近断层速度脉冲型地震动相关问题研究

赵晓芬 温增平

赵晓芬,温增平. 2022. 近断层速度脉冲型地震动相关问题研究. 地震学报,44(5):765−782 doi: 10.11939/jass.20220141
引用本文: 赵晓芬,温增平. 2022. 近断层速度脉冲型地震动相关问题研究. 地震学报,44(5):765−782 doi: 10.11939/jass.20220141
Zhao X F,Wen Z P. 2022. Review on issues of near-fault velocity pulse-like ground motions. Acta Seismologica Sinica,44(5):765−782 doi: 10.11939/jass.20220141
Citation: Zhao X F,Wen Z P. 2022. Review on issues of near-fault velocity pulse-like ground motions. Acta Seismologica Sinica44(5):765−782 doi: 10.11939/jass.20220141

近断层速度脉冲型地震动相关问题研究

doi: 10.11939/jass.20220141
基金项目: 国家重点研发项目(2020YFA0710603)和中国地震局地球物理研究所基本业务费(DQJB21K44)共同资助
详细信息
    作者简介:

    赵晓芬,博士,助理研究员,主要从事强地震动特性和地震动数值模拟方面的研究,e-mail:929921908@qq.com

    通讯作者:

    温增平,博士,研究员,主要从事城市及工程震害预测方法与减灾对策、强地面运动、结构动力反应分析方法等方面的研究,e-mail:wenzp@cea-igp.ac.cn

  • 中图分类号: P315.9

Review on issues of near-fault velocity pulse-like ground motions

  • 摘要: 近断层速度脉冲型地震动研究对揭示建筑结构的破坏机理、开展抗震设防以及抗震设计具有重要价值。首先,对速度脉冲成因进行了系统的总结,并探讨了区分方向性效应速度脉冲和滑冲效应速度脉冲的思路;其次,系统地介绍了近断层速度脉冲的识别方法,评述了各种脉冲识别方法的优缺点;然后,基于速度脉冲特性,探讨了前方向性效应对速度脉冲特性的影响以及速度脉冲对反应谱的放大作用;最后,对速度脉冲型地震动输入方法以及对结构响应研究进行了系统总结,探讨了速度脉冲型地震动输入的关键问题。基于丰富的理论研究,未来对于速度脉冲型地震动研究工作应当充分结合实际工程需求,推进理论成果的规范标准化与工程实践。

     

  • 图  1  典型地震近断层破裂的前方向性效应(a)和滑冲效应(b)速度脉冲记录的速度和位移时程

    Figure  1.  The velocity and displacement time histories of typical pulse-like strong ground motions caused by forward directivity (a) and fling (b) effects

    图  2  2018年台湾花莲MW6.4地震中HWA012台站的速度时程和位移时程记录

    Figure  2.  The velocity and displacement time histories of pulse-like strong ground motion from the station HWA012 during 2018 Taiwan Hualien MW6.4 earthquake

    图  3  2018年台湾花莲地震中HWA012台站记录的方向性速度脉冲,其中t17%t5%分别为记录能量达到17%和5%的对应时间

    Figure  3.  The pulse caused by directivity effect from the HWA012 station of 2018 Hualien earthquake,t17% and t5% present the times of 17% and 5% of the energy of the original ground motion and extracted pulse,repectively

    图  4  2018年台湾花莲MW6.4地震中台站HWA008记录经基线校正后三分量的加速度、速度和位移时程(引自赵晓芬等,2021

    Figure  4.  Three-component acceleration,velocity and displacement time histories after baseline correction from HWA008 record during 2018 Taiwan Hualien MW6.4 earthquake (after Zhao et al,2021

    图  5  2008年汶川地震51JYT台记录的显著速度脉冲的方位(引自谢俊举等,2017

    Figure  5.  Azimuth showing distinct pulse for 51JYT record during 2008 Wenchuan earthquake (after Xie et al,2017

