冷竹关沟高陡斜坡地震动响应特征

唐涛, 王运生, 吴昊宸, 刘世成, 冯卓, 詹明斌

唐涛,王运生,吴昊宸,刘世成,冯卓,詹明斌. 2024. 冷竹关沟高陡斜坡地震动响应特征. 地震学报,46(3):502−513. DOI: 10.11939/jass.20220121
引用本文: 唐涛,王运生,吴昊宸,刘世成,冯卓,詹明斌. 2024. 冷竹关沟高陡斜坡地震动响应特征. 地震学报,46(3):502−513. DOI: 10.11939/jass.20220121
Tang T,Wang Y S,Wu H C,Liu S C,Feng Z,Zhan M B. 2024. Analysis of seismic response characteristics of high and steep slope in Lengzhuguan gully. Acta Seismologica Sinica46(3):502−513. DOI: 10.11939/jass.20220121
Citation: Tang T,Wang Y S,Wu H C,Liu S C,Feng Z,Zhan M B. 2024. Analysis of seismic response characteristics of high and steep slope in Lengzhuguan gully. Acta Seismologica Sinica46(3):502−513. DOI: 10.11939/jass.20220121

冷竹关沟高陡斜坡地震动响应特征

基金项目: 国家自然科学基金(41877235)、国家重点研发计划(2017YFC1501000)、国家创新研究群体科学基金(41521002)和地质灾害防治与地质环境保护国家重点实验室自主课题 (SKLGP2015Z001)共同资助
详细信息
    作者简介:

    唐涛,在读硕士研究生,主要从事工程地质、地质灾害和地震动研究;e-mail:1152558431@qq.com

    通讯作者:

    王运生,博士,教授,主要从事工程地质力学方面的研究,e-mail:wangys60@163.com

  • 中图分类号: P315.3

Analysis of seismic response characteristics of high and steep slope in Lengzhuguan gully

  • 摘要:

    四川省泸定县冷竹关沟两岸属于高陡斜坡,距2022年5月20日汉源MS4.8地震震中52 km。基于冷竹关沟监测剖面上安置的4台强震仪对汉源MS4.8地震的监测数据,分析了高陡斜坡上的地震波响应规律,并与前人研究成果对比,结果显示:① 斜坡对此次地震的地震波放大效应在水平南北向最为显著,右岸半岛状山梁处的放大作用强于左岸浑厚山体,且随着高程的增加场地的放大作用逐渐增大;② 斜坡右岸的地震动卓越频率为2—6 Hz,左岸主要分布在7—13 Hz,冷竹关沟高陡斜坡的地震动卓越频率在半岛状山梁部位以特低频为主,在浑厚山体斜坡以中低频为主,在未来可能发生的地震中,斜坡更容易与卓越频率在此范围内的地震动记录发生共振作用,以致坡体地震动响应强烈;③ 冷竹关沟高陡斜坡存在地震波背坡效应,同时该处斜坡对地震波的放大效应还受到微地形的控制,地震波在右岸坡顶凸起地形处能量最为强烈,右岸斜坡坡顶在地震波经过时更容易发生崩塌等次生灾害。

    Abstract:

