The magnitude of the Sanhe-Pinggu earthquake based on the multi-rupture method
-
摘要:
在前人对三河—平谷地震研究的基础上,本文采用多震级、多破裂方式对三河—平谷地区进行地震动模拟,以开展三河—平谷地震的震级研究。首先,我们将研究区域的历史烈度曲线转化为峰值加速度(PGA)和峰值速度(PGV),随后将其与多震级、多破裂方式下的模拟结果进行对比。通过分析差异值,初步确定最贴近三河—平谷地震震级的三个可能值,分别为MW7.8,MW7.9和MW8.0。进一步比较这三个震级下的180种破裂模式及其产生的烈度空间分布形态与历史烈度形态的相似度,筛选出四种最相符的破裂模式。将这四种模式生成的烈度曲线与历史烈度进行对比,最终得出夏垫断裂在三河—平谷地区巨震的实际震级。研究结果显示,该震级小于人们通常认知的MW8.0,更趋近于MW7.9−或MW7.8++。
Abstract:The 1679 Sanhe-Pinggu earthquake is the largest earthquake ever recorded in the history of the Beijing-Tianjin-Hebei region, causing severe damage. But the surface rupture length and related deformation characteristics from a series of studies do not match the defined MW8.0. Therefore, this article, building upon previous research, simulates the strong ground motion of the Sanhe-Pinggu earthquake using the multi-rupture and multi-focal set method, aiming to study its magnitude and ultimately determine the true magnitude of the Sanhe-Pinggu earthquake. The method employed in this paper is the NNSIM (non-negative source-specific impulse modeling) random finite fault method, drawing inspiration from traditional random finite fault methods. It divides the main fault into N sub-faults that can be considered as point sources. Under the influence of rupture delay and propagation delay, the simulation results for each sub-fault are superimposed to obtain the seismic effects of the entire fault. The paper also provides a detailed explanation of the role of time window functions in the low-frequency domain. In this approach, we use this method to make the low-frequency component of the simulated seismic effects closer to the actual records, thereby enhancing the reliability of the simulation results across the entire frequency spectrum. The Sanhe-Pinggu earthquake occurred on the Xiaodian fault. Building upon previous research, we selected the middle section of the Xiadian Fault as the study area, with a total length of approximately 80 km and a width of 25 km. We divided the magnitude range from MW7.5 to MW8.0 into six magnitude levels with an increment of 0.1, and each magnitude level was simulated using multiple source and multiple rupture scenarios.Considering that the Sanhe-Pinggu earthquake is a historically significant event in the North China region, we incorporated two fault asperities in our simulation. According to our setup criteria and the distribution of slip for each rupture mode, we calculated corresponding stress drop distributions, rupture velocity distributions, rise time distributions, and different source functions, which can generate complex earthquake source models. Our calculations revealed that there are primarily two rupture points along the fault, one at around 20 km and the other at around 60 km, with the rupture at 20 km being more intense. The initial rupture times for the fault are concentrated between 0.02 s and 0.05 s, with a maximum duration of up to 22 s. The resulting seismic moment is approximately 7×1025 N·m, and the maximum stress drop occurs near 8 MPa. These four distributions represent the seismic source parameters required for the NNSIM simulation method used in this study. Based on these seismic source parameters, we conducted simulations of strong ground motions under multiple rupture scenarios. In order to determine the magnitude of the Sanhe-Pinggu earthquake, we first converted the historical intensity curves Ⅸ, Ⅹ, and Ⅺ into peak ground acceleration (PGA) and peak ground velocity (PGV) values according to GB/T 17742−2020 (Chinese Seismic Intensity Scale). Specifically, intensity Ⅸ corresponds to 402 cm/s2, intensity Ⅹ corresponds to 831 cm/s2, and intensity Ⅺ corresponds to 1730 cm/s2. Each intensity curve was sampled at approximately 50 points. Based