  • 安昭,谢俊举,李小军,温增平. 2019. 2018年2月6日花莲MW6.4地震近场地震动方向性效应[J]. 地球物理学报,62(12):4658–4672. doi: 10.6038/cjg2019M0579
    An Z,Xie J J,Li X J,Wen Z P. 2019. Directivity effects on strong ground motion from the February 6,2018 MW6.4 Hualien earthquake[J]. Chinese Journal of Geophysics,62(12):4658–4672 (in Chinese).
    常志旺. 2014. 近场脉冲型地震动的量化识别及特性研究[D]. 哈尔滨: 哈尔滨工业大学: 3–4.
    Chang Z W. 2014. Quantitative Identification and the Characteristics of Near-Fault Pulse-Like Ground Motions[D]. Harbin: Harbin Institute of Technology: 3–4 (in Chinese).
    陈波. 2013. 结构非线性动力分析中地震动记录的选择和调整方法研究[D]. 北京: 中国地震局地球物理研究所: 13–25.
    Chen B. 2013. Ground Motion Selection and Modification Methods for Performing Nonlinear Dynamic Analysis of Buildings[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 13–25 (in Chinese).
    杜永峰,徐天妮,洪娜. 2017. 不同震源机制的近断层脉冲型地震动频谱特性及强度指标研究[J]. 土木工程学报,50(5):81–87. doi: 10.15951/j.tmgcxb.2017.05.009
    Du Y F,Xu T N,Hong N. 2017. Spectral and intensity indices of near-fault ground motions based on different focal mechanisms[J]. China Civil Engineering Journal,50(5):81–87 (in Chinese).
    韩淼,张文会,朱爱东,孙一林,李进波. 2016. 不同层隔震结构在近断层地震作用下动力响应分析[J]. 振动与冲击,35(5):120–124. doi: 10.13465/j.cnki.jvs.2016.05.019
    Han M,Zhang W H,Zhu A D,Sun Y L,Li J B. 2016. Dynamic response analysis for multi-story structures with different isolation stories under near-fault ground motions[J]. Journal of Vibration and Shock,35(5):120–124 (in Chinese).
    韩淼,崔明珠,杜红凯. 2017. 近断层地震动下基础隔震弹簧限位对结构响应影响试验研究[J]. 振动与冲击,36(19):175–179. doi: 10.13465/j.cnki.jvs.2017.19.027
    Han M,Cui M Z,Du H K. 2017. Experimental research on the effect of spring displacement-constraint devices on the structural responses of base-isolated structures under near-fault ground motions[J]. Journal of Vibration and Shock,36(19):175–179 (in Chinese).
    贺秋梅. 2012. 地震动的速度脉冲对结构反应及结构减隔震性能影响研究[D]. 北京: 中国地震局地球物理研究所: 98–110.
    He Q M. 2012. Study on the Influence of Seismic Velocity Pulse on Structural Response and Isolation Properties[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 98–110 (in Chinese).
    胡进军,谢礼立. 2011. 地震破裂的方向性效应相关概念综述[J]. 地震工程与工程振动,31(4):1–8. doi: 10.13197/j.eeev.2011.04.001
    Hu J J,Xie L L. 2011. Review of rupture directivity related concepts in seismology[J]. Earthquake Engineering and Engineering Vibration,31(4):1–8 (in Chinese).
    李明,谢礼立,杨永强,胡进军. 2010. 基于反应谱的近断层地震动潜在破坏作用分析[J]. 西南交通大学学报,45(3):331–335. doi: 10.3969/j.issn.0258-2724.2010.03.001
    Li M,Xie L L,Yang Y Q,Hu J J. 2010. Potential damage analysis of near-fault ground motion based on response spectra[J]. Journal of Southwest Jiaotong University,45(3):331–335 (in Chinese).
    李帅,张凡,颜晓伟,王景全. 2017. 近断层地震动合成方法及其对超大跨斜拉桥地震响应影响[J]. 中国公路学报,30(2):86–97. doi: 10.3969/j.issn.1001-7372.2017.02.011
    Li S,Zhang F,Yan X W,Wang J Q. 2017. Synthetic method for near-fault ground motions and its influence on seismic response of super-span cable-stayed bridge[J]. China Journal of Highway and Transport,30(2):86–97 (in Chinese).
    李爽,谢礼立. 2006. 近场脉冲型地震动对钢筋混凝土框架结构影响[J]. 沈阳建筑大学学报(自然科学版),22(3):406–410.
    Li S,Xie L L. 2006. Effects of near-field pulse-like ground motions on reinforced concrete frame structures[J]. Journal of Shenyang Jianzhu University (Natural Science),22(3):406–410 (in Chinese).
    李祥秀,王瑶,李小军,刘爱文,贺秋梅. 2021. 速度脉冲地震动作用下巨−子结构隔震体系的振动台试验研究[J]. 应用基础与工程科学学报,29(3):633–644. doi: 10.16058/j.issn.1005-0930.2021.03.009
