Study on structural dynamic response under near fault ground motion with different time-frequency characteristics
-
摘要: 研究不同时频特性的地震波作用下,抗震结构和隔震结构耦合设备的动力响应,对五层钢框架振动台模型试验数据进行小波分析。结果表明:主结构动力响应与地震波时频特性直接相关;由于主结构和隔震支座的滤波作用,设备的动力响应受地震波时频特性影响显著,但不具有直接相关性;隔震结构可以使设备的频率远离主结构的频率,从而降低设备的放大系数;设备耦合之后主体结构加速度的变化趋势取决于不同时频特性的地震波能量分布。Abstract: The dynamic response of the anti-seismic structure and the seismic isolation structure Coupled equipment under the action of seismic waves with different time-frequency characteristics is studied, and the wavelet analysis of the test data of the five-layer steel frame shaking table model is carried out. The results show that: the dynamic response of the main structure is directly related to the time-frequency characteristics of seismic waves; due to the filtering effect of the main structure and seismic isolation bearings, the dynamic response of the equipment is significantly affected by the time-frequency characteristics of seismic waves, but there is no direct correlation; isolation can reduce the amplification coefficient of the equipment by moving the frequency of the device away from the frequency of the main structure; the variation trend of the acceleration of the main structure after coupling the equipment depends on the seismic wave energy distribution with different time-frequency characteristics.
-
Key words:
- shaking table test /
- coupled system /
- dynamic response /
- wavelet analysis
-
表 1 铅芯隔震橡胶支座参数
Table 1. Parameters of lead rubber bearing
有效直径
/mm剪切模量
/MPa高度
/mm橡胶层厚度
/mm中孔直径
/mm刚度/(kN·mm−1) 屈服力
/kN等效阻尼比 竖向 水平等效 屈服后 150 0.4 102.5 28.5 15 270 0.298 0.245 1.5 11% 表 2 试验模型频率
Table 2. Frequency of test model
结构类型 模型 频率/Hz 频率变化率 抗震 主结构 2.84 − 主结构耦合设备1 2.62 8.00% 主结构偶合设备2 2.71 4.68% 隔震 主结构 1.41 − 主结构耦合设备1 1.25 11.61% 主结构耦合设备2 1.41 0 表 3 本文选取的三条地震波基本信息
Table 3. Basic information of seismic waves selected in this study
PEER记录序号 年份 名称 台站 MW 断层距/km 165 1979 Imperial Valley-06 Chihuahua 6.5 7.3 185 1979 Imperial Valley-06 Holtville Post Office 6.5 5.4 766 1989 Gilroy Array #2 Gilroy Array 6.9 10.4 表 4 设备加速度峰值
Table 4. Peak acceleration of equipment
PEER
地震波
编号设备1加速度
峰值/(m·s−2)设备2加速度
峰值/(m·s−2)隔震结构 抗震结构 隔震结构 165 1.42 5.66 1.12 185 1.62 4.43 1.29 766 2.46 2.94 2.36 表 5 重构信号频段
Table 5. Reconfiguring the signal frequency band
频段名称 第一频段/Hz 第二频段/Hz 第三频段/Hz 抗震结构 [ 2.0,3.0 ] [ 3.6,4.6 ] [ 5.5,6.5 ] 隔震结构 [ 1.0,2.0 ] [ 3.5,4.5 ] [ 5.5,6.5 ] 表 6 抗震结构中设备特征频段的设备加速度峰值及放大系数
Table 6. Acceleration peaks and its amplification of the devices in seismic-resistant structures within several characteristic frequency bands equipment
PEER
地震波编号设备2加速度峰值/(m·s−2) 设备2加速度放大系数 第一频段 第三频段 全频段 第一频段 第三频段 全频段 165 2.86 1.00 5.66 1.23 7.47 1.68 185 1.64 1.46 4.43 1.22 6.17 2.00 766 1.86 1.31 2.94 1.23 6.59 1.56 表 7 隔震结构中设备特征频段的设备加速度峰值及放大系数
Table 7. Equipment acceleration in the characteristic frequency band of equipment in a seismically isolated structures
PEER地震