on the principle that the maximum fault asperity is located southwest of the macroscopic epicenter, we constrained the position of the maximum fault asperity to be in the southwest of the macroscopic epicenter. Through calculations in the seismic source setup section, we identified a total of 180 rupture scenarios that satisfied this constraint. We then used the NNSIM method to compute the acceleration, velocity, PGA, and PGV values at comparison reference points. By evaluating the differences between the simulated and converted PGA and PGV values, we defined two parameters, R and S, to reflect the disparities between the acceleration, velocity, PGA, and PGV at reference points and historical intensity values.From these differences, it was determined that the simulated PGA and PGV values for MW7.8 exhibited the smallest discrepancies with historical intensity values, followed by MW7.9, while MW8.0 showed relatively larger discrepancies. For the purpose of conducting a detailed comparative analysis of the spatial distribution of simulated ground motion for earthquakes with magnitudes MW7.8, MW7.9, and MW8.0, we utilized 180 different rupture scenarios corresponding to these three magnitudes. We simulated strong ground motions for each of these scenarios and plotted intensity curves corresponding to intensities Ⅸ, Ⅹ, and Ⅺ.From the four intensity curves for MW7.8, it can be observed that the Ⅸ and Ⅹ intensity curves closely matched historical intensity curves. However, the MW7.8 scenarios almost did not generate Ⅺ intensity, indicating that within the seismogenic area, MW7.8 is insufficient to produce ground motions with a PGA exceeding 1730 cm/s2. For the MW7.9 earthquake, the Ⅸ and Ⅹ intensity ranges exceeded the corresponding historical intensity circles, while the spatial range of the Ⅺ intensity circle closely resembled that of the historical intensity circle, but it was slightly shifted to the south.In the case of the MW8.0 earthquake, the intensity ranges for all three intensities were much larger than the historical intensity circles. The Ⅺ and Ⅹ intensities were similar in size to historical Ⅹ and Ⅸ intensities, but the Ⅸ intensity extended far beyond the historical Ⅸ intensity range. This suggests that the rupture generated by the MW8.0 earthquake is significantly more powerful than what historical records indicate. In conclusion, the magnitude of the Sanhe-Pinggu earthquake should be less than MW8.0, greater than MW7.8, and close to MW7.9. It is likely to be an earthquake with a magnitude around MW7.8+ + or even MW7.9−.
-
Keywords:
- magnitude research /
- multi-rupture method /
- multi-focal set /
- Sanhe-Pinggu earthquake
-
-
图 1 震源1,73,102和180的破裂模式所对应的强地面运动模拟结果
图(c),(d)分别为为断层破裂面每个破裂子元的破裂延时和破裂初时
Figure 1. Simulation results of strong ground motion corresponding to rupture modes of seismic sources 1,73,102 and 180
Fig.(c) and Fig.(d) are the rupture delay and rupture initiation time for each rupture subelement of the fault rupture surface
-
巴振宁,赵靖轩,吴孟桃,梁建文. 2022. 基于CPU-GPU异构并行的复杂场地近断层地震动谱元法模拟[J]. 地震学报,44(1):182–193. Ba Z N,Zhao J X,Wu M T,Liang J W. 2022. Simulation of near-fault ground motions in complex sites based on CPU-GPU heterogeneous parallelism by spectral element method[J]. Acta Seismologica Sinica,44(1):182–193 (in Chinese).
陈培善,刘家森. 1975. 用位错模型研究震级与烈度的关系[J]. 地球物理学报,18(3):183–195. Chen P S,Liu J S. 1975. A study of the relation between seismic magnitude and intensity by using the dislocation model[J]. Chinese Journal of Geophysics,18(3):183–195 (in Chinese).
董瑞树,冉洪流,高铮. 1993. 中国大陆地震震级和地震活动断层长度的关系讨论[J]. 地震地质,15(4):395–400. Dong R S,Ran H L,Gao Z. 1993. The relationship between earthquake magnitude and length of active fault in China[J]. Seismology and Geology,15(4):395–400 (in Chinese).