    Li X X,Wang Y,Li X J,Liu A W,He Q M. 2021. Experimental studies on seismic performance of mega-sub isolation system subjected to near-fault ground motions with velocity pulse[J]. Journal of Basic Science and Engineering,29(3):633–644 (in Chinese).
    李新乐,朱晞. 2004. 近断层地震动等效速度脉冲研究[J]. 地震学报,26(6):634–643. doi: 10.3321/j.issn:0253-3782.2004.06.009
    Li X L,Zhu X. 2004. Study on equivalent velocity pulse of near-fault ground motions[J]. Acta Seismologica Sinica,26(6):634–643 (in Chinese).
    李雪婧,高孟潭,吴健. 2017. 2015年尼泊尔Gorkha地震强地面运动记录分析[J]. 地球物理学报,60(9):3445–3456. doi: 10.6038/cjg20170914
    Li X J,Gao M T,Wu J. 2017. Analysis of strong-motion characteristics of the 2015 Gorkha,Nepal,earthquake[J]. Chinese Journal of Geophysics,60(9):3445–3456 (in Chinese).
    李英民, 刘立平. 2011. 工程结构的设计地震动[M]. 北京: 科学出版社: 234−239.
    Li Y M, Liu L P. 2011. Design Ground Motion of Engineering Structures[M]. Beijing: Science Press: 234−239 (in Chinese).
    刘启方,袁一凡,金星,丁海平. 2006. 近断层地震动的基本特征[J]. 地震工程与工程振动,26(1):1–10. doi: 10.3969/j.issn.1000-1301.2006.01.001
    Liu Q F,Yuan Y F,Jin X,Ding H P. 2006. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration,26(1):1–10 (in Chinese).
    孙亚琪,李小军,刘旭晨,王晓辉,陈苏,邓小芳. 2022. 地震动速度脉冲特性对核电厂清洗转运间结构地震响应的影响[J]. 建筑结构,52(增刊1):858–862.
    Sun Y Q,Li X J,Liu X C,Wang X H,Chen S,Deng X F. 2022. Effects of velocity pulse of seismic ground motion on seismic response of transfer and purge chamber structure of nuclear power plant[J]. Building Structure,52(S1):858–862 (in Chinese).
    王国权,周锡元. 2004. 921台湾集集地震近断层强震记录的基线校正[J]. 地震地质,26(1):1–14. doi: 10.3969/j.issn.0253-4967.2004.01.001
    Wang G Q,Zhou X Y. 2004. Baseline correction of near fault ground motion recordings of the 1999 Chi-Chi,Taiwan earthquake[J]. Seismology and Geology,26(1):1–14 (in Chinese).
    王建民,朱晞. 2006. 地面运动强度度量参数与双线性单自由度系统变形需求的相关性研究[J]. 地震学报,28(1):76–84. doi: 10.3321/j.issn:0253-3782.2006.01.010
    Wang J M,Zhu X. 2006. Correlation study between ground motion intensity measure parameters and deformation demands for bilinear SDOF systems[J]. Acta Seismologica Sinica,28(1):76–84 (in Chinese).
    韦韬. 2005. 近断层速度脉冲对钢筋混凝土框架结构影响的研究[D]. 北京: 中国地震局地球物理研究所: 13–31.
    Wei T. 2005. Study on effects of near-fault velocity pulse on RC framed structures[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 17–31 (in Chinese).
    谢俊举,温增平,高孟潭,胡聿贤,何少林. 2010. 2008年汶川地震近断层竖向与水平向地震动特征[J]. 地球物理学报,53(8):1796–1805. doi: 10.3969/j.issn.0001-5733.2010.08.005
    Xie J J,Wen Z P,Gao M T,Hu Y X,He S L. 2010. Characteristics of near-fault vertical and horizontal ground motion from the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics,53(8):1796–1805 (in Chinese).
    谢俊举. 2014. 近断层地震动的脉冲运动特性及形成机理研究[D]. 北京: 北京工业大学: 50–57.
    Xie J J. 2014. The Study on Motion Characteristics and Generation Mechanism of Near Fault Ground Velocity Pulses[D]. Beijing: Beijing University of Technology: 50–57 (in Chinese).
    谢俊举,李小军,温增平. 2017. 近断层速度大脉冲对反应谱的放大作用[J]. 工程力学,34(8):194–211. doi: 10.6052/j.issn.1000-4750.2016.09.0680
    Xie J J,Li X J,Wen Z P. 2017. The amplification effects of near-fault distinct velocity pulses on response spectra[J]. Engineering Mechanics,34(8):194–211 (in Chinese).
    谢俊举,李小军,温增平,周宝峰. 2018. 芦山7.0级地震近断层地震动的方向性[J]. 地球物理学报,61(4):1266–1280. doi: 10.6038/cjg2018K0686
    Xie J J,Li X J,Wen Z P,Zhou B F. 2018. Variations of near-fault strong ground motion with directions during the 2013 Lushan MS7.0 earthquake[J]. Chinese Journal of Geophysics,61(4):1266–1280 (in Chinese).
    杨迪雄,赵岩. 2010. 近断层地震动破裂向前方向性与滑冲效应对隔震建筑结构抗震性能的影响[J]. 地震学报,32(5):579–587. doi: 10.3969/j.issn.0253-3782.2010.05.007
