近断层地震动脉冲特性对设备-结构耦合隔震体系响应的影响

韩淼, 蒋金卫, 杜红凯, 赵鸣鹤

韩淼,蒋金卫,杜红凯,赵鸣鹤. 2022. 近断层地震动脉冲特性对设备-结构耦合隔震体系响应的影响. 地震学报,44(5):891−902. DOI: 10.11939/jass.20220129
引用本文: 韩淼,蒋金卫,杜红凯,赵鸣鹤. 2022. 近断层地震动脉冲特性对设备-结构耦合隔震体系响应的影响. 地震学报,44(5):891−902. DOI: 10.11939/jass.20220129
Han M,Jiang J W,Du H K,Zhao M H. 2022. Effect of pulse characteristics of near-fault ground motions on the response of equipment-structure coupled isolation system. Acta Seismologica Sinica44(5):891−902. DOI: 10.11939/jass.20220129
Citation: Han M,Jiang J W,Du H K,Zhao M H. 2022. Effect of pulse characteristics of near-fault ground motions on the response of equipment-structure coupled isolation system. Acta Seismologica Sinica44(5):891−902. DOI: 10.11939/jass.20220129

近断层地震动脉冲特性对设备-结构耦合隔震体系响应的影响

基金项目: 国家“十三五”重点研发计划(2019YFC1509500)和北京未来城市设计高精尖创新中心课题(UDC2019032424)共同资助
详细信息
    作者简介:

    韩淼,博士,教授,主要从事工程结构抗震减灾及抗震性能研究,e-mail:hanmiao@bucea.edu.cn

    通讯作者:

    杜红凯,博士,副教授,主要从事工程结构隔震与减震研究,e-mail:duhongkai@bucea.edu.cn

  • 中图分类号: TU352.1

Effect of pulse characteristics of near-fault ground motions on the response of equipment-structure coupled isolation system

  • 摘要: 基于设备−结构耦合隔震体系模型,选取了50条近断层脉冲型地震波,以脉冲周期与结构基本周期比TP/T=1为分界线,分析了周期比和脉冲能量对结构响应的影响,并对穿零次数小于等于5的隔震层位移比与周期比和脉冲能量的关系进行了拟合。结果表明:脉冲特性对结构的影响主要与周期比TP/T和脉冲能量有关,同时也需考虑速度脉冲对应的加速度曲线穿零次数的影响;此外,设备响应与顶层楼面加速度直接相关,与近断层地震动的脉冲特性则无明显相关性。
    Abstract: Based on the model of equipment-structure coupled isolation system, 50 near-fault pulse-like seismic waves were selected and the effect of period ratio TP/T (the ratio of the pulse period to the basic period of the structure) and pulse energy on the structural response was analyzed using TP/T=1 as the dividing line; and the relationships between the displacement ratio of isolation layer and the period ratio and pulse energy were fitted while the zero-crossing times is not less than 5. The analyses show that the influence of pulse characteristics on the structure is mainly related to the period ratio TP/T and the pulse energy, while the influence of the zero-crossing times of the acceleration curve corresponding to the velocity pulse needs to be considered. Furthermore, the equipment response is directly related to the top floor acceleration, but there is no significant direct correlation with the pulse characteristics of near-fault ground motions.
  • 图  4   不同PGA时近断层地震作用下的层间最大位移

    Figure  4.   Maximum interlayer displacements under near-fault ground motions with different PGAs

    图  1   五层钢框架结构

    Figure  1.   Five-storey steel frame structure

    图  2   有限元分析模型

    Figure  2.   Finite element calculation model

    图  3   不同PGA时近断层地震作用下的隔震层最大位移对比

    (a) 近断层脉冲型地震动作用;(b) 近断层非脉冲型地震动作用

    Figure  3.   Comparison of maximum displacement of isolation layer under near-fault ground motions with different PGAs

    (a) Near-fault pulse-like ground motions; (b) Near-fault non-pulse-like ground motions

    图  5   不同PGA的近断层脉冲型地震动作用下设备最大位移对比

    Figure  5.   Comparison of maximum equipment displacement under near-fault pulse-like ground motions with different PGAs