方荣新,施闯,宋伟伟,牛小骥,张全,陈克杰,刘经南. 2013. 实时GNSS地震仪系统实现及精度分析[J]. 地球物理学报,56(2):450–458. Fang R X,Shi C,Song W W,Niu X J,Zhang Q,Chen K J,Liu J N. 2013. Real-time GNSS seismometer and its accuracy[J]. Chinese Journal of Geophysics,56(2):450–458 (in Chinese).
付长华,高孟潭,陈鲲. 2012. 北京盆地结构对长周期地震动反应谱的影响[J]. 地震学报,34(3):374–382. Fu C H,Gao M T,Chen K. 2012. A study on long-period response spectrum of ground motion affected by basin structure of Beijing[J]. Acta Seismologica Sinica,34(3):374–382 (in Chinese).
付长华,高孟潭,俞言祥. 2015. 用数值模拟方法研究北京盆地对3—10 s地震动的放大效应[J]. 地震研究,38(3):448–460. doi: 10.3969/j.issn.1000-0666.2015.03.016 Fu C H,Gao M T,Yu Y X. 2015. Studying on amplification effect of Beijing basin on 3−10 s ground motion by numerical simulation method[J]. Journal of Seismological Research,38(3):448–460 (in Chinese).
高孟潭,俞言祥,张晓梅,吴健,胡平,丁彦慧. 2002. 北京地区地震动的三维有限差分模拟[J]. 中国地震,18(4):356–364. Gao M T,Yu Y X,Zhang X M,Wu J,Hu P,Ding Y H. 2002. Three-dimensional finite-difference simulations of ground motions in the Beijing area[J]. Earthquake Research in China,18(4):356–364 (in Chinese).
何付兵,白凌燕,王继明,刘予,蔡向民,孙永华,张磊,方同明,郭高轩. 2013. 夏垫断裂带深部构造特征与第四纪活动性讨论[J]. 地震地质,35(3):490–505. He F B,Bai L Y,Wang J M,Liu Y,Cai X M,Sun Y H,Zhang L,Fang T M,Guo G X. 2013. Deep structure and quaternary activities of the Xiadian fault zone[J]. Seismology and Geology,35(3):490–505 (in Chinese).
靳天伟,戚承志,陈昊祥,段秋宇,李惊涛. 2021. 锁固段对红砂岩锯齿节理面剪切特性影响因素研究[J]. 水利水电技术(中英文),52(7):175–183. Jin T W,Qi C Z,Chen H X,Duan Q Y,Li J T. 2021. Study on influencing factors of locked segment on shear characteristics of red sandstone dentate joint plane[J]. Water Resources and Hydropower Engineering,52(7):175–183 (in Chinese).
李善邦. 1957. 中国地震区域划分圖及其說明Ⅰ. 总的說明[J]. 地球物理学报,6(2):127–158. Lee S P. 1957. The map of seismicity of China[J]. Chinese Journal of Geophysics,6(2):127–158 (in Chinese).
刘保金,胡平,孟勇奇,酆少英,石金虎,姬计法. 2009. 北京地区地壳精细结构的深地震反射剖面探测研究[J]. 地球物理学报,52(9):2264–2272. Liu B J,Hu P,Meng Y Q,Feng S Y,Shi J H,Ji J F. 2009. Research on fine crustal structure using deep seismic reflection profile in Beijing region[J]. Chinese Journal of Geophysics,52(9):2264–2272 (in Chinese).
刘博研,史保平,张健. 2007. 复合地震源模拟强地面运动:以1679年三河—平谷MS8.0地震为例[J]. 地震学报,29(3):302–313. Liu B Y,Shi B P,Zhang J. 2007. Strong motion simulation by the composite source modeling:A case study of 1679 M8.0 Sanhe-Pinggu earthquake[J]. Acta Seismologica Sinica,29(3):302–313 (in Chinese).