    Yang D X,Zhao Y. 2010. Effects of rupture forward directivity and fling step of near-fault ground motions on seismic performance of base-isolated building structure[J]. Acta Seismologica Sinica,32(5):579–587 (in Chinese).
    杨迪雄,李刚,程耿东. 2005. 近断层脉冲型地震动作用下隔震结构地震反应分析[J]. 地震工程与工程振动,25(2):119–124. doi: 10.3969/j.issn.1000-1301.2005.02.021
    Yang D X,Li G,Cheng G D. 2005. Seismic analysis of base-isolated structures subjected to near-fault pulse-like ground motions[J]. Earthquake Engineering and Engineering Vibration,25(2):119–124 (in Chinese).
    叶列平,马千里,缪志伟. 2009. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动,29(4):9–22. doi: 10.13197/j.eeev.2009.04.019
    Ye L P,Ma Q L,Miao Z W. 2009. Study on earthquake intensities for seismic analysis of structures[J]. Journal of Earthquake Engineering and Engineering Vibration,29(4):9–22 (in Chinese).
    张斌,俞言祥,肖亮. 2020. 近断层强震记录基线校正的改进方法[J]. 振动与冲击,39(5):137–163. doi: 10.13465/j.cnki.jvs.2020.05.018
    Zhang B,Yu Y X,Xiao L. 2020. An improved method for near-fault strong ground motion records’ baseline correction[J]. Journal of Vibration and Shock,39(5):137–163 (in Chinese).
    赵凤新,韦韬,张郁山. 2008. 近断层速度脉冲对钢筋混凝土框架结构地震反应的影响[J]. 工程力学,25(10):180–186.
    Zhao F X,Wei T,Zhang Y S. 2008. Influence of near-fault velocity pulse on the seismic response of reinforced concrete frame[J]. Engineering Mechanics,25(10):180–186 (in Chinese).
    赵晓芬. 2015. 近断层地震动速度脉冲的识别方法及对隔震结构的影响研究[D]. 哈尔滨: 中国地震局工程力学研究所: 7–30.
    Zhao X F. 2015. Study on Strong Motion Velocity Pulse Identification Method and Influence on Isolated Structures[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 7–30 (in Chinese).
    赵晓芬,温增平,陈波. 2018. 近断层地震动最强速度脉冲方向分量特性研究[J]. 地震学报,40(5):673–688. doi: 10.11939/jass.20170178
    Zhao X F,Wen Z P,Chen B. 2018. Characteristics of near-fault velocity pulses in the strongest pulse orientation[J]. Acta Seismologica Sinica,40(5):673–688 (in Chinese).
    赵晓芬,温增平,陈波,刘奕君. 2019. 适用于全周期结构的速度脉冲型地震动强度表征参数研究[J]. 地震学报,41(4):536–547. doi: 10.11939/jass.20190002
    Zhao X F,Wen Z P,Chen B,Liu Y J. 2019. Intensity measures of pulse-like ground motions in the full periods[J]. Acta Seismologica Sinica,41(4):536–547 (in Chinese).
    赵晓芬,温增平,谢俊举,解全才,刘奕君. 2021. 2018年台湾花莲MW6.4地震近断层地震动方向性差异[J]. 振动与冲击,40(10):235–243.
    Zhao X F,Wen Z P,Xie J J,Xie Q C,Liu Y J. 2021. Ground motion directionality in the 2018 Taiwan Hualien MW6.4 earthquake[J]. Journal of Vibration and Shock,40(10):235–243 (in Chinese).
    赵晓芬, 温增平, 谢俊举, 解全才. 2022a. NGA-West2地震动预测模型对速度脉冲型地震动各分量的适用性研究[J/OL]. 地震学报, 44: 1–10. doi: 10.11939/jass.20210176.
    Zhao X F, Wen Z P, Xie J J, Xie Q C. 2022a. Applicability of the Next Generation Attenuation-West2 ground-motion model to the components of near-fault velocity pulse-like ground motions[J]. Acta Seismologica Sinica, 44: 1–10. doi: 10.11939/jass.20210176 (in Chinese).
    赵晓芬, 温增平, 谢俊举, 解全才, 徐超, 王元杰. 2022b. 考虑近断层方向性效应的速度脉冲放大作用预测模型[J]. 振动与冲击(待刊).
    Zhao X F, Wen Z P, Xie J J, Xie Q C, Xu C, Wang Y J. 2022b. An empirical approach of accounting for the pulse amplification effects induced by near-fault directivity [J]. Journal of Vibration and Shock (in Chinese)(in press).
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2010. GB 50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 6−8.
    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB 50011−2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 6−8 (in Chinese).
