融合门控循环单元和自注意力机制的矿山微震P波到时拾取方法

焦明若 董方杰 罗浩 于靖康 马莉

焦明若,董方杰,罗浩,于靖康,马莉. 2023. 融合门控循环单元和自注意力机制的矿山微震P波到时拾取方法. 地震学报,45(2):234−245 doi: 10.11939/jass.20220034
引用本文: 焦明若,董方杰,罗浩,于靖康,马莉. 2023. 融合门控循环单元和自注意力机制的矿山微震P波到时拾取方法. 地震学报,45(2):234−245 doi: 10.11939/jass.20220034
Jiao M R,Dong F J,Luo H,Yu J K,Ma L. 2023. P-arrival picking method of mine microseisms by fusing of GRU and self-attention mechanism. Acta Seismologica Sinica,45(2):234−245 doi: 10.11939/jass.20220034
Citation: Jiao M R,Dong F J,Luo H,Yu J K,Ma L. 2023. P-arrival picking method of mine microseisms by fusing of GRU and self-attention mechanism. Acta Seismologica Sinica45(2):234−245 doi: 10.11939/jass.20220034

融合门控循环单元和自注意力机制的矿山微震P波到时拾取方法

doi: 10.11939/jass.20220034
基金项目: 辽宁省科技厅科学技术计划项目(2019010223-JH8/103)、辽宁省教育厅科学技术研究项目(LJKMZ20220450)和国家自然科学基金(51704138)共同资助
详细信息
    作者简介:

    焦明若,博士,研究员,主要从事地震预报及前兆机理的研究,e-mail:mjrou1963@yahoo.com

    通讯作者:

    罗浩,博士,副教授,研究方向为矿山安全大数据和人工智能,e-mail:luohao8711@163.com

  • 中图分类号: P315.63;TD76

P-arrival picking method of mine microseisms by fusing of GRU and self-attention mechanism

  • 摘要: 基于深度学习方法提出了一种矿山微震P波到时拾取方法。首先构建CNNDet模型进行事件监测和到时预拾取;其次引入自注意力机制,融合门控循环单元(GRU)构建CGANet模型,对检测到的事件进行P波到时精确拾取;最后将该方法与长短时窗能量比法、DPick和PpkNet方法进行对比,结果显示测试集的事件检测精确率和召回率都达到98%以上,P波到时估计的误差均值和标准差分别为0.014 s和0.051 s,说明本文方法在精确率、召回率及标准差等方面均明显优于上述三种方法。此外,对不同信噪比样本进行测试的结果也证明,本文方法在低信噪比下依然能保持较高的精度。在实际震源定位中,该方法也展现出了更优异的性能。

     

  • 图  1  矿山微震P波到时拾取总体架构(CNNDet用于事件检测,CGANet进行P波到时拾取)

    Figure  1.  Overall architecture for P-arrival picking method of mine microseisms (CNNDet is used for event detection,and CGANet is used for P-arrival picking)

    图  2  CNNDet和CGANet神经网络模型

    Figure  2.  CNNDet and CGANet neural network model

    图  3  数据预处理及数据增强

    Figure  3.  Data preprocessing and data enhancement

    图  4  CNNDet模型的界限标签选取

    Figure  4.  Boundary label selection of CNNDet

    图  5  CNNDet (上)和CGANet (下)的训练迭代过程

    Figure  5.  Training iterative process of CNNDet (top) and CGANet (bottom)

    图  6  各种震相拾取算法在验证集上的误差直方图

    Figure  6.  Error histogram of various seismic phase picking algorithms on the verification set

    图  7  CNNDet+CGANet和传统方法STA/LTA在不同信噪比下的表现对比

    Figure  7.  Performance comparison of CNNDet+CGANet and STA/LTA under different SNRs

    图  8  DPick,DetNet+PpkNet与CNNDet+CGANet在不同信噪比下的拾取对比

    Figure  8.  Comparison of DPick,DetNet+PpkNet and CNNDet+CGANet picking at different SNRs

    图  9  2020年7月11日8:58—9:17事件检测和P波拾取处理情况

    Figure  9.  Event detection and P-wave pickup processing in 8:58−9:17 on July 11,2020

    表  1  本文方法与STA/LTA,DPick和PpkNet的性能比较

    Table  1.   The performance of the proposed method in this study compared with STA/LTA,DPick and PpkNet