    图  6   不同PGA的近断层脉冲型地震动作用下顶层最大加速度对比

    Figure  6.   Comparison of maximum acceleration of top floor under near-fault pulse-like ground motions with different PGAs

    图  7   隔震层最大位移与速度脉冲的三种对应关系

    (a) 最大位移处无速度脉冲(32号地震波);(b) 最大位移处不对应最大速度脉冲(28号地震波);(c) 最大位移处对应最大速度脉冲(10号地震波)

    Figure  7.   Three correspondences between the maximum displacement of isolation layer and the velocity pulse

    (a) No velocity pulse corresponds to the maximum displacement (seismic wave No.32);(b) Maximum velocity pulse does not correspond to the maximum displacement (seismic wave No.28);(c) Maximum velocity pulse corresponds to the maximum displacement (seismic wave No.10)

    图  8   最大位移与加速度脉冲的关系(32号地震波)

    Figure  8.   Maximum displacement of isolation layer versus acceleration pulse (seismic wave No. 32)

    图  9   隔震层位最大移与周期比TP/T (a)和脉冲能量E (b)的关系

    Figure  9.   Displacement of isolation layer versus period ratio TP/T (a) and pulse energy E (b)

    图  10   穿零次数为1 (a)和9 (b)时速度脉冲对应的加速度曲线

    Figure  10.   Acceleration curves corresponding to velocity pulse with zero-crossing times 1 (a) and 9 (b)

    图  11   设备周期为0.25 s时设备位移与顶层楼面加速度时程的位移谱的关系

    Figure  11.   Relationship between equipment displacement and displacement spectrum of top floor acceleration time histories when the period of the equipment is 0.25 s

    图  12   顶层楼面时程(a)与地震波时程(b)(23号地震波)

    Figure  12.   Top floor time histories (a) and seismic wave time histories (b) (seismic wave No.23)

    表  1   缩尺模型与原型的相似关系

    Table  1   Similarity relation of single-span model and prototype structure

    类型物理量相似关系相似比类型物理量相似关系相似比
    材料特性 应力 $ {S_{ E}} $ 1 荷载特性 面荷载 ${S_{ E}}$ 1
    应变 1 1 加速度 1 1
    弹性模量 ${S_{ E} }$ 1 速度 ${S^{1/2}_{ {\rm{L} } } }$ 1:2
    泊松比 1 1 重力加速度 1 1
    几何特性 长度 ${S_{ {\rm{L}}} }$ 1:4 阻尼系数 ${S_{ E} }{S^{3/2}_{ {\rm{L} } } }$ 1:8
    位移 ${S_{ {\rm{L}}} }$ 1:4 时间 ${S^{1/2}_{ {\rm{L} } } }$ 1:2
    频率 ${S^{ - 1/2} _{ {\rm{L} } } }$ 2
    注:表中SE为弹性模量相似常数,SL为长度相似常数。
    下载: 导出CSV

    表  2   原型结构和缩尺模型的前三阶自振周期

    Table  2   The first three natural vibration periods of prototype structure and single-span model

    模型自振周期/s
    第一阶第二阶第三阶
    双向单跨原型0.86 0.860.49
    缩尺模型0.440.440.24
    下载: 导出CSV