波编号设备1加速度峰值/(m·s−2) 设备1加速度放大系数 设备2加速度峰值/(m·s−2) 设备2加速度放大系数 第一频段 第二频段 全频段 第一频段 第二频段 全频段 第一频段 第三频段 全频段 第一频段 第三频段 全频段 165 0.73 0.9 1.42 1.12 8.76 2.06 0.67 0.46 1.12 1.04 2.84 1.41 185 0.43 0.95 1.62 1.19 11.2 1.82 0.36 0.78 1.29 1.06 3.21 1.75 766 1.4 1.26 2.46 1.12 13.11 1.59 1.18 0.27 2.36 1.03 3.12 1.47 -
曹晖,林学鹏. 2006. 地震动非平稳特性对结构非线性响应影响的分析[J]. 工程力学,23(12):30–35. doi: 10.3969/j.issn.1000-4750.2006.12.006 Cao H,Lin X P. 2006. The effect of nonstationary characteristic of earthquake ground motion on the structural nonlinear responses[J]. Engineering Mechanics,23(12):30–35 (in Chinese). 陈建兵,李杰. 2001. 结构−设备体系动力相互作用研究[J]. 地震工程与工程振动,21(3):70–74. doi: 10.3969/j.issn.1000-1301.2001.03.013 Chen J B,Li J. 2001. Research on dynamic interaction between structure and equipment[J]. Earthquake Engineering and Engi-neering Vibration,21(3):70–74 (in Chinese). 韩淼,王亮. 2005. 考虑耦联影响的二次结构体系减震分析[J]. 世界地震工程,21(1):42–46. doi: 10.3969/j.issn.1007-6069.2005.01.008 Han M,Wang L. 2005. Seismic analysis of secondary systems considering coupled effect[J]. World Earthquake Engineering,21(1):42–46 (in Chinese). 林均岐. 2001. 二级结构地震反应的实验研究[J]. 地震工程与工程振动,21(3):75–78. doi: 10.3969/j.issn.1000-1301.2001.03.014 Lin J Q. 2001. Experimental study on seismic response of secondary structure[J]. Earthquake Engineering and Engineering Vibration,21(3):75–78 (in Chinese). 王玉梅,熊立红,许卫晓. 2013. 芦山7.0级地震医疗建筑震害与启示[J]. 地震工程与工程振动,33(4):44–53. Wang Y M,Xiong L H,Xu W X. 2013. Seismic damage and damage enlightenment of medical buildings in Lushan MS7.0 earthquake[J]. Earthquake Engineering and Engineering Vibration,33(4):44–53 (in Chinese). 中华人民共和国国务院. 2021. 建设工程抗震管理条例[J]. 中华人民共和国国务院公报,(23):13–19. The State Council of the People’s Republic of China. 2021. Regulations on anti-seismic management of construction projects[J]. Gazette of the State Council of the People’s Republic of China,(23):13–19 (in Chinese). 中华人民共和国建设部, 国家质量监督检验检疫总局. 2016. GB50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社. Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2004. GB50011−2001 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press (in Chinese). 周太全,李兆霞,贾军波,贾志斌. 2003. 基础隔震结构在地震作用下动力响应小波分析[J]. 工业建筑,33(6):21–23. doi: 10.3321/j.issn:1000-8993.2003.06.007 Zhou T Q,Li Z X,Jia J B,Jia Z B. 2003. Dynamic response analysis of isolated seismic foundation structure under earthquake motion using wavelet transformation[J]. Industrial Construction,33(6):21–23 (in Chinese). 朱丽华,李窍,张现宾,马颖飞. 2017. 地震作用下结构−设备耦合体系动力相互作用研究[J]. 世界地震工程,33(2):64–70. Zhu L H,Li Q,Zhang X B,Ma Y F. 2017. Study on dynamic interaction of structure-equipment coupled system under earthquake action[J]. World Earthquake Engineering,33(2):64–70 (in Chinese). 朱丽华,周豪毅,张现宾,高飞凡. 2018. 结构−设备耦合体系地震响应振动台试验研究[J]. 土木工程学报,51(增刊2):116–123. Zhu L H,Zhou H Y,Zhang X B,Gao F F. 2018. Shaking table test on seismic response of structure-equipment coupled system[J]. China Civil Engineering Journal,51(S2):116–123 (in Chinese). -