    方法精确率召回率平均绝对误差/s标准差/s误差>0.2 s占比
    CNNDet+STA/LTA0.724 00.724 00.028 1150.086 9682.28%
    DPick0.854 60.847 00.027 9570.060 3222.74%
    DetNet+PpkNet0.878 00.871 00.019 1240.051 4181.36%
    CNNDet+CGANet0.948 00.948 00.014 1580.051 0521.14%
    下载: 导出CSV
  • [1] 陈光波,滕鹏程,李谭,王创业,陈世江,张国华. 2021. 煤矿冲击地压评价模型及其应用[J]. 太原理工大学学报,52(6):966–973.
    [2] Chen G B,Teng P C,Li T,Wang C Y,Chen S J,Zhang G H. 2021. Evaluation model of rock burst in coal mine and its application[J]. Journal of Taiyuan University of Technology,52(6):966–973 (in Chinese).
    [3] 陈泽,丁琳琳,罗浩,宋宝燕,张明,潘一山. 2020. 基于改进小波分解和ELM的矿山微震事件识别方法[J]. 煤炭学报,45(增刊):637–648.
    [4] Chen Z,Ding L L,Luo H,Song B Y,Zhang M,Pan Y S. 2020. Mine microseismic events classification based on improved wavelet decomposition and ELM[J]. Journal of China Coal Society,45(S2):637–648 (in Chinese).
    [5] 付继华,王旭,李智涛,谭巧,王建军. 2019. 强噪声环境下基于信噪比的地震P波到时自动提取方法[J]. 地球物理学报,62(4):1405–1412.
    [6] Fu J H,Wang X,Li Z T,Tan Q,Wang J J. 2019. Automatic picking up earthquake’s P waves using signal-to-noise ratio under a strong noise environment[J]. Chinese Journal of Geophysics,62(4):1405–1412 (in Chinese).
    [7] 李安,杨建思,彭朝勇,郑钰,刘莎. 2020. 基于样本增强的卷积神经网络震相拾取方法[J]. 地震学报,42(2):163–176.
    [8] Li A,Yang J S,Peng C Y,Zheng Y,Liu S. 2020. Seismic phase identification using the convolutional neural networks based on sample enhancement[J]. Acta Seismologica Sinica,42(2):163–176 (in Chinese).
    [9] 李长洪,张吉良,蔡美峰,张磊,林清华. 2009. 煤矿冲击性灾害类型实验研究[J]. 北京科技大学学报,31(1):1–9.
    [10] Li C H,Zhang J L,Cai M F,Zhang L,Lin Q H. 2009. Simulating test research of impacting disasters in coal mines[J]. Journal of University of Science and Technology Beijing,31(1):1–9 (in Chinese).
    [11] 李宇,韩晓红,张玲,张海轩,李钢. 2023. 融合时空注意力机制的P波到时拾取网络[J]. 计算机工程与应用,59(6):113–124.
    [12] Li Y,Han X H,Zhang L,Zhang H X,Li G. 2023. Seismic P-wave first-arrival pickup model based on spatiotemporal attention mechanism[J]. Computer Engineering and Applications,59(6):113–124 (in Chinese).
    [13] 王议迎,丁仁伟,李建平,赵俐红,赵硕,张硕伟. 2021. 联合改进STA/LTA与MLoG算子的微震P波到时自动拾取方法[J]. 山东科技大学学报(自然科学版),40(6):1–10.
    [14] Wang Y Y,Ding R W,Li J P,Zhao L H,Zhao S,Zhang S W. 2021. Automatic pickup of microseismic P-wave arrival based on improved STA/LTA and MLoG operators[J]. Journal of Shandong University of Science and Technology (Natural Science),40(6):1–10 (in Chinese).
    [15] 张逸伦,喻志超,胡天跃,何川. 2021. 基于U-Net的井中多道联合微地震震相识别和初至拾取方法[J]. 地球物理学报,64(6):2073–2085.
    [16] Zhang Y L,Yu Z C,Hu T Y,He C. 2021. Multi-trace joint downhole microseismic phase detection and arrival picking method based on U-Net[J]. Chinese Journal of Geophysics,64(6):2073–2085 (in Chinese).
    [17] 赵洪宝,刘瑞,顾涛,刘一洪,蒋冬梅. 2021. 基于深度学习模式的微震信号P波自动拾取方法研究[J]. 岩石力学与工程学报,40(增刊):3084–3097.
    [18] Zhao H B,Liu R,Gu T,Liu Y H,Jiang D M. 2021. Research on automatic picking method of microseismic signal P wave based on deep learning mode[J]. Chinese Journal of Rock Mechanics and Engineering,40(S2):3084–3097 (in Chinese).
    [19] 赵明,陈石,房立华,Yuen D A. 2019. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报,62(8):3034–3042.
    [20] Zhao M,Chen S,Fang L H,Yuen D A. 2019. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics,62(8):3034–3042 (in Chinese).
    [21] 周飞燕,金林鹏,董军. 2017. 卷积神经网络研究综述[J]. 计算机学报,40(6):1229–1251. doi: 10.11897/SP.J.1016.2017.01229
    [22] Zhou F Y,Jin L P,Dong J. 2017. Review of convolutional neural network[J]. Chinese Journal of Computers,40(6):1229–1251 (in Chinese).
    [23] Akaike H. 1974. A new look at the statistical model identification[J]. IEEE Trans Automat Contr,19(6):716–723. doi: 10.1109/TAC.1974.1100705