孟宪梁,杜春涛,王瑞,刘士平. 1983. 1679年三河—平谷大震的地震断裂带[J]. 地震,(3):18–23. Meng X L,Du C T,Wang R,Liu S P. 1983. The seismic fault zone of the 1679 Sanhe-Pinggu earthquake[J]. Earthquake,(3):18–23 (in Chinese).
潘波,许建东,关口春子,何宏林. 2006. 北京地区近断层强地震动模拟[J]. 地震地质,28(4):623–634. Pan B,Xu J D,Sekigguchi H,He H L. 2006. Simulation of the near-fault strong ground motion in Beijing region[J]. Seismology and Geology,28(4):623–634 (in Chinese).
潘波,许建东,刘启方. 2009. 1679年三河—平谷8级地震近断层强地震动的有限元模拟[J]. 地震地质,31(1):69–83. Pan B,Xu J D,Liu Q F. 2009. Simulations of the near-fault strong ground motion of the 1679 Sanhe-Pinggu M8.0 earthquake[J]. Seismology and Geology,31(1):69–83 (in Chinese).
彭菲,王伟君,寇华东. 2020. 三河—平谷地区地脉动H/V谱比法探测:场地响应、浅层沉积结构及其反映的断层活动[J]. 地球物理学报,63(10):3775–3790. Peng F,Wang W J,Kou H D. 2020. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area:Site responses,shallow sedimentary structure,and fault activity revealed[J]. Chinese Journal of Geophysics,63(10):3775–3790 (in Chinese).
彭一民,李鼎容,谢振钊,王安德,刘清泗. 1981. 北京平原区同生断裂的某些特征及其研究意义[J]. 地震地质,3(2):57–64. Peng Y M,Li D R,Xie Z Z,Wang A D,Liu Q S. 1981. Some features of contemporaneous faults in Beijing plain and their significance[J]. Seismology and Geology,3(2):57–64 (in Chinese).
秦四清,徐锡伟,胡平,王媛媛,黄鑫,泮晓华. 2010. 孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J]. 地球物理学报,53(4):1001–1014. Qin S Q,Xu X W,Hu P,Wang Y Y,Huang X,Pan X H. 2010. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction[J]. Chinese Journal of Geophysics,53(4):1001–1014 (in Chinese).
秦四清,杨百存,吴晓娲,薛雷,李培. 2016. 中国大陆某些地震区主震事件判识(Ⅱ)[J]. 地球物理学进展,31(1):115–142. Qin S Q,Yang B C,Wu X W,Xue L,Li P. 2016. The identification of mainshock events for some seismic zones in mainland China(Ⅱ)[J]. Progress in Geophysics,31(1):115–142 (in Chinese).
孙若昧,赵燕来,梅世蓉. 1993. 渤海及其邻区的地震层析成像[J]. 地球物理学报,36(1):44–54. Sun R M,Zhao Y L,Mei S R. 1993. Seismic tomographic image in Bohai Sea and its adjacent area[J]. Chinese Journal of Geophysics,36(1):44–54 (in Chinese).
孙银涛,徐国栋,龙海云,许立红. 2016. 震级与破裂长度统计关系研究[J]. 地震学报,38(5):803–806. Sun Y T,Xu G D,Long H Y,Xu L H. 2016. Relationship between magnitude and rupture length[J]. Acta Seismologica Sinica,38(5):803–806 (in Chinese).
田优平,余达远,万永革,支玲,高尔根. 2014. 三河—平谷地震区地球物理特征研究[J]. 地球物理学进展,29(4):1563–1572. Tian Y P,Yu D Y,Wan Y G,Zhi L,Gao E G. 2014. Research on the geophysical characteristics of Sanhe-Pinggu earthquake region[J]. Progress in Geophysics,29(4):1563–1572 (in Chinese).