    周靖,陈凯亮,罗高杰. 2010. 速度脉冲型地震地面运动强度表征参数评估[J]. 振动与冲击,29(7):153–158. doi: 10.3969/j.issn.1000-3835.2010.07.034
    Zhou J,Chen K L,Luo G J. 2010. Evaluation of intensity measures for pulse-like earthquake ground motions[J]. Journal of Vibration and Shock,29(7):153–158 (in Chinese).
    Abrahamson N A. 2000. Effects of rupture directivity on probabilistic seismic hazard analysis[C]//Proceedings of the Sixth International Conference on Seismic Zonation. Oakland: Earthquake Engineering Research Institute: 10−21.
    Abrahamson N A,Silva W J,Kamai R. 2014. Summary of the ASK14 ground motion relation for active crustal regions[J]. Earthq Spectra,30(3):1025–1055. doi: 10.1193/070913EQS198M
    Alavi B, Krawinkler H. 2001. Effects of Near-Fault Ground Motions on Frame Structures[R]. California: Blume Earthquake Engineering Center: 33−40.
    Almufti I,Motamed R,Grant D N,Willford M. 2015. Incorporation of velocity pulses in design ground motions for response history analysis using a probabilistic framework[J]. Earthq Spectra,31(3):1647–1666. doi: 10.1193/032113EQS072M
    Ancheta T D,Darragh R B,Stewart J P,Seyhan E,Silva W J,Chiou B S J,Wooddell K E,Graves R W,Kottke A R,Boore D M,Kishida T,Donahue J L. 2014. NGA-West2 Database[J]. Earthq Spectra,30(3):989–1005. doi: 10.1193/070913EQS197M
    Anderson J C,Bertero V V. 1987. Uncertainties in establishing design earthquakes[J]. J Struct Eng,113(8):1709–1724. doi: 10.1061/(ASCE)0733-9445(1987)113:8(1709)
    Anderson J C, Bertero V V, Bertero R D. 1999. Performance Improvement of Long Period Building Structures Subjected to Severe Pulse-Type Ground Motion: Pacific Earthquake Engineering Research Center PEER Report 1999/09[R]. Berkeley: University of California: 21–109.
    Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255
    Baker J W. 2011. Conditional mean spectrum:Tool for ground-motion selection[J]. J Struct Eng,137(3):322–331. doi: 10.1061/(ASCE)ST.1943-541X.0000215
    Baker J W, Cornell C A. 2004. Choice of a vector of ground motion intensity measures for seismic demand hazard analysis[C]//Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver BC, Canada, August 1−6, 2004.
    Baker J W,Cornell C A. 2008. Vector-valued intensity measures for pulse-like near-fault ground motions[J]. Eng Struct,30(4):1048–1057. doi: 10.1016/j.engstruct.2007.07.009
    Baltzopoulos G,Chioccarelli E,Iervolino I. 2015. The displacement coefficient method in near-source conditions[J]. Earthq Eng Struct Dyn,44(7):1015–1033. doi: 10.1002/eqe.2497
    Bertero V V,Mahin S A,Herrera R A. 1978. A seismic design implications of near-fault San Fernando earthquake records[J]. Earthq Eng Struct Dyn,6(1):31–42. doi: 10.1002/eqe.4290060105
    Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,91(5):1199–1211.
    Boore D M,Bommer J J. 2005. Processing of strong-motion accelerograms:Needs,options and consequences[J]. Soil Dyn Earthq Eng,25(2):93–115. doi: 10.1016/j.soildyn.2004.10.007
    Boore D M,Watson-Lamprey J,Abrahamson N A. 2006. Orientation-independent measures of ground motion[J]. Bull Seismol Soc Am,96(4A):1502–1511. doi: 10.1785/0120050209
    Boore D M,Atkinson G M. 2008. Ground-motion prediction equations for the average horizontal component of PGA,PGV,and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[J]. Earthq Spectra,24(1):99–138. doi: 10.1193/1.2830434
    Boore D M,Stewart J P,Seyhan E,Atkinson G M. 2014. NGA-West2 equations for predicting PGA,PGV,and 5% damped PSA for shallow crustal earthquakes[J]. Earthq Spectra,30(3):1057–1085. doi: 10.1193/070113EQS184M