    The northwest region of Sichuan is located in the southeastern part of the Qinghai Tibet Plateau, with well-developed mountain and canyon landforms and frequent earthquakes. It belongs to a seismically active mountainous region. Both sides of Lengzhuguan gully in Luding County, Sichuan Province belong to high and steep slopes, which are representative in the high mountain and canyon areas of western China. At the same time, Lengzhuguan gully is located in the transitional zone from the Qinghai Tibet Plateau to the Sichuan Basin, as well as the “Y” shaped area where the southwest end of the Longmenshan Fault Zone intersects with the Xianshui River Fault Zone, The tectonic activity in the area is strong, and the setting up strong earthquake monitoring profiles here can effectively monitor seismic wave information in the nearby area. These seismic data can be used to effectively analyze the seismic dynamic characteristics of the terrain in the area. On May 20, 2022, an MS4.8 earthquake occurred in Hanyuan County, Sichuan Province, with the epicenter 52 km away from the Lengzhuguan gully monitoring profile. This earthquake triggered the installation of four strong seismic instruments on the Lengzhuguan gully monitoring profile, and obtained seismic wave time history data of the Hanyuan MS4.8 earthquake. To study the seismic wave response law on high and steep slopes, the peak acceleration and Arias intensity characteristics of this seismic wave were analyzed through the time history curve of monitoring points, Obtain the peak acceleration amplification coefficient and Arias intensity amplification coefficient of different elevation monitoring points. After processing and analyzing the acceleration time-history curve (including filtering and correction), we have calculated the three-component seismic acceleration response spectra under different damping ratios (5%, 10%, 20%). Studying the terrain amplification effect of seismic waves in different parts of the slope, and comparing and analyzing with previous research results based on the Kangding MS6.3 earthquake and Lushan MS7.0 earthquake monitoring data in Lengzhuguan gully, we revealed that the seismic response characteristics on both sides of Lengzhuguan gully. The results showed that: ① The high and steep slope of Lengzhuguan gully had a clear directional amplification effect on the seismic wave of the Hanyuan MS4.8 earthquake, which was the most significant in the horizontal north-south direction. At the same time, the amplification effect at the peninsula shaped mountain ridge on the right bank was stronger than that on the thick mountain body on the left bank, and it shows a trend of increasing with the elevation increasement; ② Comparing the Kangding MS6.3 earthquake and the Lushan MS7.0 earthquake, we can see that the predominant frequency of ground motion on the right bank of Lengzhuguan gully is 2−6 Hz, and the dominant frequency on the left bank is 7−13 Hz. This indicates that the dominant frequency of seismic waves on this slope is mainly at ultra-low frequencies in the peninsula shaped mountain ridge, and at median low frequencies in the thick mountain slope. For the possible earthquake in the future, the high and steep slope of Lengzhuguan gully is more likely to resonate with seismic waves that having dominant frequencies mentioned above, which may result in a strong seismic response of the slope. The lower the characteristic frequency of high and steep slopes, the stronger the amplification effect; ③ Compared with the seismic monitoring data of Kangding MS6.3, it indicates the existence of the back slope effect of seismic waves. At the same time, the amplification effect of the slope on seismic waves is also controlled by the microtopography. The seismic waves converge at monitoring point 1, and the seismic energy is the strongest. This indicates that the right bank slope top is more prone to seismic response and secondary disasters such as landslides under the influence of the protruding aerial terrain at the top of the mountain ridge.

  • 图  1   监测点位置与震中关系图

    Figure  1.   Relationship between monitoring point location and epicenters

    图  2   监测点平面布置图(罗永红等,2013)(a)及监剖面图(b)

    Figure  2.   The layout of monitoring points (Luo et al,2013)(a) and monitoring profile map (b)

    图  3   1#—4# (a−d)监测点加速度时程曲线

    Figure  3.   Acceleration time history curves of 1#—4# (a−d) monitoring points

    图  4   1#—4# (a−d)监测点加速度反应谱

    Figure  4.   Acceleration response spectrum of 1#—4# (a−d) monitoring points

    图  5   1#—4#(a−d)监测点连续小波三分量分解图

    Figure  5.   Three−component continuous wavelet decomposition of 1#—4# (a−d) monitoring points

    表  1   各监测点位置参数

    Table  1   Location parameters of monitoring points

    监测点 高程/m 与谷底
    高差/m
    地理位置 岩性
    东经 北纬
    1# 1516 106 102º09′28.18″ 30º02′58.16″ 花岗岩
    2# 1478 68 102º09′29.06″ 30º03′03.06″ 花岗岩
    3# 1419 9 102º09′26.37″ 30º03′07.14″ 花岗岩
    4# 1494 84 102º09′23.06″ 30º03′05.31″ 花岗岩
    下载: 导出CSV