王健. 2001. 地震活动性图象处理的网格点密集值计算方法[J]. 地震学报,23(3):262–267. Wang J. 2001. Seismic pattern treatment method through calculation of seismic density at grid nodes[J]. Acta Seismologica Sinica,23(3):262–267 (in Chinese).
向宏发,方仲景,徐杰,李如成,贾三发,郝书俭,王景钵,张晚霞. 1988. 三河—平谷8级地震区的构造背景与大震重复性研究[J]. 地震地质,10(1):15–28. Xiang H F,Fang Z J,Xu J,Li R C,Jia S F,Hao S J,Wang J B,Zhang W X. 1988. Research on the geophysical characteristics of Sanhe-Pinggu earthquake region[J]. Seismology and Geology,10(1):15–28 (in Chinese).
徐锡伟,计凤桔,于贵华,陈文彬,王峰,江娃利. 2000. 用钻孔地层剖面记录恢复古地震序列:河北夏垫断裂古地震研究[J]. 地震地质,22(1):9–19. Xu X W,Ji F J,Yu G H,Chen W B,Wang F,Jiang W L. 2000. Reconstruction of paleoearthquake sequence using stratigraphic records from drill logs:A study at the Xiadian fault,Beijing[J]. Seismology and Geology,22(1):9–19 (in Chinese).
杨百存,秦四清,薛雷,吴晓娲,张珂. 2017. 雄安新区地震危险性评估[J]. 地球物理学报,60(12):4644–4654. Yang B C,Qin S Q,Xue L,Wu X W,Zhang K. 2017. Seismic hazard assessment in the Xiong’an New Area[J]. Chinese Journal of Geophysics,60(12):4644–4654 (in Chinese).
杨百存,秦四清,薛雷,陈竑然. 2020. 锁固段损伤过程中的能量转化与分配原理[J]. 东北大学学报(自然科学版),41(7):975–981. Yang B C,Qin S Q,Xue L,Chen H R. 2020. Energy conversion and allocation principle during the damage process of locked segment[J]. Journal of Northeastern University (Natural Science),41(7):975–981 (in Chinese).
殷娜,李莹甄,纪同娟,余中元,万飞,王艳萍,贾建鹏. 2021. 1679年三河—平谷8级地震地表破裂端部特征及其地质意义[J]. 地震工程学报,43(6):1288–1293. Yin N,Li Y Z,Ji T J,Yu Z Y,Wan F,Wang Y P,Jia J P. 2021. Characteristics of the surface rupture end of the 1679 Sanhe-Pinggu M8.0 earthquake and its geological significance[J]. China Earthquake Engineering Journal,43(6):1288–1293 (in Chinese).
于湘伟,陈运泰,张怀. 2010. 京津唐地区地壳三维P波速度结构与地震活动性分析[J]. 地球物理学报,53(8):1817–1828. Yu X W,Chen Y T,Zhang H. 2010. Three-dimensional crustal P-wave velocity structure and seismicity analysis in Beijing-Tianjin-Tangshan region[J]. Chinese Journal of Geophysics,53(8):1817–1828 (in Chinese).
张方浩,蒋飞蕊,李永强,白仙富,余庆坤. 2016. 云南地区地震烈度评估模型研究[J]. 中国地震,32(3):511–521. doi: 10.3969/j.issn.1001-4683.2016.03.008 Zhang F H,Jiang F R,Li Y Q,Bai X F,Yu Q K. 2016. Study of the evaluation model of the earthquake influence in Yunnan[J]. Earthquake Research in China,32(3):511–521 (in Chinese).
张先康,赵金仁,刘国华,宋文荣,刘保金,赵成斌,成双喜,刘建达,顾梦林,孙振国. 2002. 三河—平谷8.0级大震区震源细结构的深地震反射探测研究[J]. 中国地震,18(4):326–336. Zhang X K,Zhao J R,Liu G H,Song W R,Liu B J,Zhao C B,Cheng S X,Liu J D,Gu M L,Sun Z G. 2002. Study on fine crustal structure of the Sanhe-Pinggu earthquake (M8.0) region by deep seismic reflection profiling[J]. Earthquake Research in China,18(4):326–336 (in Chinese).
