Effect of pulse characteristics of near-fault ground motions on the response of equipment-structure coupled isolation system
-
摘要: 基于设备−结构耦合隔震体系模型,选取了50条近断层脉冲型地震波,以脉冲周期与结构基本周期比TP/T=1为分界线,分析了周期比和脉冲能量对结构响应的影响,并对穿零次数小于等于5的隔震层位移比与周期比和脉冲能量的关系进行了拟合。结果表明:脉冲特性对结构的影响主要与周期比TP/T和脉冲能量有关,同时也需考虑速度脉冲对应的加速度曲线穿零次数的影响;此外,设备响应与顶层楼面加速度直接相关,与近断层地震动的脉冲特性则无明显相关性。Abstract: Based on the model of equipment-structure coupled isolation system, 50 near-fault pulse-like seismic waves were selected and the effect of period ratio TP/T (the ratio of the pulse period to the basic period of the structure) and pulse energy on the structural response was analyzed using TP/T=1 as the dividing line; and the relationships between the displacement ratio of isolation layer and the period ratio and pulse energy were fitted while the zero-crossing times is not less than 5. The analyses show that the influence of pulse characteristics on the structure is mainly related to the period ratio TP/T and the pulse energy, while the influence of the zero-crossing times of the acceleration curve corresponding to the velocity pulse needs to be considered. Furthermore, the equipment response is directly related to the top floor acceleration, but there is no significant direct correlation with the pulse characteristics of near-fault ground motions.
-
Keywords:
- near-fault ground motions /
- pulse characteristics /
- period ratio /
- pulse energy /
- isolation system
-
-
图 7 隔震层最大位移与速度脉冲的三种对应关系
(a) 最大位移处无速度脉冲(32号地震波);(b) 最大位移处不对应最大速度脉冲(28号地震波);(c) 最大位移处对应最大速度脉冲(10号地震波)
Figure 7. Three correspondences between the maximum displacement of isolation layer and the velocity pulse
(a) No velocity pulse corresponds to the maximum displacement (seismic wave No.32);(b) Maximum velocity pulse does not correspond to the maximum displacement (seismic wave No.28);(c) Maximum velocity pulse corresponds to the maximum displacement (seismic wave No.10)
表 1 缩尺模型与原型的相似关系
Table 1 Similarity relation of single-span model and prototype structure
类型 物理量 相似关系 相似比 类型 物理量 相似关系 相似比 材料特性 应力 $ {S_{ E}} $ 1 荷载特性 面荷载 ${S_{ E}}$ 1 应变 1 1 加速度 1 1 弹性模量 ${S_{ E} }$ 1 速度 ${S^{1/2}_{ {\rm{L} } } }$ 1:2 泊松比 1 1 重力加速度 1 1 几何特性 长度 ${S_{ {\rm{L}}} }$ 1:4 阻尼系数 ${S_{ E} }{S^{3/2}_{ {\rm{L} } } }$ 1:8 位移 ${S_{ {\rm{L}}} }$ 1:4 时间 ${S^{1/2}_{ {\rm{L} } } }$ 1:2 频率 ${S^{ - 1/2} _{ {\rm{L} } } }$ 2 注:表中SE为弹性模量相似常数,SL为长度相似常数。 表 2 原型结构和缩尺模型的前三阶自振周期
Table 2 The first three natural vibration periods of prototype structure and single-span model
模型 自振周期/s 第一阶 第二阶 第三阶 双向单跨原型 0.86 0.86 0.49 缩尺模型 0.44 0.44 0.24 表 3 本研究选取的50条近断层脉冲型地震波
Table 3 The 50 near-fault pulse-like seismic waves selected for this study