    表  3   本研究选取的50条近断层脉冲型地震波

    Table  3   The 50 near-fault pulse-like seismic waves selected for this study

    序号PEER记录编号分量地震名称发震时间MW脉冲周期/s
    11050FNNorthridge-0119946.690.50
    2615FNWhittier Narrows-0119875.990.79
    3496FPNahanni,Canada19856.760.81
    4568FNSan Salvador19865.800.86
    51051FNNorthridge-0119946.690.90
    6828FPCape Mendocino19927.010.90
    71602FPDuzce,Turkey19997.140.91
    8569FPSan Salvador19865.801.00
    9451FPMorgan Hill19846.191.10
    10459FNMorgan Hill19846.191.20
    11150FNCoyote Lake19795.741.20
    12765FNLoma Prieta19896.931.20
    131202FNChi-Chi,Taiwan,China19997.621.40
    14529FNN. Palm Springs19866.061.40
    151119FNKobe,Japan19956.901.40
    1677FNSan Fernando19716.611.60
    171120FNKobe,Japan19956.901.60
    18766FNLoma Prieta19896.931.70
    191013FNNorthridge-0119946.691.70
    20763FNLoma Prieta19896.931.80
    21568FPSan Salvador19865.801.80
    22803FNLoma Prieta19896.931.90
    23173FPImperial Valley-0619796.532.00
    24722FPSuperstition Hills-0219876.542.10
    25821FPErzican,Turkey19926.932.20
    261045FPNorthridge-0119946.692.20
    271044FNNorthridge-0119946.692.20
    28159FNImperial Valley-0619796.532.30
    29723FNSuperstition Hills-0219876.542.30
    30158FNImperial Valley-0619796.532.40
    31721FNSuperstition Hills-0219876.542.40
    321045FNNorthridge-0119946.692.40
    331182FNChi-Chi,Taiwan,China19997.622.60
    34821FNErzican,Turkey19926.932.70
    351013FPNorthridge-0119946.692.80
    36767FPLoma Prieta19896.933.00
    371063FPNorthridge-0119946.693.00
    38178FPImperial Valley-0619796.533.10
    39983FNNorthridge-0119946.693.50
    401529FPChi-Chi,Taiwan,China19997.623.80
    41161FNImperial Valley-0619796.534.00
    42180FNImperial Valley-0619796.534.00
    43182FNImperial Valley-0619796.534.20
    44182FPImperial Valley-0619796.534.50
    45802FNLoma Prieta19896.934.50
    46170FNImperial Valley-0619796.534.50
    471176FPKocaeli,Turkey19997.514.60
    48179FNImperial Valley-0619796.534.60
    49185FNImperial Valley-0619796.534.80
    50825FPCape Mendocino19927.014.90
    注:FN为垂直断层分量,FP为平行断层分量,地震波以脉冲周期升序排列。
    下载: 导出CSV

    表  4   隔震层位移对比

    Table  4   Comparison of displacement of isolation layer

    地震类型PGA/g隔震层位移/mm
    最大值平均值
    脉冲型0.0717.356.11
    0.2049.8817.48
    0.4098.3935.12
    非脉冲型0.076.962.72
    0.2019.887.77
    0.4039.8915.51
    下载: 导出CSV
  • 国巍,李宏男. 2008. 多维地震作用下偏心结构楼板谱分析[J]. 工程力学,25(7):125–132.

    Guo W,Li H N. 2008. Floor response spectrum of eccentric structure to two-dimensional earthquake[J]. Engineering Mechanics,25(7):125–132 (in Chinese).

    韩淼,王亮. 2005. 考虑耦联影响的二次结构体系减震分析[J]. 世界地震工程,21(1):42–46. doi: 10.3969/j.issn.1007-6069.2005.01.008

    Han M,Wang L. 2005. Seismic analysis of secondary systems considering coupling effect[J]. World Earthquake Engineering,21(1):42–46 (in Chinese).

    胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社: 103–104.

    Hu Y X. 2006. Earthquake Engineering[M]. Beijing: Seismological Press: 103–104 (in Chinese).

    李杰,陈淮,孙增寿. 2003. 结构-设备动力相互作用试验研究[J]. 工程力学,20(1):157–161. doi: 10.3969/j.issn.1000-4750.2003.01.031

    Li J,Chen H,Sun Z S. 2003. Shaking table tests on spatial structure-equipment model systems[J]. Engineering Mechanics,20(1):157–161 (in Chinese).

    李爽,谢礼立. 2007. 近场问题的研究现状与发展方向[J]. 地震学报,29(1):102–111. doi: 10.3321/j.issn:0253-3782.2007.01.012

    Li S,Xie L L. 2007. Progress and trend on near-field problems in civil engineering[J]. Acta Seismologica Sinica,29(1):102–111 (in Chinese).

    李小军,贺秋梅,张慧颖,雷墉. 2018. 地震动速度脉冲对不同高宽比基础隔震结构抗震性能的影响[J]. 建筑结构学报,39(1):35–42.

    Li X J,He Q M,Zhang H Y,Lei Y. 2018. Effects of velocity pulse of ground motion on seismic capacity of base-isolated structures with different height-to-width ratios[J]. Journal of Building Structures,39(1):35–42 (in Chinese).