    Bradley B A. 2010. A generalized conditional intensity measure approach and holistic ground-motion selection[J]. Earthq Eng Struct Dyn,39(12):1321–1342.
    Bradley B A,Baker J W. 2015. Ground motion directionality in the 2010−2011 Canterbury earthquakes[J]. Earthq Eng Struct Dyn,44(3):371–384. doi: 10.1002/eqe.2474
    Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001
    Campbell K W,Bozorgnia Y. 2014. NGA-West2 ground motion model for the average horizontal components of PGA,PGV,and 5% damped linear acceleration response spectra[J]. Earthq Spectra,30(3):1087–1115. doi: 10.1193/062913EQS175M
    Chang Z W,Sun X D,Zhai C H,Zhao J X,Xie L L. 2016. An improved energy-based approach for selecting pulse-like ground motions[J]. Earthq Eng Struct Dyn,45(14):2405–2411. doi: 10.1002/eqe.2758
    Chang Z W,Sun X D,Zhai C H,Zhao J X,Xie L L. 2018. An empirical approach of accounting for the amplification effects induced by near-fault directivity[J]. Bull Earthq Eng,16(5):1871–1885. doi: 10.1007/s10518-017-0275-7
    Chen K C,Huang B S,Wang J H,Huang W G,Chang T M,Hwang R D,Chiu H C,Tsai C C P. 2001. An observation of rupture pulses of the 20 September 1999 Chi-Chi,Taiwan,earthquake from near-field seismograms[J]. Bull Seismol Soc Am,91(5):1247–1254.
    Chen X Y,Wang D S. 2020. Multi-pulse characteristics of near-fault ground motions[J]. Soil Dyn Earthq Eng,137:106275. doi: 10.1016/j.soildyn.2020.106275
    Chen X Y,Wang D S,Zhang R. 2019. Identification of pulse periods in near-fault ground motions using the HHT method[J]. Bull Seismol Soc Am,109(6):2384–2398. doi: 10.1785/0120190046
    Chioccarelli E,Iervolino I. 2013. Near-source seismic hazard and design scenarios[J]. Earthq Eng Struct Dyn,42(4):603–622. doi: 10.1002/eqe.2232
    Chiou B S J,Youngs R R. 2008. An NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthq Spectra,24(1):173–215. doi: 10.1193/1.2894832
    Chiou B S J,Youngs R R. 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthq Spectra,30(3):1117–1153. doi: 10.1193/072813EQS219M
    Chiu H C. 1997. Stable baseline correction of digital strong-motion data[J]. Bull Seismol Soc Am,87(4):932–944. doi: 10.1785/BSSA0870040932
    Dai Z J,Li X J,Hou C L. 2014. Orientation-independent measures of ground motion made easy[J]. Bull Seismol Soc Am,104(3):1268–1275. doi: 10.1785/0120130154
    Dickinson B W,Gavin H P. 2011. Parametric statistical generalization of uniform-hazard earthquake ground motions[J]. J Struct Eng,137(3):410–422. doi: 10.1061/(ASCE)ST.1943-541X.0000330
    Hall J F,Heaton T H,Halling M W,Wald D J. 1995. Near-source ground motion and its effects on flexible buildings[J]. Earthq Spectra,11(4):569–605. doi: 10.1193/1.1585828
    Hayden C P,Bray J D,Abrahamson N A. 2014. Selection of near-fault pulse motions[J]. J Geotech Geoenviron Eng,140(7):04014030. doi: 10.1061/(ASCE)GT.1943-5606.0001129
    Howard J K,Tracy C A,Burns R G. 2005. Comparing observed and predicted directivity in near-source ground motion[J]. Earthq Spectra,21(4):1063–1092. doi: 10.1193/1.2044827
    Huang B S,Chen K C,Huang W G,Wang J H,Chang T M,Hwang R D,Chiu H C,Tsai C C P. 2000. Characteristics of strong ground motion across a thrust fault tip from the September 21,1999,Chi-Chi,Taiwan earthquake[J]. Geophys Res Lett,27(17):2729–2732. doi: 10.1029/2000GL011396
    International Conference of Building Official.1997. Uniform Building Code[S]. Whittier, California: International Conference of Building Official: 1234–1253.
