刘蔚, 黄永明, 卢 永, 刘高川, 章国宝. 0: 基于格拉姆角场和多尺度残差神经网络的地震事件分类方法. 地震学报. doi: 10.11939/jass.20220144
引用本文: 刘蔚, 黄永明, 卢 永, 刘高川, 章国宝. 0: 基于格拉姆角场和多尺度残差神经网络的地震事件分类方法. 地震学报. doi: 10.11939/jass.20220144
Wei LIU, YongMing HUANG, Yong LU, GaoChuan LIU, GuoBao ZHANG. 0: Seismic events classification based on GAF andmulti-scale residual network. Acta Seismologica Sinica. doi: 10.11939/jass.20220144
Citation: Wei LIU, YongMing HUANG, Yong LU, GaoChuan LIU, GuoBao ZHANG. 0: Seismic events classification based on GAF andmulti-scale residual network. Acta Seismologica Sinica. doi: 10.11939/jass.20220144

基于格拉姆角场和多尺度残差神经网络的地震事件分类方法

Seismic events classification based on GAF andmulti-scale residual network

  • 摘要: 本文以江苏地震台网中心搜集并标注的天然地震、人工爆破和塌陷事件为实验数据样本,提出一种基于格拉姆角场和多尺度残差神经网络的地震事件分类的新方法。本文首先对波形数据进行滤波、归一化等预处理操作,然后应用格拉姆角场对地震波形数据进行二维编码得到二维图像。经过编码后的图像作为多尺度残差神经网络的输入进行分类模型训练和测试,进而得出分类结果。采用上述方法对1078个天然地震事件、981个爆破事件和830个塌陷事件进行实验。最终以单条波形为单位的分类准确率为92.55%,以事件为单位的分类准确率为96.36%。实验结果表明,基于格拉姆角场和多尺度残差神经网络对于地震分类具有良好的分类效果。

     

    Abstract: This paper proposes a new method for seismic event classification based on Gram's angle field and multiscale residual neural network using natural earthquakes, artificial blasts and collapse events collected and labeled by Jiangsu Seismic Network Center as experimental samples. In this paper, we first perform pre-processing operations such as filtering and normalization on the waveform data, and then realize a two-dimensional encoded image of the waveform data by Gram's angle field conversion, which is used as the input of the multiscale residual neural network and yields the classification results. The classification accuracy of 1078 natural seismic events, 981 blast events and 830 collapse events are 92.55% for single waveform and 96.36% for event-based classification. The experimental results show that the Gram-angle field-based and multiscale residual neural networks have good classification effects for seismic classification.

     

/

返回文章
返回