doi: 10.3969/j.issn.1001-4683.2018.04.004
    [40] Wang J Z,Wan Y G,Hou J F,Cui H W. 2018. Recent tectonic stress field determination in the central region of Sichuan-Yunnan rhombic block[J]. Earthquake Research in China,34(4):632–641 (in Chinese).
    [41] 吴坤罡,吴中海,徐甫坤,孙玉军,张寿庭,刘杰,黄小龙. 2016. 滇西南2014年景谷中−强震群的地质构造成因:茶房—普文断裂带贯通过程的构造响应[J]. 地质通报,35(1):140–151. doi: 10.3969/j.issn.1671-2552.2016.01.013
    [42] Wu K G,Wu Z H,Xu F K,Sun Y J,Zhang S T,Liu J,Huang X L. 2016. Geological origin of Jinggu earthquake swarm in 2014 in southwest Yunnan:A response to propagation process of the Chafang-Puwen fault zone[J]. Geological Bulletin of China,35(1):140–151 (in Chinese).
    [43] 吴中海,龙长兴,范桃园,周春景,冯卉,杨振宇,仝亚博. 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报,34(1):1–31. doi: 10.3969/j.issn.1671-2552.2015.01.002
    [44] Wu Z H,Long C X,Fan T Y,Zhou C J,Feng H,Yang Z Y,Tong Y B. 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China,34(1):1–31 (in Chinese).
    [45] 薛代福. 1980. 永宁幅G−47−5 1 ∶ 20万区域地质调查报告[R]. 大理: 云南地质局区调队.
    [46] Xue D F. 1980. Yongning G-47-5° 1 ∶ 200000 Regional Geological Survey Report[R]. Dali: Regional Survey Team of Yunnan Geological Bureau (in Chinese).
    [47] 向宏发,徐锡伟,虢顺民,张晚霞,李洪武,于贵华. 2002. 丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义:陆内活动地块横向构造的屏蔽作用[J]. 地震地质,24(2):188–198. doi: 10.3969/j.issn.0253-4967.2002.02.006
    [48] Xiang H F,Xu X W,Guo X M,Zhang W X,Li H W,Yu G H. 2002. Sinistral thrusting along the Lijiang-Xiaojinhe fault since Quaternary and its geologic-tectonic significance:Shielding effect of transverse structure of intracontinental active block[J]. Seismology and Geology,24(2):188–198 (in Chinese).
    [49] 徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学:地球科学,33(增刊1):151–162.
    [50] Xu X W,Wen X Z,Zheng R C,Ma W T,Song F M,Yu G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region,China[J]. Scince in China:Series D,46(S2):210–226.
    [51] 云南省地震局. 2022. 云南宁蒗5.5级地震烈度图发布[EB/OL]. [2022-01-06]. http://www.yndzj.gov.cn/yndzj/_300559/_300651/660277/index.html.
    [52] Yunnan Earthquake Agency. 2022. Intensity map of the MS5.5 Yunnan Ninglang earthquake[EB/OL]. [2022-01-06]. http://www.yndzj.gov.cn/yndzj/_300559/_300651/660277/index.html (in Chinese).
    [53] 张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20.
    [54] Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in continental China[J]. Science in China:Series D,46(S1):13–24.
    [55] Fang L H,Wu J P,Liu J,Cheng J,Jiang C S,Han L B,Wang Y S,Chen K,Zhao X,Wu Z L. 2015. Preliminary report on the 22 November 2014 MW6.1/MS6.3 Kangding earthquake,western Sichuan,China[J]. Seismol Res Lett,86(6):1603–1613. doi: 10.1785/0220150006
    [56] He X H,Liang H,Zhang P Z,Wang Y. 2021. The 2019 MS4.2 and 5.2 Beiliu earthquake sequence in South China:Complex conjugate strike-slip faulting revealed by rupture directivity analysis[J]. Seismol Res Lett,92(6):3327–3338. doi: 10.1785/0220210008
    [57] Jiang J Z,Li J,Fu H. 2019. Seismicity analysis of the 2016 MS5.0 Yunlong earthquake,Yunnan,China and its tectonic implications[J]. Pure Appl Geophys,176(3):1225–1241. doi: 10.1007/s00024-018-2067-7
    [58] Leonard M. 2010. Earthquake fault scaling:Self-consistent relating of rupture length,width,average displacement,and moment release[J]. Bull Seismol Soc Am,100(5A):1971–1988. doi: 10.1785/0120090189
    [59] Lin G Q. 2020. Waveform cross-correlation relocation and focal mechanisms for the 2019 Ridgecrest earthquake sequence[J]. Seismol Res Lett,91(4):2055–2061. doi: 10.1785/0220190277
    [60] Michelini A,Lomax A. 2004. The effect of velocity structure errors on double-difference earthquake location[J]. Geophys Res Lett,31(9):L09602.
    [61] Tozer B,Sandwell D T,Smith W H F,Olson C,Beale J R,Wessel P. 2019. Global bathymetry and topography at 15 arc sec:SRTM15+[J]. Earth Space Sci,6(10):1847–1864. doi: 10.1029/2019EA000658
    [62] USGS. 2022. Earthquake hazards program[EB/OL]. [2022-02-12]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000jn65/moment-tensor.
    [63] Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
    [64] Wang Q D,Chu R S,Yang H,Zhu L B,Su Y J. 2018. Complex rupture of the 2014 MS6.6 Jinggu earthquake sequence in Yunnan province inferred from double-difference relocation[J]. Pure Appl Geophys,175(12):4253–4274. doi: 10.1007/s00024-018-1913-y
    [65] Wessel P,Luis J F,Uieda L,Scharroo R,Wobbe F,Smith W H F,Tian D D. 2019. The generic mapping tools version 6[J]. Geochem Geophys Geosyst,20(11):5556–5564. doi: 10.1029/2019GC008515
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  24
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 修回日期:  2022-03-19
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回