    Iwan W D,Moser M A,Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bull Seismol Soc Am,75(5):1225–1246. doi: 10.1785/BSSA0750051225
    Jayaram N,Lin T,Baker J W. 2011. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance[J]. Earthq Spectra,27(3):797–815. doi: 10.1193/1.3608002
    Ji K,Ren Y F,Wen R Z,Kuo C H. 2019. Near-field velocity pulse-like ground motions on February 6,2018 MW6.4 Hualien,Taiwan earthquake and structural damage implications[J]. Soil Dynam Earthq Eng,126:105–784.
    Kalkan E,Gülkan P. 2004. Site-dependent spectra derived from ground motion records in Turkey[J]. Earthq Spectra,20(4):1111–1138. doi: 10.1193/1.1812555
    Kalkan E,Kunnath S K. 2006. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthq Spectra,22(2):367–390. doi: 10.1193/1.2192560
    Kohrangi M,Vamvatsikos D,Bazzurro P. 2019. Pulse-like versus non-pulse-like ground motion records:Spectral shape comparisons and record selection strategies[J]. Earthq Eng Struct Dyn,48(1):46–64. doi: 10.1002/eqe.3122
    Kuo C H,Huang J Y,Lin C M,Hsu T Y,Chao S H,Wen K L. 2019. Strong ground motion and pulse-like velocity observations in the near-fault region of the 2018 MW6.4 Hualien,Taiwan,earthquake[J]. Seismol Res Lett,90(1):40–50.
    Lin Y Y,Yeh T T,Ma K F,Song T R A,Lee S J,Huang B S,Wu Y M. 2018. Source characteristics of the 2016 Meinong (ML6.6),Taiwan,earthquake,revealed from dense seismic arrays:Double sources and pulse-like velocity ground motion[J]. Bull Seismol Soc Am,108(1):188–199.
    Luco N,Cornell C A. 2007. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthq Spectra,23(2):357–392. doi: 10.1193/1.2723158
    Ma K F,Wu Y M. 2019. Preface to the focus section on the 6 February 2018 MW6.4 Hualien,Taiwan,earthquake[J]. Seismol Res Lett,90(1):15–18.
    Makris N. 1997. Rigidity-plasticity-viscosity:Can electrorheological dampers protect base-isolated structures from near-source ground motions[J]. Earthq Eng Struct Dyn,26(5):571–591. doi: 10.1002/(SICI)1096-9845(199705)26:5<571::AID-EQE658>3.0.CO;2-6
    Mavroeidis G P,Papageorgiou A S. 2003. A mathematical representation of near-fault ground motion[J]. Bull Seismol Soc Am,93(3):1099–1131. doi: 10.1785/0120020100
    Mavroeidis G P,Dong G,Papageorgiou A S. 2004. Near-fault ground motions,and the response of elastic and inelastic single degree-of-freedom (SDOF) systems[J]. Earthq Eng Struct Dyn,33(9):1023–1049. doi: 10.1002/eqe.391
    Melgar D,Bock Y,Sanchez D,Crowell B W. 2013. On robust and reliable automated baseline corrections for strong motion seismology[J]. J Geophys Res:Soild Earth,118(3):1177–1187. doi: 10.1002/jgrb.50135
    NIST. 2011. Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses[R]. Gaithersburg: NEHRP Consultants Joint Venture: 1−18.
    Rowshandel B. 2006. Incorporating source rupture characteristics into ground-motion hazard analysis models[J]. Seismol Res Lett,77(6):708–722. doi: 10.1785/gssrl.77.6.708
    Rupakhety R,Sigurdsson S U,Papageorgiou A S,Sigbjörnsson R. 2011. Quantification of ground-motion parameters and response spectra in the near-fault region[J]. Bull Earthq Eng,9(4):893–930. doi: 10.1007/s10518-011-9255-5
    Shahi S K,Baker J W. 2011. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis[J]. Bull Seismol Soc Am,101(2):742–755. doi: 10.1785/0120100090
    Shahi S K, Baker J W. 2013. A probabilistic framework to include the effects of near-fault directivity in seismic hazard assessment[R]. Berkeley: University of California: 1–77.