    表  2   各监测点地震动响应特征

    Table  2   Seismic response characteristics of monitoring points

    监测点 峰值加速度/(m·s−2 阿里亚斯强度/(m·s−1
    EW SN UD EW SN UD
    1# 0.369 0.599 0.304 1.414 2.289 0.414
    2# 0.167 0.173 0.112 0.109 0.136 0.057
    3# 0.065 0.052 0.050 0.014 0.010 0.009
    4# 0.132 0.171 0.081 0.067 0.097 0.037
    下载: 导出CSV

    表  3   各监测点加速度分量反应谱特征周期

    Table  3   Characteristic period of acceleration component response spectrum at each monitoring point

    监测点 特征周期T/s
    EW向 NS向 UD向
    1# 0.30 0.30 0.14
    2# 0.08 0.08 0.06
    3# 0.08 0.32 0.12
    4# 0.08 0.08 0.06
    下载: 导出CSV

    表  4   各监测点波峰参数表

    Table  4   Peak parameters of monitoring points

    监测点 EW向 NS向 UD向
    时间/s 频率/Hz 幅值/(m·s−2 时间/s 频率/Hz 幅值/(m·s−2 时间/s 频率/Hz 幅值/(m·s−2
    1# 15.26 3.21 0.193 14.09 2.86 0.271 14.53 7.50 0.108
    2# 18.45 10.71 0.036 18.41 2.86 0.062 18.25 6.79 0.032
    3# 18.94 11.07 0.015 18.97 3.21 0.022 18.89 3.57 0.012
    4# 19.01 10.71 0.042 19.30 12.86 0.034 18.90 7.14 0.019
    下载: 导出CSV

    表  5   监测点峰值加速度放大系数和阿里亚斯强度放大系数

    Table  5   Peak acceleration amplification factor and Arias intensity amplifcation factor of monitoring points

    监测点 峰值加速度放大系数 阿里亚斯强度放大系数
    EW向 NS向 UD向 EW向 NS向 UD向
    1# 5.7 11.5 6.1 101 229 46
    2# 2.6 3.3 2.2 7.8 13.6 6.3
    4# 2.6 3.3 1.6 6.9 6.7 4.1
    下载: 导出CSV

    表  6   三次地震卓越频率范围对比

    Table  6   Comparison of predominant frequency range of three earthquakes

    监测点 地震动卓越频率范围/Hz
    汉源MS4.8地震 康定MS6.3地震 芦山MS7.0地震
    1# 2—8 2—6 3—7
    2# 2—11 2—6 2—5
    下载: 导出CSV

    表  7   汉源MS4.8和康定MS6.3地震峰值加速度和阿里亚斯强度放大系数对比

    Table  7   Comparison of peak acceleration and Arias intensity amplification factor of Hanyuan MS4.8 and Kangding MS6.3 earthquakes

    地震峰值加速度放大系数阿里亚斯强度放大系数
    EW向SN向UD向EW向SN向UD向
    汉源MS4.82.213.462.7112.9716.837.26
    康定MS6.32.672.113.0610.2911.0910.00
    下载: 导出CSV
  • 薄景山,李秀领,李山有. 2003. 场地条件对地震动影响研究的若干进展[J]. 世界地震工程,19(2):11–15. doi: 10.3969/j.issn.1007-6069.2003.02.002

    Bo J S,Li X L,Li S Y. 2003. Some progress of study on the effect of site conditions on ground motion[J]. World Earthquake Engineering,19(2):11–15 (in Chinese).

    陈国平,温留汉·黑沙,王帅. 2011. 多种表征强震动记录特性的参数对比分析[J]. 华南地震,31(2):45–53. doi: 10.3969/j.issn.1001-8662.2011.02.006

    Chen G P,Wen L H H S,Wang S. 2011. Comparisons of various characteristic parameters of strong motions[J]. South China Journal of Seismology,31(2):45–53 (in Chinese).

    贺建先,王运生,罗永红,曹水合,赫子皓. 2015. 康定MS6.3级地震斜坡地震动响应监测分析[J]. 工程地质学报,23(3):383–393.