    [24] Allen R. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
    [25] Chen B R,Feng X T,Li S L,Yuan J P,Xu S C. 2009. Microseism source location with hierarchical strategy based on particle swarm optimization[J]. Chin J Rock Mech Eng,28(4):740–749.
    [26] Dai H C,Macbeth C. 1995. Automatic picking of seismic arrivals in local earthquake data using an artificial neural network[J]. Geophys J Int,120(3):758–774. doi: 10.1111/j.1365-246X.1995.tb01851.x
    [27] Dai H C,Macbeth C. 1997. The application of back-propagation neural network to automatic picking seismic arrivals from single-component recordings[J]. J Geophys Res:Solid Earth,102(B7):15105–15113. doi: 10.1029/97JB00625
    [28] Dubey A C, Barnard R L. 1997. Detection and Remediation Technologies for Mines and Minelike Targets II[M]. Orlando, Florida: SPIE: 21–24.
    [29] Grayson R L,Kinilakodi H,Kecojevic V. 2009. Pilot sample risk analysis for underground coal mine fires and explosions using MSHA citation data[J]. Saf Sci,47(10):1371–1378. doi: 10.1016/j.ssci.2009.03.004
    [30] Mousavi S M,Ellsworth W L,Zhu W Q,Chuang L Y,Beroza G C. 2020. Earthquake transformer:An attentive deep-learning model for simultaneous earthquake detection and phase picking[J]. Nat Commun,11(1):3952. doi: 10.1038/s41467-020-17591-w
    [31] Perol T,Gharbi M,Denolle M. 2018. Convolutional neural network for earthquake detection and location[J]. Sci Adv,4(2):e1700578. doi: 10.1126/sciadv.1700578
    [32] Ronneberger O, Fischer P, Brox T. 2015. U-net: Convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer: 234–241.
    [33] Saad O M,Chen Y K. 2021. Earthquake detection and P-wave arrival time picking using capsule neural network[J]. IEEE Trans Geosci Remote Sens,59(7):6234–6243. doi: 10.1109/TGRS.2020.3019520
    [34] Tang S B,Wang J X,Tang C N. 2021. Identification of microseismic events in rock engineering by a convolutional neural network combined with an attention mechanism[J]. Rock Mech Rock Eng,54(1):47–69. doi: 10.1007/s00603-020-02259-0
    [35] Ursano R J,Cerise F P,DeMartino R,Reissman D B,Shear M K. 2006. The impact of disasters and their aftermath on mental health[J]. J Clin Psychiatry,67(1):7–14. doi: 10.4088/JCP.v67n0102
    [36] Vaezi Y,van der Baan M. 2015. Comparison of the STA/LTA and power spectral density methods for microseismic event detection[J]. Geophys J Int,203(3):1896–1908. doi: 10.1093/gji/ggv419
    [37] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I. 2017. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: Curran Associates Inc.: 6000–6010.
    [38] Wang Y W,Li X J,Wang Z F,Shi J P,Bao E H. 2021. Deep learning for P-wave arrival picking in earthquake early warning[J]. Earthq Eng Eng Vib,20(2):391–402. doi: 10.1007/s11803-021-2027-6
    [39] Zhang J J,Tang Y L,Li H J. 2018. STA/LTA fractal dimension algorithm of detecting the P-wave arrival[J]. Bull Seismol Soc Am,108(1):230–237. doi: 10.1785/0120170099
    [40] Zhou Y J,Yue H,Kong Q K,Zhou S Y. 2019. Hybrid event detection and phase-picking algorithm using convolutional and recurrent neural networks[J]. Seismol Res Lett,90(3):1079–1087. doi: 10.1785/0220180319
    [41] Zhu W Q,Beroza G C. 2018. PhaseNet:A deep-neural-network-based seismic arrival time picking method[J]. Geophys J Int,216(1):261–273.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  96
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-05-17
  • 网络出版日期:  2023-03-20
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回