序号 PEER记录编号 分量 地震名称 发震时间 MW 脉冲周期/s 1 1050 FN Northridge-01 1994 6.69 0.50 2 615 FN Whittier Narrows-01 1987 5.99 0.79 3 496 FP Nahanni,Canada 1985 6.76 0.81 4 568 FN San Salvador 1986 5.80 0.86 5 1051 FN Northridge-01 1994 6.69 0.90 6 828 FP Cape Mendocino 1992 7.01 0.90 7 1602 FP Duzce,Turkey 1999 7.14 0.91 8 569 FP San Salvador 1986 5.80 1.00 9 451 FP Morgan Hill 1984 6.19 1.10 10 459 FN Morgan Hill 1984 6.19 1.20 11 150 FN Coyote Lake 1979 5.74 1.20 12 765 FN Loma Prieta 1989 6.93 1.20 13 1202 FN Chi-Chi,Taiwan,China 1999 7.62 1.40 14 529 FN N. Palm Springs 1986 6.06 1.40 15 1119 FN Kobe,Japan 1995 6.90 1.40 16 77 FN San Fernando 1971 6.61 1.60 17 1120 FN Kobe,Japan 1995 6.90 1.60 18 766 FN Loma Prieta 1989 6.93 1.70 19 1013 FN Northridge-01 1994 6.69 1.70 20 763 FN Loma Prieta 1989 6.93 1.80 21 568 FP San Salvador 1986 5.80 1.80 22 803 FN Loma Prieta 1989 6.93 1.90 23 173 FP Imperial Valley-06 1979 6.53 2.00 24 722 FP Superstition Hills-02 1987 6.54 2.10 25 821 FP Erzican,Turkey 1992 6.93 2.20 26 1045 FP Northridge-01 1994 6.69 2.20 27 1044 FN Northridge-01 1994 6.69 2.20 28 159 FN Imperial Valley-06 1979 6.53 2.30 29 723 FN Superstition Hills-02 1987 6.54 2.30 30 158 FN Imperial Valley-06 1979 6.53 2.40 31 721 FN Superstition Hills-02 1987 6.54 2.40 32 1045 FN Northridge-01 1994 6.69 2.40 33 1182 FN Chi-Chi,Taiwan,China 1999 7.62 2.60 34 821 FN Erzican,Turkey 1992 6.93 2.70 35 1013 FP Northridge-01 1994 6.69 2.80 36 767 FP Loma Prieta 1989 6.93 3.00 37 1063 FP Northridge-01 1994 6.69 3.00 38 178 FP Imperial Valley-06 1979 6.53 3.10 39 983 FN Northridge-01 1994 6.69 3.50 40 1529 FP Chi-Chi,Taiwan,China 1999 7.62 3.80 41 161 FN Imperial Valley-06 1979 6.53 4.00 42 180 FN Imperial Valley-06 1979 6.53 4.00 43 182 FN Imperial Valley-06 1979 6.53 4.20 44 182 FP Imperial Valley-06 1979 6.53 4.50 45 802 FN Loma Prieta 1989 6.93 4.50 46 170 FN Imperial Valley-06 1979 6.53 4.50 47 1176 FP Kocaeli,Turkey 1999 7.51 4.60 48 179 FN Imperial Valley-06 1979 6.53 4.60 49 185 FN Imperial Valley-06 1979 6.53 4.80 50 825 FP Cape Mendocino 1992 7.01 4.90 注:FN为垂直断层分量,FP为平行断层分量,地震波以脉冲周期升序排列。 表 4 隔震层位移对比
Table 4 Comparison of displacement of isolation layer
地震类型 PGA/g 隔震层位移/mm 最大值 平均值 脉冲型 0.07 17.35 6.11 0.20 49.88 17.48 0.40 98.39 35.12 非脉冲型 0.07 6.96 2.72 0.20 19.88 7.77 0.40 39.89 15.51 -
国巍,李宏男. 2008. 多维地震作用下偏心结构楼板谱分析[J]. 工程力学,25(7):125–132. Guo W,Li H N. 2008. Floor response spectrum of eccentric structure to two-dimensional earthquake[J]. Engineering Mechanics,25(7):125–132 (in Chinese).
韩淼,王亮. 2005. 考虑耦联影响的二次结构体系减震分析[J]. 世界地震工程,21(1):42–46. doi: 10.3969/j.issn.1007-6069.2005.01.008 Han M,Wang L. 2005. Seismic analysis of secondary systems considering coupling effect[J]. World Earthquake Engineering,21(1):42–46 (in Chinese).
胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社: 103–104. Hu Y X. 2006. Earthquake Engineering[M]. Beijing: Seismological Press: 103–104 (in Chinese).
李杰,陈淮,孙增寿. 2003. 结构-设备动力相互作用试验研究[J]. 工程力学,20(1):157–161. doi: 10.3969/j.issn.1000-4750.2003.01.031 Li J,Chen H,Sun Z S. 2003. Shaking table tests on spatial structure-equipment model systems[J]. Engineering Mechanics,20(1):157–161 (in Chinese).
李爽,谢礼立. 2007. 近场问题的研究现状与发展方向[J]. 地震学报,29(1):102–111. doi: 10.3321/j.issn:0253-3782.2007.01.012 Li S,Xie L L. 2007. Progress and trend on near-field problems in civil engineering[J]. Acta Seismologica Sinica,29(1):102–111 (in Chinese).