周红. 2018. 基于NNSIM随机有限断层法的7.0级九寨沟地震强地面运动场重建[J]. 地球物理学报,61(5):2111–2121. Zhou H. 2018. Reconstruction of strong ground motion of Jiuzhaigou M7.0 earthquake based on NNSIM stochastic finite fault method[J]. Chinese Journal of Geophysics,61(5):2111–2121 (in Chinese).
周红,李亚南,常莹. 2021. 云南漾濞6.4级地震强地面运动的模拟和空间分布特征分析[J]. 地球物理学报,64(12):4526–4537. doi: 10.6038/cjg2021P0421 Zhou H,Li Y N,Chang Y. 2021. Simulation and analysis of spatial distribution characteristics of strong ground motions by the 2021 Yangbi,Yunnan Province MS6.4 earthquake[J]. Chinese Journal of Geophysics,64(12):4526–4537 (in Chinese).
朱耿尚. 2014. 有限差分方法在强地面运动模拟中的应用[D]. 合肥: 中国科学技术大学: 72–101. Zhu G S. 2014. Strong Ground Motion Simulation by Finite Difference Method[D]. Hefei: University of Science and Technology of China: 72–101 (in Chinese).
中国地震局. 2020. GB/T 17742−2020. 中国地震烈度表[S]. 北京: 中国国家标准化管理委员会: 9. China Earthquake Administration. 2020. GB/T 17742−2020. The Chinese Seismic Intensity Scale[S]. Beijing: Standardization Administration: 9.
Andrews D J. 1980. A stochastic fault model:1. Static case[J]. J Geophys Res:Solid Earth,85(B7):3867–3877. doi: 10.1029/JB085iB07p03867
Bakun W H,Wentworth C M. 1999. Estimating earthquake location and magnitude from seismic intensty data[J]. Bull Seismol Soc Am,89(2):557. doi: 10.1785/BSSA0890020557
Bakun W H,Haugerud R A,Hopper M G,Ludwin R S. 2002. The December 1872 Washington State earthquake[J]. Bull Seismol Soc Am,92(8):3239–3258. doi: 10.1785/0120010274
Bakun W H,Johnston A C,Hopper M G. 2003. Estimating locations and magnitudes of earthquakes in eastern North America from Modified Mercalli intensities[J]. Bull Seismol Soc Am,93(1):190–202. doi: 10.1785/0120020087
Beresnev I A,Atkinson G M. 1997. Modeling finite-fault radiation from the ω n spectrum[J]. Bull Seismol Soc Am,87(1):67–84. doi: 10.1785/BSSA0870010067
Bock Y,Melgar D,Crowell B W. 2011. Real-time strong-motion broadband displacements from collocated GPS and accelerometers[J]. Bull Seismol Soc Am,101(6):2904–2925. doi: 10.1785/0120110007
Borcherdt R D. 1991. On the observation,characterisation,and predictive GIS mapping of strong ground shaking for seismic zonation:A case study in the San Francisco Bay region,California[J]. Bull New Zealand Soc Earthquake Eng,24(4):287–305. doi: 10.5459/bnzsee.24.4.287-305
Elósegui P,Davis J L,Oberlander D,Baena R,Ekström G. 2006. Accuracy of high-rate GPS for seismology[J]. Geophys Res Lett,33(11):L11308.
Fu G, Wang Z, Liu J, Wang Y. 2022. Lithospheric equilibrium and anisotropy around the 2021 Yangbi MS6.4 earthquake in Yunnan, China[J]. Journal of Earth Science: 1–25.