    He J X,Wang Y S,Luo Y H,Cao S H,He Z H. 2015. Monitoring result analysis of slope seismic response during the Kangding MS6.3 earthquake[J]. Journal of Engineering Geology,23(3):383–393 (in Chinese).

    黄润秋,李为乐. 2008. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,27(12):2585–2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    Huang R Q,Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,27(12):2585–2592 (in Chinese).

    黄润秋,王运生,裴向军,李渝生,李为乐,罗永红. 2013. 4·20芦山MS7.0级地震地质灾害特征[J]. 西南交通大学学报,48(4):581–589. doi: 10.3969/j.issn.0258-2724.2013.04.001

    Huang R Q,Wang Y S,Pei X J,Li Y S,Li W L,Luo Y H. 2013. Characteristics of co-seismic landslides triggered by the Lushan MS7.0 earthquake on the 20th of April,Sichuan Province,China[J]. Journal of Southwest Jiaotong University,48(4):581–589 (in Chinese).

    金刚,王运生,何先龙,史丙新,周宇航. 2021. 基于连续小波变换的斜坡动力响应特征分析:以四川长宁MS6.0级地震为例[J]. 中国地质灾害与防治学报,32(2):1–8.

    Jin G,Wang Y S,He X L,Shi B X,Zhou Y H. 2021. Time-frequency characteristics and seismic response analyses of the 6.0-magnitude earthquake,Changning County of Yibin in southwest China's Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,32(2):1–8 (in Chinese).

    李杰. 1993. 几类反应谱的概念差异及其意义[J]. 世界地震工程,(4):9–14.

    Li J. 1993. Conceptual differences and significances of several types of response spectrum[J]. World Earthquake Engineering,(4):9–14 (in Chinese).

    刘洪兵,朱晞. 1999. 地震中地形放大效应的观测和研究进展[J]. 世界地震工程,15(3):20–25.

    Liu H B,Zhu X. 1999. Advance on topographic amplification effects of seismic response[J]. World Information on Earthquake Engineering,15(3):20–25 (in Chinese).

    刘峡,张学民. 2002. 小波变换与地震信号特征分析[J]. 地震,22(3):51–57. doi: 10.3969/j.issn.1000-3274.2002.03.009

    Liu X,Zhang X M. 2002. Wavelet transform and seismic signal analysis[J]. Earthquake,22(3):51–57 (in Chinese).

    卢育霞,刘琨,王良,魏来,李少华. 2017. 基于台阵记录的土层山体场地效应分析[J]. 地震学报,39(6):941–954.

    Lu Y X,Liu K,Wang L,Wei L,Li S H. 2017. Site effect of unconsolidated soil hill based on seismic array records[J]. Acta Seismologica Sinica,39(6):941–954 (in Chinese).

    罗永红,王运生. 2013. 汶川地震诱发山地斜坡震动的地形放大效应[J]. 山地学报,31(2):200–210. doi: 10.3969/j.issn.1008-2786.2013.02.009

    Luo Y H,Wang Y S. 2013. Mountain slope ground motion topography amplification effect induced by Wenchuan earthquake[J]. Mountain Research,31(2):200–210 (in Chinese).

    罗永红,王运生,何源,高原,刘哲,曹文正. 2013. “4·20”芦山地震冷竹关地震动响应监测数据分析[J]. 成都理工大学学报(自然科学版),40(3):232–241. doi: 10.3969/j.issn.1671-9727.2013.03.02

    Luo Y H,Wang Y S,He Y,Gao Y,Liu Z,Cao W Z. 2013. Monitoring result analysis of Lenzhuguan slope ground shock response of Lushan earthquake of Sichuan,China[J]. Journal of Chengdu University of Technology (Science &Technology Edition),40(3):232–241 (in Chinese).

    申通,王运生,罗永红,赵波,辛聪聪,贺建先,古德章,张得彦. 2018. 九寨沟MS7.0级地震斜坡地震动响应监测研究[J]. 工程地质学报,26(6):1611–1621.

    Shen T,Wang Y S,Luo Y H,Zhao B,Xin C C,He J X,Gu D Z,Zhang D Y. 2018. Monitoring result and analysis of slope seismic response during the Jiuzhaigou MS7.0 earthquake[J]. Journal of Engineering Geology,26(6):1611–1621 (in Chinese).