    Shahi S K,Baker J W. 2014. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bull Seismol Soc Am,104(5):2456–2466. doi: 10.1785/0120130191
    Shome N,Cornell C A,Bazzurro P,Carballo J E. 1998. Earthquakes,records,and nonlinear responses[J]. Earthq Spectra,14(3):469–500. doi: 10.1193/1.1586011
    Sigurðsson G,Rupakhety R,Rahimi S E,Olafsson S. 2020. Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines[J]. Bull Earthq Eng,18(3):953–968. doi: 10.1007/s10518-019-00743-9
    Somerville P G. 2003. Magnitude scaling of the near fault rupture directivity pulse[J]. Phys Earth Planet Inter,137(1/2/3/4):201–212.
    Somerville P G. 2005. Engineering characterization of near fault ground motions[C/OL]//2005 New Zealand Society for Earthquake Engineering Conference. [2022-06-12]. https://www.researchgate.net/publication/237522275.
    Somerville P G,Smith N F,Graves R W,Abrahamson N A. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismol Res Lett,68(1):199–222. doi: 10.1785/gssrl.68.1.199
    Spudich P,Chiou B S J. 2008. Directivity in NGA earthquake ground motions:Analysis using isochrone theory[J]. Earthq Spectra,24(1):279–298. doi: 10.1193/1.2928225
    Tang Y C,Zhang J. 2011. Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions[J]. Soil Dyn Earthq Eng,31(1):59–76. doi: 10.1016/j.soildyn.2010.08.006
    Tarbali K. 2017. Ground Motion Selection for Seismic Response Analysis[D]. Canterbury: University of Canterbury: 87−96.
    Tian S Z,Gardoni P,Yuan W C. 2019. Coseismic deformation of the 6 February 2018 MW6.2 Hualien earthquake based on strong-motion recordings[J]. Seismol Res Lett,90(1):108–117. doi: 10.1785/0220180235
    Tothong P,Cornell C A,Baker J W. 2007. Explicit directivity-pulse inclusion in probabilistic seismic hazard analysis[J]. Earthq Spectra,23(4):867–891. doi: 10.1193/1.2790487
    Tothong P,Cornell C A. 2008. Structural performance assessment under near-source pulse-like ground motions using advanced ground motion intensity measures[J]. Earthq Eng Struct Dyn,37(7):1013–1037. doi: 10.1002/eqe.792
    Wang D,Xie L L,Abrahamson N A,Li S Y. 2010. Comparison of strong ground motion from the Wenchuan,China,earthquake of 12 May 2008 with the Next Generation Attenuation (NGA) ground-motion models[J]. Bull Seismol Soc Am,100(5B):2381–2395. doi: 10.1785/0120090009
    Wang R J,Schurr B,Milkereit C,Shao Z G,Jin M P. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am,101(5):2029–2044. doi: 10.1785/0120110039
    Wu Y M,Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. J Seismol,11(2):159–170. doi: 10.1007/s10950-006-9043-x
    Zhai C H,Chang Z W,Li S,Chen Z Q,Xie L L. 2013. Quantitative identification of near-fault pulse-like ground motions based on energy[J]. Bull Seismol Soc Am,103(5):2591–2603. doi: 10.1785/0120120320
    Zhai C H,Li C H,Kunnath S,Wen W P. 2018. An efficient algorithm for identifying pulse-like ground motions based on significant velocity half-cycles[J]. Earthq Eng Struct Dyn,47(3):757–771. doi: 10.1002/eqe.2989
    Zhao X F,Wen Z P,Xie J J,Xie Q C,Ching K E. 2021. Comparison of near-fault velocity pulse-like ground motions from the 2018 MW6.4 Hualien,Taiwan,earthquake with the next generation attenuation (NGA)-West2 ground-motion models and directivity models[J]. Bull Seismol Soc Am,111(2):686–703. doi: 10.1785/0120200141
  • 加载中
图(5)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  52
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-08-22
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回