Hinzen K G,Oemisch M. 2001. Location and magnitude from seismic intensity data of recent and historic earthquakes in the Northern Rhine area,Central Europe[J]. Bull Seismol Soc Am,91(1):40–56. doi: 10.1785/0120000036
Huang X Y,Yang D H,Tong P,Gao Y,Shi Y T,Wu H. 2021. Quasi-waveform seismic tomography of crustal structures in the Capital Circle region of China[J]. Science China Earth Sciences,64(1):110–126. doi: 10.1007/s11430-019-9663-4
Hung H K,Rau R J. 2013. Surface waves of the 2011 Tohoku earthquake:Observations of Taiwan's dense high-rate GPS network[J]. J Geophys Res:Solid Earth,118(1):332–345. doi: 10.1029/2012JB009689
Lin G L,Wang J. 2020. Estimation of the parameters of historical earthquakes with a new attenuation equation in Yunnan Province,China[J]. Seismol Res Lett,91(5):2651–2661. doi: 10.1785/0220200070
Motazedian D,Atkinson G M. 2005. Stochastic finite-fault modeling based on a dynamic corner frequency[J]. Bull Seismol Soc Am,95(3):995–1010. doi: 10.1785/0120030207
Parsons T,Toda S,Stein R S,Barka A,Dieterich J H. 2000. Heightened odds of large earthquakes near Istanbul:An interaction-based probability calculation[J]. Science,288(5466):661–665. doi: 10.1126/science.288.5466.661
Peng C Y,Yang J S,Xue B,Zhu X Y,Chen Y. 2014. Exploring the feasibility of earthquake early warning using records of the 2008 Wenchuan earthquake and its aftershocks[J]. Soil Dyn Earthqu Eng,57:86–93. doi: 10.1016/j.soildyn.2013.11.005
Quadros L,Assumpção M,de Souza A P T. 2019. Seismic intensity attenuation for intraplate earthquakes in Brazil with the re-evaluation of historical seismicity[J]. Seismol Res Lett,90(6):2217–2226. doi: 10.1785/0220190120
Ripperger J,Mai P M. 2004. Fast computation of static stress changes on 2D faults from final slip distributions[J]. Geophys Res Lett,31(18):L18610. doi: 10.1029/2004GL020594
Shi C,Lou Y,Zhang H,Zhao Q,Geng J,Wang R,Fang R,Liu J. 2010. Seismic deformation of the MW8.0 Wenchuan earthquake from high-rate GPS observations[J]. Adv Space Res,46(2):228–235. doi: 10.1016/j.asr.2010.03.006
Somerville P,Irikura K,Graves R,Sawada S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80. doi: 10.1785/gssrl.70.1.59
Wang G Q,Boore D M,Tang G Q,Zhou X Y. 2007. Comparisons of ground motions from colocated and closely spaced one-sample-per-second global positioning system and accelerograph recordings of the 2003 M6.5 San Simeon,California,earthquake in the Parkfield region[J]. Bull Seismol Soc Am,97(1B):76–90. doi: 10.1785/0120060053
Wang X S,Feng X D,Xu X W,Diao G L,Wan Y G,Wang L B,Ma G Q. 2014. Fault plane parameters of Sanhe-Pinggu M8.0 earthquake in 1679 determined using present-day small earthquakes[J]. Earthquake Science,27(6):607–614. doi: 10.1007/s11589-014-0099-3
Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.
Yin H T,Zhang P Z,Gan W J,Wang M,Liao H,Li X J,Li J,Xiao G R. 2010. Near-field surface movement during the Wenchuan MS8.0 earthquake measured by high-rate GPS[J]. Chinese Science Bulletin,55(23):2529–2534. doi: 10.1007/s11434-010-4026-2
Zhang X H,Guo F,Guo B F,Lü C X. 2012. Coseismic displacement monitoring and wave picking with high-frequency GPS[J]. Chinese Journal of Geophysics,55(6):1912–1918.
Zhou H,Chang Y. 2019. Stochastic finite-fault method controlled by the fault rupture process and its application to the MS7.0 Lushan earthquake[J]. Soil Dyn Earthq Eng,126:105782. doi: 10.1016/j.soildyn.2019.105782