    陶夏新,王国新. 2003. 近场强地震动模拟中对破裂的方向性效应和上盘效应的表达[J]. 地震学报,25(2):191–198. doi: 10.3321/j.issn:0253-3782.2003.02.009

    Tao X X,Wang G X. 2003. Rupture directivity and hanging wall effect in near field strong ground motion simulation[J]. Acta Seismologica Sinica,25(2):191–198 (in Chinese).

    王运生,徐鸿彪,罗永红,吴俊峰. 2009. 地震高位滑坡形成条件及抛射运动程式研究[J]. 岩石力学与工程学报,28(11):2360–2368. doi: 10.3321/j.issn:1000-6915.2009.11.027

    Wang Y S,Xu H B,Luo Y H,Wu J F. 2009. Study of formation conditions and toss motion program of high landslides induced by earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,28(11):2360–2368 (in Chinese).

    徐光兴,姚令侃,李朝红,高召宁. 2008. 边坡地震动力响应规律及地震动参数影响研究[J]. 岩土工程学报,30(6):918–923. doi: 10.3321/j.issn:1000-4548.2008.06.022

    Xu G X,Yao L K,Li Z H,Gao Z N. 2008. Dynamic response of slopes under earthquakes and influence of ground motion parameters[J]. Chinese Journal of Geotechnical Engineering,30(6):918–923 (in Chinese).

    中华人民共和国国家能源局. 2009. DL/T 5416—2009水工建筑物强震动安全监测技术规范[S]. 北京:中华人民共和国国家能源局:17.

    National Energy Administration of the People’s Republic of China. 2009. DL/T 5416−2009 Specification of Strong Motion Safety Monitoring for Hydraulic Structures[S]. Beijing:National Energy Administration of the People’s Republic of China:17 (in Chinese).

    周泽华,吕艳,苏生瑞,刁钰恒,王祚鹏,王剑昆,赵辉. 2022. 花岗岩质边坡地震动力响应及破坏特征大型振动台试验研究[J]. 岩土力学,43(4):918–931.

    Zhou Z H,Lü Y,Su S R,Diao Y H,Wang Z P,Wang J K,Zhao H. 2022. Seismic response and failure characteristics of gra-nite slope using large-scale shaking table test[J]. Rock and Soil Mechanics,43(4):918–931 (in Chinese).

    Arias A. 1970. A measure of earthquake intensity[G]//Seismic Design for Nuclear Power Plants. Cambridge:MIT Press:438−483.

    Che A L,Yang H K,Wang B,Ge X R. 2016. Wave propagations through jointed rock masses and their effects on the stability of slopes[J]. Eng Geol,201:45–56. doi: 10.1016/j.enggeo.2015.12.018

    Guan Z C,Zhou Y,Gou X D,Huang H W,Wu X Z. 2019. The seismic responses and seismic properties of large section mountain tunnel based on shaking table tests[J]. Tunnell Undergr Space Technol,90:383–393. doi: 10.1016/j.tust.2019.05.017

    Su W C,Huang C S. 2017. Identification of structural stiffness parameters via wavelet packet from seismic response[J]. Procedia Eng,199:1032–1037. doi: 10.1016/j.proeng.2017.09.278

    Zhao B,Wang Y S,Luo Y H,Liang R F,Li J,Xie L L. 2019. Large landslides at the northeastern margin of the Bayan Har block,Tibetan Plateau,China[J]. Roy Soc Open Sci,6(1):180844. doi: 10.1098/rsos.180844

    Zhao C B,Valliappan S. 1993. Incident P and SV wave scattering effects under different canyon topographic and geological conditions[J]. Int J Numer Anal Methods Geomech,17(2):73–94. doi: 10.1002/nag.1610170202

图(5)  /  表(7)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  15
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-12-25
  • 网络出版日期:  2023-10-26
  • 刊出日期:  2024-05-14

目录

    /

    返回文章
    返回