    刘启方. 2005. 基于运动学和动力学震源模型的近断层地震动研究[D]. 哈尔滨: 中国地震局工程力学研究所: 19–41.

    Liu Q F. 2005. Studies on Near-Fault Ground Motions Based on Kinematic and Dynamic Source Models[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 19–41 (in Chinese).

    潘毅,时胜杰,常志旺,胡思远. 2018. 近断层脉冲地震动对基础隔震结构放大效应的量化分析[J]. 土木工程学报,51(11):8–16.

    Pan Y,Shi S J,Chang Z W,Hu S Y. 2018. Quantitative study on amplification effect of base-isolated structures subjected to near-fault pulse-like ground motions[J]. China Civil Engineering Journal,51(11):8–16 (in Chinese).

    谭潜,李英民,向渊明,罗文文,卜长明,王丽萍. 2019. 远场长周期地震动特征[J]. 地震工程与工程振动,39(5):177–188. doi: 10.13197/j.eeev.2019.05.177.tanq.018

    Tan Q,Li Y M,Xiang Y M,Luo W W,Bu C M,Wang L P. 2019. Study on characteristics of far-field long period ground motion[J]. Earthquake Engineering and Engineering Dynamics,39(5):177–188 (in Chinese).

    徐龙军,谢礼立. 2005. 集集地震近断层地震动频谱特性[J]. 地震学报,27(6):656–665. doi: 10.3321/j.issn:0253-3782.2005.06.010

    Xu L J,Xie L L. 2005. Characteristics of frequency content of near-fault ground motions during the Chi-Chi earthquake[J]. Acta Seismologica Sinica,27(6):656–665 (in Chinese).

    杨迪雄,李刚,程耿东. 2005. 近断层脉冲型地震动作用下隔震结构地震反应分析[J]. 地震工程与工程振动,25(2):119–124.

    Yang D X,Li G,Cheng G D. 2005. Seismic analysis of base-isolated structures subjected to near-fault pulse-like ground motions[J]. Earthquake Engineering and Engineering Vibration,25(2):119–124 (in Chinese).

    Anderson J C,Bertero V V. 1987. Uncertainties in establishing design earthquakes[J]. J Struct Eng,113(8):1709–1724. doi: 10.1061/(ASCE)0733-9445(1987)113:8(1709)

    Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255

    Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001

    Hall J F,Heaton T H,Halling M W,Wald D J. 1995. Near-source ground motion and its effects on flexible buildings[J]. Earthq Spectra,11(4):569–605. doi: 10.1193/1.1585828

    Loh C H,Wan S,Liao W I. 2002. Effects of hysteretic model on seismic demands:Consideration of near-fault ground motions[J]. Struct Design Tall Build,11(3):155–169. doi: 10.1002/tal.182

    Makris N,Chang S P. 2000. Effect of viscous,viscoplastic and friction damping on the response of seismic isolated structures[J]. Earthq Eng Struct Dyn,29(1):85–107. doi: 10.1002/(SICI)1096-9845(200001)29:1<85::AID-EQE902>3.0.CO;2-N

    Mavroeidis G P,Papageorgiou A S. 2003. A mathematical representation of near-fault ground motions[J]. Bull Seismol Soc Am,93(3):1099–1131. doi: 10.1785/0120020100

    Oropeza M,Favez P,Lestuzzi P. 2010. Seismic response of nonstructural components in case of nonlinear structures based on floor response spectra method[J]. Bull Earthq Eng,8(2):387–400. doi: 10.1007/s10518-009-9139-0

    Rodriguez-Marek A. 2000. Near-Fault Seismic Site Response[D]. Berkeley: University of California: 103–198.

    Shahi S K,Baker J W. 2014. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bull Seismol Soc Am,104(5):2456–2466. doi: 10.1785/0120130191

    Vassiliou M F,Makris N. 2011. Estimating time scales and length scales in pulselike earthquake acceleration records with wavelet analysis[J]. Bull Seismol Soc Am,101(2):596–618. doi: 10.1785/0120090387

  • 期刊类型引用(0)

    其他类型引用(3)

图(12)  /  表(4)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  184
  • PDF下载量:  114
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-08-21
  • 网络出版日期:  2022-09-08
  • 发布日期:  2022-09-14

目录

    /

    返回文章
    返回