李小军,贺秋梅,张慧颖,雷墉. 2018. 地震动速度脉冲对不同高宽比基础隔震结构抗震性能的影响[J]. 建筑结构学报,39(1):35–42. Li X J,He Q M,Zhang H Y,Lei Y. 2018. Effects of velocity pulse of ground motion on seismic capacity of base-isolated structures with different height-to-width ratios[J]. Journal of Building Structures,39(1):35–42 (in Chinese).
刘启方. 2005. 基于运动学和动力学震源模型的近断层地震动研究[D]. 哈尔滨: 中国地震局工程力学研究所: 19–41. Liu Q F. 2005. Studies on Near-Fault Ground Motions Based on Kinematic and Dynamic Source Models[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 19–41 (in Chinese).
潘毅,时胜杰,常志旺,胡思远. 2018. 近断层脉冲地震动对基础隔震结构放大效应的量化分析[J]. 土木工程学报,51(11):8–16. Pan Y,Shi S J,Chang Z W,Hu S Y. 2018. Quantitative study on amplification effect of base-isolated structures subjected to near-fault pulse-like ground motions[J]. China Civil Engineering Journal,51(11):8–16 (in Chinese).
谭潜,李英民,向渊明,罗文文,卜长明,王丽萍. 2019. 远场长周期地震动特征[J]. 地震工程与工程振动,39(5):177–188. doi: 10.13197/j.eeev.2019.05.177.tanq.018 Tan Q,Li Y M,Xiang Y M,Luo W W,Bu C M,Wang L P. 2019. Study on characteristics of far-field long period ground motion[J]. Earthquake Engineering and Engineering Dynamics,39(5):177–188 (in Chinese).
徐龙军,谢礼立. 2005. 集集地震近断层地震动频谱特性[J]. 地震学报,27(6):656–665. doi: 10.3321/j.issn:0253-3782.2005.06.010 Xu L J,Xie L L. 2005. Characteristics of frequency content of near-fault ground motions during the Chi-Chi earthquake[J]. Acta Seismologica Sinica,27(6):656–665 (in Chinese).
杨迪雄,李刚,程耿东. 2005. 近断层脉冲型地震动作用下隔震结构地震反应分析[J]. 地震工程与工程振动,25(2):119–124. Yang D X,Li G,Cheng G D. 2005. Seismic analysis of base-isolated structures subjected to near-fault pulse-like ground motions[J]. Earthquake Engineering and Engineering Vibration,25(2):119–124 (in Chinese).
Anderson J C,Bertero V V. 1987. Uncertainties in establishing design earthquakes[J]. J Struct Eng,113(8):1709–1724. doi: 10.1061/(ASCE)0733-9445(1987)113:8(1709)
Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255
Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001
Hall J F,Heaton T H,Halling M W,Wald D J. 1995. Near-source ground motion and its effects on flexible buildings[J]. Earthq Spectra,11(4):569–605. doi: 10.1193/1.1585828
Loh C H,Wan S,Liao W I. 2002. Effects of hysteretic model on seismic demands:Consideration of near-fault ground motions[J]. Struct Design Tall Build,11(3):155–169. doi: 10.1002/tal.182
Makris N,Chang S P. 2000. Effect of viscous,viscoplastic and friction damping on the response of seismic isolated structures[J]. Earthq Eng Struct Dyn,29(1):85–107. doi: 10.1002/(SICI)1096-9845(200001)29:1<85::AID-EQE902>3.0.CO;2-N
Mavroeidis G P,Papageorgiou A S. 2003. A mathematical representation of near-fault ground motions[J]. Bull Seismol Soc Am,93(3):1099–1131. doi: 10.1785/0120020100
Oropeza M,Favez P,Lestuzzi P. 2010. Seismic response of nonstructural components in case of nonlinear structures based on floor response spectra method[J]. Bull Earthq Eng,8(2):387–400. doi: 10.1007/s10518-009-9139-0
Rodriguez-Marek A. 2000. Near-Fault Seismic Site Response[D]. Berkeley: University of California: 103–198.
Shahi S K,Baker J W. 2014. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bull Seismol Soc Am,104(5):2456–2466. doi: 10.1785/0120130191
Vassiliou M F,Makris N. 2011. Estimating time scales and length scales in pulselike earthquake acceleration records with wavelet analysis[J]. Bull Seismol Soc Am,101(2):596–618. doi: 10.1785/0120090387
-
期刊类型引用(0)
其他类型引用(3)